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0D van der Waals interfacial ferroelectricity

Yue Niu1,2,5, Lei Li1,2,5, Zhiying Qi1,2, Hein Htet Aung1,2, Xinyi Han1,2,
Reshef Tenne 3, Yugui Yao 1,2, Alla Zak 4 & Yao Guo1,2

The dimensional limit of ferroelectricity has been long explored. The critical
contravention is that the downscaling of ferroelectricity leads to a loss of
polarization. This work demonstrates a zero-dimensional ferroelectricity by
the atomic sliding at the restrained vanderWaals interface of crossed tungsten
disufilde nanotubes. The developed zero-dimensional ferroelectric diode in
this work presents not only non-volatile resistive memory, but also the pro-
grammable photovoltaic effect at the visible band. Benefiting from the
intrinsic dimensional limitation, the zero-dimensional ferroelectric diode
allows electrical operation at an ultra-low current. By breaking through the
critical size of depolarization, this work demonstrates the ultimately down-
scaled interfacial ferroelectricity of zero-dimensional, and contributes to a
branch of devices that integrates zero-dimensional ferroelectric memory,
nano electro-mechanical system, and programmable photovoltaics in one.

The scaling-down of ferroelectricity has been long pursued in the past
decades1–5, which is the fundamental of miniaturization and integra-
tion of ferroelectric devices. The central challenge, in the presently
accepted paradigm, is a size effect: down-scaled ferroelectricity
diminishes due to the arising depolarization field. Advances in
low-dimensional material preparation, characterization, and fabrica-
tion have promoted the vigorous development of nanoscale
ferroelectrics6,7. For example, the recent research on two-dimensional
(2D) ferroelectricity has brought the thickness down to the atomic
limit, including the ultrathin doped hafnium/zirconium oxide8–10, the
monolayer ferroelectric materials11–15, and the van der Waals (vdW)
stacked assembly16–30. Despite the success of 2D ferroelectricity, trials
to further scale down the ferroelectricity of the solid state, for exam-
ple, to the ultimate zero-dimensional (0D) ferroelectricity, have been
very limited31. Recently, the vdW interfacial ferroelectricity, or sliding
ferroelectricity of stacked hexagonal boron nitride, transition metal
dichalcogenides (TMDCs), and sandwiched graphene enabled the
design of ferroelectric systems out of non-ferroelectric parent
compounds16–30, expanding the scope of ferroelectric materials from
the wide-band insulators to semiconductors and metals. Given the
demonstration by the 2D stacked vdW assemblies, it is imperative to
investigate if such a unique form of ferroelectricity could break the

limitation of scaling down and build the ultimate 0D ferroelectrics in
the solid state.

Ferroelectrics are important candidates for nonvolatile memory
as part of the quest for denser storage, lower power consumption, and
neuromorphic computing32–36. Among the ferroelectrics, the ferro-
electric diode is a resistance-switching device37,38 that allows operation
at a current several orders of magnitude smaller than nano electro-
mechanical system (NEMS) memory (>10−2 A)39, phase change random
access memory (PcRAM, >10−5A)40, resistive random access memory
(RRAM, 10−4 A)41, magnetoresistive random access memory (MRAM,
10−3 A)42 without extra restrictor. While the ferroelectric diode also
generates a switchable photovoltaic effect, the sensitive wavelength
range, however, is limited to the high photon energy due to the wide
band gap of the traditional ferroelectric materials43. Nevertheless, the
integration of ferroelectric diode memory and switchable photo-
voltaics based on the vdW interfacial ferroelectricity has not yet been
demonstrated. One preventive reason could be that the vdW inter-
facial ferroelectricity in 2D contains multi-domains that could hinder
the overall polarization, urging efforts in downscaling the vdW inter-
facial ferroelectricity within one single domain.

This work realizes the scaling of the vdW interfacial ferroelec-
tricity down to 0D (<10 nm× 10 nm×2 nm), breaking the dimensional
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limitation of depolarization. By stacking crossed one-dimensional
tungsten disulfide (WS2) nanotubes, the created 0D interface results in
a spontaneous electric polarization switch via vdW sliding. The con-
structed four-probe device exhibits not only bipolar nonvolatile
resistive switching at low operation current, but also the program-
mable photovoltaic effect in the visible band covering the spectral
range from red to blue. Here we demonstrate the vdW interfacial fer-
roelectricity downscaled to the ultimate 0D, and contributes a branch
of interfacial ferroelectric diode device that combines the concepts of
0D ferroelectricity, semiconductor ferroelectrics, and NEMS memory
for the high-density low-power memory and photovoltaic switch.

Results and discussion
Building the 0D vdW interface
The first step towards the 0D interfacial ferroelectricity is to construct
the vdW interface within a small area. As shown in Supplementary
Fig. 1, the feasible strategy to construct a 0D vdW interface includes
contacting the 0D vdW component to another, or assembling the 1D
vdW components in a cross44,45. The latter, with four extended arms, is
obviously more suitable for further device fabrication, characteriza-
tion and further integration. In this work, we assemble the crossbar of
WS2 nanotubes (see charaterizations of WS2 nanotubes in Supple-
mentary Figs. 2 and 3) using the clean dry transfer technology46, and
fabricate the devices with the four terminals contact electrodes, as
shown schematically in Fig. 1a and Supplementary Fig. 4. Scanning
electron microscopy (SEM) and atomic force microscopy (AFM) ima-
ges of a fabricated device are shown in Fig. 1b, c. To evaluate the
contacting area of the interface, we feed the heights (diameters) of
the nanotubes (h1, h2) and the height of cross junction (h3) to the finite
element model to simulate the deformation, the pressure, and the
scale of the vdW interface. As shown in Fig. 1d and Supplementary
Fig. 5, the deformation indicates a nummular interface of about

10.0 nm by diameter, or 78.8 nm2 by area (h1 + h2-h3 ~ 1.0 nm). This is
178 times smaller than the size of a single domain of 2D vdW interfacial
ferroelectricity, as illustrated in Supplementary Fig. 6. The results also
indicate a maximum compacting pressure intensity of up to 2.24GPa,
or 2.21 × 104 times of atmospheric pressure, due to the limited con-
tacting area. Such a large pressure intensity enhances the vdW cou-
pling at the interface and contributes to a higher current density and
coercive field, as will be discussed with the results below. With such
1D–1D WS2 nanotube crossbar configuration, we obtain the 0D vdW
interface in the middle of the semiconductor components.

We used the four-terminal measurement to characterize the
electrical performance of the 0D interface, as shown in the insert of
Fig. 1e and Supplementary Fig. 7. Unlike 2D vdW assembly that can
expose the electric potential to the scanning probe microscope or the
channeling contrast electron microscope19,21,22,25–27, the 0D interface is
secluded and its properties have to be presented through electrical
characterization. The four-terminal measurement ensures that the I-V
curve in Fig. 1e consists of the current and voltage drop just across the
0D interface. The I-V curve show nonlinearity and the current
decreases upon decreasing temperature, indicating a potential barrier
for the carriers at the 0D junction. An equivalent barrier height of the
0D junction as a function of voltage was extracted from the Arrhenius
plot of the current-temperature relationship, as shown in Fig. 1f and
Supplementary Fig. 847,48. The equivalent barrier should be from the
coupling between the vdW interfaceplus the slight difference between
the band structure of the two nanotubes of a different diameter49. The
equivalent barrier height is above one hundred meV and decreases
with the voltage drop across the 0D vdW interface. Among all the
fabricated devices, we note that although the junctions are with the
same WS2 nanotube components besides the 0D interface, the I-V
curves could be asymmetric and shows different levels of rectification,
indicating an interfacial polarization across 0D homojunction.
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Fig. 1 | The structure and electronic property of WS2 nanotubes crossbar.
a Schematic diagram of the device structure. b SEM image of the WS2 nanotubes
crossbar. The scale bar is 3μm. c AFM image of the WS2 nanotubes crossbar with
the heights h1, h2, and h3 labeled. The scale bar is 3μm. d The relationship between
the interface area and the height difference h1 +h2 − h3. Insert: Simulated WS2

nanotubes crossbar structure and the pressure distribution. The Young’s modulus
is extracted from ref. 81,82. e I–V characteristics of WS2 nanotubes crossbar device
at temperatures of 400K, 350K, 300K, 250K, 200K and 150K. Insert: The four-
terminal measurement. f The extracted barrier heights of the 0D junction as a
function of voltage.
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0D vdW interfacial ferroelectric diode
We further studied the0DvdW junctiondevice as a ferroelectric diode.
As shown in Fig. 2a, by sweeping the voltage, we found that the rec-
tification canbe switched, corresponding to an abrupt resistive switch.
Logarithmic plot of the I-V curves is presented in Fig. 2b. Considering
that the 0D junction is a homojunction, the reverse of rectification and
resistance switch should be caused by a switchable electric polariza-
tion of the junction. The rectification and resistive switch are repea-
table, showing endurance inmultiple tests as is shown in the linear and
logarithmic plots. The resistances of the ON andOFF states with a read
voltage of 1 V are shown in Fig. 2c, corresponding to an average ON/
OFF ratio of 27, which is comparable to PcRAM (10–100)40, higher than
MRAM (2–3)42, but lower than RRAM (104–105)41 and NEMS memory
(infinite)39. The resistance and ON/OFF ratio with other read voltage
are presented in Supplementary Fig. 9. The coercive voltage, orwriting
voltage that leads to the resistive switch is about 4.8 V, as is shown in
Fig. 2d, corresponding to a coercive electric field of 3 V/nm. Such a
rectification switch and resistive modulation have been reported pre-
viously in metal-ferroelectric material-metal trilayer structures known
as ferroelectricity diodes, where the sandwiched ferroelectric materi-
als were ferroelectric film materials such as BiFeO3

37, Pb(ZrxTi1−x)O3

(PZT)50, or Hf1−xZrxO2 (HZO)38. Here, we demonstrate with the fabri-
cated device that the 0D vdW interface could play as the essential
module for ferroelectric diode-like behavior.

Now we discuss the mechanism of the polarization switch at the
0D vdW junction. Although the 0D vdW junction shows a ferroelectric
diode-like behavior, the source of the polarization shift should be
carefully verified. Two possible mechanisms might contribute to such
polarization switch: The first hypothesis, as shown in Fig. 3a, is the
electric field induced atomic vacancy transfer across the 0D interface,
which was observed at the MoS2-gold interface and generates the
resistance switch, as reported in the previous studies51–54. The migrat-
ing atomic vacancy that carries net charge can cause a shift of the
electrical polarization across the 0D interface. The second hypothesis,

as shown in Fig. 3b, is that the 0D vdW interface changes its stacking
order by atomic scale sliding, which results in interfacial ferroelec-
tricity, reported earlier in subtle 2D vdW interface of hBN, TMDCs, and
sandwiched graphene17–19,21–29. Given the infeasibility of the in situ
observation in this case for the potential single atomic vacancy
migration or atomic scale sliding, here we have to design an operable
experiment for convincing verification. As shown in the upper insert of
Fig. 3c, we spin-coated PMMA of 300 nm thickness to cover the WS2
0D van der Waals junction device, and repeated the measurement
shown in Fig. 2. The conductivity of the 0D interface remained at the
same level, however, the phenomenon of rectification switch or
resistive modulation disappeared, as shown in Fig. 3c. Since the filling
PMMA does not block the migration of the atom vacancy but prevents
WS2 nanotube from sliding, the polarization shift should result from
the mechanical sliding guaranteed by the superlubricity at the vdW
interface. Therefore, the 0D vdW sliding ferroelectric diode device can
be regarded as a special branch of NEMSmemory55,56. A general theory
has been proposed and well demonstrated16,57. We performed density
functional theory (DFT) simulation on the stacked WS2 planes. The
interfacial differential charge densities of rhombohedral stacked WS2
planes explicitly show charge redistribution between the top and
bottom layers (Fig. 3d, e)25. Their line profiles in Fig. 3f show explicit
switched electric polarization at the interfaces, and Fig. 3g shows
interlayer potential difference of rhombohedral stacked WS2, which is
absent in parallel and antiparallel stacked WS2 (Supplementary
Fig. 10)26.

Now we discuss the features of the 0D sliding ferroelectricity for
memory:

Firstly, the functioning interface is intrinsically constrained. In
Fig. 4a, we compare the scale of such an 0D interface to the single
ferroelectric domain of 2D ferroelectric materials or interface. As is
seen, the ferroelectricity of 0D interface demonstrated here is at least
178 times smaller than that of 2D ferroelectricity. In fact, the scale of
0D ferroelectricity, which is in the solid state, is nearly comparable to a

Fig. 2 | WS2 nanotube crossbar as the 0D vdW ferroelectric diode. a I–V char-
acteristic of WS2 nanotubes crossbar device in the linear coordinate for ten cycles.
b I–V characteristic in the logarithmic coordinate for ten cycles. c The measured
high resistance (HR, or OFF-state, by purple bars), low resistance (LR, or ON-state,

by yellow bars), and the ON/OFF ratio (blue square) of the device, read at V = 1 V.
d Switching voltage of the device for 10 cycles and the average value (dotted lines).
The measurement is conducted at room temperature unless specified.
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single molecule electret31,58. The core functioning part of the device is
only about 5000 atoms large, as shown in Supplementary Fig. 11. Such
a constraint provides the possibility for ultra-high density. The con-
strained area also allows operation at a current of <10−6A, despite the
normalized current density of up to 1.15 × 1010A/m2. The excessive
operation current without an extra restrictor is a major concern of the
memory devices such as PcRAM, MRAM, and RRAM, which increases
the power consumption of the devices and the local temperature.

Secondly, the coercivity of the 0D sliding ferroelectricity is not
hindered by the size effect induced depolarization that limits the
scaling down of traditional ferroelectric devices. Instead, the coercive
electrical field is even larger than that observed in traditional ferroe-
lectricity, 2D ferroelectricity, or 2D sliding ferroelectricity, as is shown
in Fig. 4b. The enhanced coercivity is probably caused by the large
pressure dictated by the very small contact area, which requires a
higher driving force to initiate the slide and results in the robustness of
the polarization. That indicates that the coercion of sliding

ferroelectricity can be tuned by the mechanical condition and opens a
gate to tune ferroelectricity with extramechanical force. The electrical
measurement in this work is conducted at room temperature unless
specified.We used the thermal simulation to estimate the temperature
of 0D ferroelectric interface atwork. The highest temperature is about
390K, as shown in Fig. 4c and Supplementary Fig. 12. Therefore we
infer that the Curie temperature of 0D vdW sliding ferroelectricity
couldbehigher than 390K,which is higher than theCurie temperature
obtained by stacked 2D WSe2

23.
Thirdly, the switching speed of the 0D sliding ferroelectric diode

is evaluated, which is a key property of performance for memory
devices. Programmed electrical pulse is applied to the device with its
pulse width experimentally measured, as shown in the Supplementary
Fig. 13. The programmed pulsewidth is 140 ns and themeasured pulse
width is 160 ns. The resistance switch is observed before and after
applying the pulse, as shown in Fig. 4d, indicating that the switch
happens within the pulse period of ns.
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Fourthly, we investigate the retention and endurance of the 0D
sliding ferroelectric diode. The switchedON/OFF states are stable over
5 × 103s, as shown in Supplementary Fig. 14, indicating the retention
and stabilization of the ferroelectric polarization scaled down to the
0D. However, the endurance of the device versus pulses is less satis-
fying. Supplementary Fig. 15 shows the cycles of switches of the 0D
sliding ferroelectric diode. The device presents tens of switching
cycles before the fatigue. The fatigue failure of traditional ferroelectric
materials has been long explored, which could be the domain wall
pinning, domain nucleation suppression, microcracks, and accumula-
tion of the space or injected charge59–62. The endurance of vdW inter-
facial ferroelectricdevices in thisworkandprevious studies is shown in
Supplementary Table 1. The failure mechanism of the 0D ferroelectric
contact due to fatigue is not clear at this point. It could be possibly
explored with the help of the recently developed operando electron
microscopy investigation63.

Lastly, we discuss the major concern of the low yield of the 0D
sliding ferroelectric diodes. The major challenge for realization of 0D
ferroelectricity, is that it requires rhombohedral stacking16,26, while at
the current stage, chiral control of the WS2 nanotube has not been
realized. In this work, we have fabricated 94 devices, among which the
rectification switch and resistive modulation are observed in very few
(4) devices. For any future application, the chirality-controlled stacking
of WS2 nanotube should be further developed towards massive pro-
duction of the0D sliding ferroelectric diode. In the very recent studies,
the in-situ characterization for the chirality of TMDCs have been
developed, and assembly of 1D graphene nanoribbon with chiral
control has been demonstrated64,65. Despite the low yield, these recent
progresses show the potential for addressing this challenge. Note that

chirality-controlled incipient growth at the first step and post-growth
chirality purification has been achieved in the by far more intensively
studied carbon nanotubes66,67. These methods could also potentially
be extended to the TMDC nanotubes.

Programmable photovoltaic effect
Besides resistive memory, another important application of ferro-
electric diode is its usage as programmable photovoltaics. Traditional
ferroelectric materials have a wide bandgap, which limits their avail-
ability as visible band photovoltaics. The vdW interfacial ferroelec-
tricity ismore flexible in choices ofmaterial with suitable bandgap.We
have therefore measured the photo response of the 0D ferroelectric
diode, as shown in Fig. 5a. The photovoltaic short-circuit current
spectrum shows an abrupt edge at around 1.8 eV, as shown in Fig. 5b.
Not surprisingly, this photoresponse spectrum is in accordance with
the photo absorption spectrum, as shown in Supplementary Fig. 16.
The photovoltaic response in a ferroelectric system might originate
from various mechanisms, including electric polarization and/or shift
current43,68–70. The photovoltaic short circuit current versus light
power relationship shows a linear to square root transition, which is
comparable to the shift current observed in WSe2-black phosphorous
heterojunction, as shown in Fig. 5c68. Note that the normalization by
active area shows a higher photocurrent density for the 0D ferro-
electric diode, as shown in Supplementary Fig. 17. The large photo-
current density could be enhanced by the crossbar structure. A
hotspot area is formed around the contacting area of the WS2 nano-
tube junction, as shown in Fig. 5d and Supplementary Fig. 18, which is
in accordance with the optical resonance oscillation shown in Sup-
plementary Fig. 19. The polarization of the 0D vdW interface is shifted
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using a pre-applied voltage of 10 or −10 V as the writing voltage. With
the typical laser of 633 nm (red), 532 nm (green), and488 nm (blue),we
demonstrate that the WS2 nanotube junction presents a switchable
photovoltaic effect for the visible band light, presented by the I-V
curves, as shownby the linear plot of Fig. 5e and the logarithmic plot of
Fig. 5f. The reversionof thephotovoltaic effect is herebydemonstrated
with a vdW sliding interface, confirming the spontaneous polarization
shift of the 0D vdW interfacial ferroelectric diode.

To summarize, this work demonstrates a 0D ferroelectricity via
vdW interfacial sliding that breaks the dimension limit ruled by
depolarization. Constrained by the dimension, the 0D vdW interfacial
ferroelectricity allows resistance switching operation at a low current
level for potential high-density and low-powermemory. Moreover, the
0D vdW interfacial ferroelectric diode presents a programmable
photovoltaic effect responding to the visible band light. This work
provides the strategy to scale ferroelectricity down to 0D, and
demonstrates a branch of devices that integrates 0D vdW interfacial
ferroelectrics, semiconductor electronics, photovoltaics, and NEMS
with potential application to be explored for next-generation versatile
electronic systems.

Methods
Materials
WS2 nanotubes were obtained using a high temperature chemical
reaction between tungsten oxide and H2S gas in a reducing atmo-
sphere. The one-pot self-controlled reaction involved twomajor steps,
i.e., the almost instantaneous growth of tungsten suboxide (W18O49)
nanowhiskers, and the subsequently slow sulfurization of the W18O49

nanowhiskers into hollow WS2 nanotubes. Oxide nanoparticles con-
sisting of a mixture of different suboxide phases WOx (with average
composition x = 2.92) were used as the precursor. For the first step, a
series of intermediate reactions occurred, including the reduction of

the precursor into volatile suboxide phase (WO2.75); evaporation of
WO2.75; partial reduction of the vapor into nonvolatile WO2, and con-
densation of the vapormixture into stableW18O49 suboxide phasewith
a morphology of 1D nanowhiskers. In the second step, the oxide
nanowhiskers served as self-consumed template. Here, sulfurizationof
the W18O49 nanowhiskers from the surface towards the inner core
converted the nanowhiskers into hollow WS2 nanotubes. In the first
instant of this reaction, two to three WS2 layers were formed on
the surface of the oxide nanowhiskers. Further-on, the conversion of
entireoxidenanowhisker into a hollownanotubewas controlledby the
rather slow diffusion of the reaction gases and took 3 to 4 hours. The
majority of the nanotubes were found to be 2 to 20μm long with
average diameter of about 70 nm, as shown in Supplementary Fig. 2.

Experimental
The multiwalled WS2 nanotubes are dispersed and stacked onto a
silicon substrate with 300nm silicon oxide using the dry transfer
method. The crossbar WS2 nanotubes are positioned via an optical
microscope. A layer of PMMA was coated on the surface and heated
at 180 °C to evaporate the solvent for 2min. The pattern of the
electrodes was established by electron beam lithography, and Cr/
Au = 20/80nm was deposited by electron beam evaporation as the
contact electrodes. Then the resist and the redundant metal are
removed by the lift-off process in acetone. The electrical properties
were measured by the four-terminal method with a Keithley
4200 semiconductor characterization system or 2400 source mea-
surement meters. AFM was used to characterize the height of the
WS2 nanotubes. Opto-electric characterizations were performedwith
a combination of Raman microscopes, Keithley semiconductor
characterization systems, and source meters. Raman microscope
equipped with continuous lasers with wavelengths of 633 nm,
532 nm, 488 nm were employed.
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Fig. 5 | Photovoltaic effect of 0D vdW ferroelectric diode. a Schematic diagram
of the photoresponse measurement. b The short circuit photocurrent spectrum of
the WS2 nanotubes crossbar with normalized laser power. The photocurrent
spectrum indicates a bandgap of about 1.8 eV. c Laser power dependence of the
photocurrent. In the low-power region, photocurrent is proportional to laser
power, whereas the plot shows I∝P0.5 power dependence in the high-power range.

The wavelength of the laser is 645nm. The results of the WSe2/black phosphorus
heterojunction device are extracted from ref. 68. d Simulated optical electric field
distribution of WS2 nanotubes crossbar illuminated by a laser of 633 nm. e I–V
curves of the device with pre-applied negative/positive voltage, demonstrating a
programmable photovoltaic effect. f I–V curves in logarithmic coordinates.
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Finite element simulation
Finite element simulation was used to reveal the mechanical defor-
mation, the optical electric field, and temperature distribution in this
work. Themechanical properties such as Young’s modulus, Poisson’s
coefficient, the optical properties such as the real and imaginary
component of the refractive index, and the thermal properties such
as thermal conductivity were obtained from the literature71–73. For the
mechanical deformation, the displacement was set from 0 to 2 nm
with a step size of 0.1 nm, and from 2 to 10 nm with a step size of
1 nm. The maximum strain is automatedly given by the results, and
the contacting area was extracted by defining the surface with
positive normal strain. For the optical simulation, the electro-
magnetic wave with various polarization direction was set to incident
the nanotube crossbar structure from the top direction, the fre-
quency was set from 200 to 1000 THz, corresponding to wavelength
of 300–1500 nm. The hotspot of the optic electrical field was shown
by the intersection of the structure. The temperature distribution
caused by Joule heating was simulated by combining the electrical
model and the thermal model, which illustrate the hotspot around
the interface.

DFT simulation
We perform density functional theory calculations using the pro-
jector augmented wave method74, as implemented in the VASP75,76

package. The kinetic energy cut-off for the plane-wave basis is set to
500 eV, and we treat the exchange-correlation interactions with the
Perdew–Burke–Ernzerhof functional77 in the generalized gradient
approximation. A vacuum space exceeding 20 Å is employed to
prevent artificial interactions between neighboring image layers. For
geometric optimization, the DFT-D3method78,79 with Becke–Johnson
damping is employed to incorporate the interlayer van der Waals
interaction and the structure is fully relaxed until the residual forces
on each atom decrease to below 0.01 eV/Å. For electronic self-
consistent calculations, we apply a convergence criterion of 10−6eV
and sample the Brillouin zone using the Monkhorst–Pack
scheme with a 12 × 12 × 1 k-mesh. The VASPKIT code80 is utilized
for post-processing during the calculations of interlayer potential
and differential charge density between layers. A inverted double-
bilayer structure26 is employed to compensate the built-in electric
field and ensure the periodic boundary condition in the out-of-plane
direction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are presented in the manuscript or Supplementary Informa-
tionor available upon reasonable request to the corresponding author.
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