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Locating causal hubs of memory
consolidation in spontaneous brain
network in male mice

Zengmin Li1, Dilsher Athwal1, Hsu-Lei Lee 1, Pankaj Sah 1,2, PatricioOpazo1,3,4 &
Kai-Hsiang Chuang 1,5,6

Memory consolidation after learning involves spontaneous, brain-wide net-
work reorganization during rest and sleep, but how this is achieved is still
poorly understood. Current theory suggests that the hippocampus is pivotal
for this reshaping of connectivity. Using fMRI in male mice, we identify that a
different set of spontaneous networks and their hubs are instrumental in
consolidating memory during post-learning rest. We found that two types of
spatial memory training invoke distinct functional connections, but that a
network of the sensory cortex and subcortical areas is common for both tasks.
Furthermore, learning increased brain-wide network integration, with the
prefrontal, striatal and thalamic areas being influential for this network-level
reconfiguration. Chemogenetic suppression of each hub identified after
learning resulted in retrograde amnesia, confirming the behavioral sig-
nificance. These results demonstrate the causal and functional roles of resting-
state network hubs in memory consolidation and suggest that a distributed
network beyond the hippocampus subserves this process.

The formation of enduring memory in the brain is a distributed and
dynamic process, the mechanism of which is not fully understood.
Current theory of systems memory consolidation suggests that the
hippocampus mediates the encoding of information from segregated
sensory, motor, or motivation brain networks that are engaged during
learning, gradually reshaping their connectivity to form long-term
memory1,2. This is facilitated by the reactivation of learning-associated
neuronal populations (replay) and the coordinated interaction of the
hippocampal-neocortical network during post-encoding periods of
quiet wakefulness (resting state) and sleep3–6. This process is highly
dynamic, with the hippocampus initially mediating cortical plasticity,
but afterwhich the neocortical network becomesmoreactive1,7,8. Apart
from the hippocampus, where, when and how other regions are
involved in facilitating this system-wide reconfiguration are still

unclear. Whole-brain functional imaging during task performance has
revealed broad engagement of not only neocortical but also sub-
cortical areas when encoding or recalling memory in humans9 and
rodents10,11. However, the regions involved in consolidatingmemory in
the ill-defined, “offline”period are difficult to pinpointwithout aligning
them to activities associated with replay12.

A major advance over the last decade has been the identification
of the brain-wide network involved in spontaneous activity during
task-free conditions13. Functional connectivity (FC), measured as the
correlation between regional activities at resting state, forms large-
scale networks of functionally associated areas that indicate an
intrinsic organization of the brain14,15. The disruption of these resting-
state networks (RSNs) in association with cognitive impairment in
aging and disease provides evidence for their involvement in the
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etiology and progression of these conditions16–18. Advances in network
neuroscience have further revealed that the topology of RSNs changes
with performance or symptom, suggesting the behavioral relevance of
their organization and dynamics19,20. Importantly, learning can induce
ongoing remodeling of the RSNs over time in humans21,22 and
rodents23,24. Increased association between hippocampus-neocortical
FC and performance over repeated training25,26, reconfiguration after
sleep27,28, and reactivation of the learning-related activity pattern29,30

have suggested that post-encoding RSNs reflect systems memory
consolidation.

However, a fundamental question that remains is whether the
spontaneous network changes are causative of the behavior- or
disease-associated states with which they correlate31. Due to the
observational nature of the experimental designs, unconstrained
imaging environments, and correlation-based FC measures, it remains
possible that the observed RSN changes are epiphenomena which are
driven by alternative neural, physiological or pathological factors32–36.
Furthermore, if they are causative, the activity and areas that drive
such large-scale network remodeling remain unresolved. Analytical
methods can allow the inference of causality from the RSNs (for
review, see ref. 37). Nonetheless, they only estimate inter-dependency
between regional activities within a network, insteadof the causality to
behavior. Critically, whether a network or its hub is causally required
for cognition (e.g., episodic memory), such that its dysfunction leads
to a disability (e.g., amnesia) whereas its facilitation improves perfor-
mance, has not been directly tested experimentally with prospective
interventions.

In this study, we reveal the brain networks that are instrumental in
consolidating memory during post-encoding rest by identifying and
functionallymanipulating RSN hubs.We examined two hypotheses for
defining causal hubsof behavior, onebasedon a commonnetwork and
the other on network integration. Certain elements of the
hippocampal-neocortical network, particularly between the hippo-
campal formation (HPF, including the hippocampus, subiculum and
entorhinal cortex), retrosplenial cortex (RSC) and medial prefrontal
cortex (mPFC), have been identified in different spatial or contextual
learning paradigms8,38–41. The storage of various forms of the spatial
memory trace (engram) in these areas8 indicates that a common, task-
invariant network may be involved in the systems consolidation1,42,
although the full extent of this common network is still unclear. In
addition, consolidation incorporates new information from function-
ally segregated areas, such that this integration could bemanifested at
the network level. Indeed, topological features of network integration,
such as global efficiency43, or segregation, such as modularity44, have
been shown to correlate with performance during or after learning.
Altered network integration is also found after cognitively demanding
tasks45,46 or overnight consolidation27. These findings indicate that
network integration is an essential feature in learning and memory.
Thus, influential hubs for network integration (“integrator” hubs) may
have a causal role in memory formation.

To test whether common network hubs (behaviorally influential
brain regions consistently invoked by different learning paradigms) or
integrator hubs (behaviorally influential brain regions contribute to
network integration) are causally involved in memory consolidation,
we trainedmice in two versions (early and late retrieval) of active place
avoidance (APA), a spatial memory task, and subsequently acquired
resting-state functional magnetic resonance imaging (rsfMRI) data to
characterize behavior-induced RSN changes during post-learning
period (Fig. 1a). Previous studies indicated that different retrieval
intervals may form memory via different mechanisms, with elevated
network activity and transcription factors within short (1–5 h) retrieval
intervals facilitating the integration of information, whereas reactiva-
tion of stored memory is involved after a longer interval47,48. Whether
the same circuitry is engaged in these processes is unclear. Further-
more, to test whether the RSN during consolidation transitions from

hippocampal- to neocortical-dependent, we conducted rsfMRI at 1 day
and 1 week after learning to track the dynamics of network reorgani-
zation. We also developed methods for detecting common or inte-
grator hubs from post-encoding RSNs, with our results revealing that
the sensory cortices were commonly engaged following both tasks,
and the prefrontal cortex and the striatal and thalamic nuclei were
important for network integration. We then validated the behavioral
impact of the identified hubs by silencing each hub individually during
the consolidation period using inhibitory Designer Receptors Exclu-
sively Activated by Designer Drugs (DREADDs)49.

Results
Similar behavior leads to distinct post-encoding RSNs
It has been shown that theHPF,mPFC andRSC are typically involved in
the consolidation of spatial or contextual memory. To investigate
whether similar spatial learning invokes a common network in post-
encoding rest, we conducted two APA tasks with the same training
trials but different inter-trial intervals: one hour (1-Day APA, as the
learningwas completed in one day) versus one day (5-DayAPA; Fig. 1a).
APA allows spatial navigation andmemory to be assessed in mice with
less stress than that associatedwith thewatermaze by training them to
avoid a shock zone based on spatial cues over repeated trials
(Fig. 1b)50,51. After learning, two sessions of rsfMRI were performed on
post-training days 1 and 8 to examine the plasticity of the RSNs. One
day after the second rsfMRI scan, a probe test was performed to assess
memory retention. The number of shocks (Nshock) that the animals
received and the time to first entrance into the shock zone (Tenter) were
used to measure their behavioral performance. Nshock gradually
decreased and Tenter increased during learning; this, together with the
similar values obtained during the probe tests (Fig. 1b; Supplementary
Results), demonstrated that the mice could remember both APA tasks
equally well after 9 days, and the formation of long-lasting memory.

We distinguished post-encoding RSNs by comparing the FC
between 230 highly parcellated brain regions in a brain template
(Fig. 1c; Supplementary Table S1) of the APA groups versus their own
controls. In the control group, animals were exposed to the APA
training procedures without any foot shock being delivered as we
found that random shock elicited a strong stress response. Despite
comparable behaviors during learning and retrieval of both APA tests,
we found distinct post-encoding RSNs. On post-training day 1 (Fig. 1d;
two-sample t-tests, p <0.05, false discovery rate [FDR]-corrected), the
1-Day APA increased the sparse FC in the left hemisphere between the
entorhinal cortex and pontine nucleus, which is a pivotal relay and
transformer for motor signal between the cerebellum and cerebral
cortex52; andbetween the dorsal anterior cingulate cortex ([A24a], part
of the mPFC) and olfactory tubercle, which is involved in sensory-
guided reward/motivation behaviors53; but decreased the FC between
the somatosensory and prefrontal cortices and between the HPF and
pons in the right hemisphere. In contrast, the 5-Day APA increased the
FCmostly in the right hemisphere, including theHPF, prefrontal cortex
and sensory areas. This highly lateralized FC (12 out of 17 connections)
is consistent with studies reporting that the right hemisphere is pre-
dominant in memory processing54–56. One week after APA training, the
network was reorganized. In the 1-Day APA group, even more inter-
hemispheric FC was found, with increased FC being observed among
the somatosensory cortex, lateral accumbens shell (LAcbSh, an area
involved in feeding, reward and motivated behavior57) and ventral
entorhinal cortex, whereas the FC between the lateral orbital cortex
(LO, a prefrontal region involved in decision making and the acquisi-
tion of hippocampus-dependent memories58–60), somatosensory cor-
tex, thalamus, andponsdecreased. In the 5-DayAPAgroup, only sparse
FC between the HPF, prefrontal cortex and thalamus in the right
hemisphere was found. Comparable post-encoding plasticity could
also be identified using independent component analysis (ICA),
revealing distributed network in the sensory cortex, mPFC,
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hippocampus, basal ganglia and thalamus (Supplementary Results and
Fig. S1). These results indicated that post-encoding RSNs are task- and
time-dependent and involve distant neocortical and subcortical areas,
similar to the findings of previous studies using the Morris water
maze23,24. The overall connectivity with theHPF andmPFC is consistent
with their critical roles in memory consolidation, although the specific
subregions involved differed between tasks. A common network

between the two APA tasks could be obscured with such detailed
parcellation. Alternatively, this could be due to the much stricter false
positive rate when calculating the overlap between two FDR-corrected
connectivity matrices.

It is generally expected that behaviorally relevant connections
predict performance.Many studies have found anassociation between
memory performance and FC during encoding or retrieval61–63, yet
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little is known about the relationship with post-encoding FC. To test
whether post-encoding FC is associated with memory retention, we
calculated Pearson’s correlation between FC strength and Nshock or
Tenter in the probe trial (Fig. 1e). Only two connections on post-training
day 8 in the 1-DayAPAgroup correlatedwithbehavior: between the left
posterolateral cortical amygdala (PLCo) and the LAcbSh (r =0.87,
p =0.0045) and between the right primary somatosensory cortex jaw
region and the inferior colliculus (r =0.82, p =0.012). Although several
connections were enhanced in the 5-Day APA, no correlation with
behaviorwas found. This indicates that themost significant FCmaynot
be influential for behavior.

Locating common network hubs that correlate with behavior
We predicted that behavior-correlated RSNs commonly induced by
both kinds of APA tasks are influential for memory consolidation. As
combining two FDR-corrected thresholds reduces the true positive
rate, we first lowered the threshold for the two-sample t-tests to an
uncorrectedp <0.05 todiscover commonRSNs inducedbyboth tasks,
(Fig. 2a). Despite being similar in their task designs, only a small frac-
tion of the FC was found in both APA tasks, with 3.56% (post-training
day 1) and 2.85% (post-training day 8) of the connections overlapping.
To identify the causal hub, we selected the FC that correlated with
behavioral performance in the probe test. Using a permutation test,
imposing two uncorrected network thresholds and behavioral corre-
lation with Nshock (threshold at p <0.05) together resulted in an
equivalent family-wise error of p <0.05 for common connections on
both post-training day 1 and 8 (Fig. 2b, c). When using Tenter as a
behavioral index, the family-wise false positive rate of common con-
nectionswas p = 0.019 on post-training day 1 but was not significant on
post-training day 8 (Supplementary Fig. S2). Here, we chose to use
Nshock as the primary behavioral index.

We foundbehavior-correlated commonnetworks composedof the
hippocampus, mPFC and thalamus in the left hemisphere, and the
connectionbetween theprimary somatosensory andprimary visual (V1)
cortex in the right hemisphere on post-training day 1 (Fig. 2b, Supple-
mentary Table S2). Excluding theHPF andmPFC,which are known to be
engaged in memory consolidation, and subcortical areas, the FC of the
left primary somatosensory cortex barrel field (S1BFL) had the highest
behavioral correlation (CA3-OrL−S1BFL, r = −0.68, Cohen’s d =0.93),
followed by right V1 (V1R−S1R, r=0.57, Cohen’s d = −0.89; Fig. 2d and
Supplementary Fig. S3). On post-training day 8 (Fig. 2c, Supplementary
Table S2), the FCwith themPFCwas gone. Instead,weobserved FCwith
the reticular nucleus (Rt), which drives the neural oscillations important
formemory consolidation during sleep5, and the RSC. The engagement
of themPFConday 1with silencing oneweek later is consistentwith the
temporal dynamic of the engram in this area8. Excluding the entorhinal
and retrosplenial cortices, the right secondary somatosensory cortex
(S2R) had the highest behavioral correlation (CA3-OrL - S2R, r = −0.80,
Cohen’s d = −1.26; Fig. 2e and Supplementary Fig. S3). Overall, we found
that expanded behavior-correlated commonnetworks beyond theHPF,

mPFC, and RSCwere engaged at different times after learning. Here, we
chose the S1BFL, V1R, and S2R which had large effect size as the targets
for validation.

Learning alters network integration
Based on the importance of network integration in learning and
memory27,43,45,46,63, we predicted that post-encoding RSNs would be
more integrated after spatial learning. To investigate this, we applied
graph theory analysis, which simplifies the brain network as nodes
(brain regions) and edges (FC strengths). To evaluate the network
integration and segregation, we used several graph measures: the
global efficiency, modularity, transitivity, size of the giant component
and the small-world topology. Global efficiency measures the shortest
path length which reflects integration. Modularity, which calculates
the size and number of network component and intra-component
connections, is a measure of segregation. Transitivity measures how
tightly that nodes are tightly connected within a cluster thus reflects
segregation. Giant component is the largest cluster of interconnected
nodeswhich represents network integration. Small-world topology is a
key featureof thebrain networkpresenting local segregation and long-
range integration64. We evaluated the small-world features using the
normalized characteristic path length, lambda; normalized clustering
coefficient, gamma; and small-worldness, sigma.

With an increased t-score threshold from 2.0 to 3.8 (uncorrected),
the connectivity matrices after two-sample t-tests became more frag-
mented, resulting in a reduced giant component, global efficiency and
transitivity but increased modularity (Fig. 3 and Supplementary
Fig. S4). To test the overall difference, we calculated the area under the
curve (AUC)65 and compared it to the distributions of 5000 random
networks. Based on the null distribution, both APA training protocols,
except the 5-DayAPAonpost-training day8, significantly increased the
size of the giant component (Fig. 3a, and Supplementary Fig. S4a). The
global efficiencywasonly increased in 1-DayAPAonpost-training day8
(Fig. 3b, and Supplementary Fig. S4b). Interestingly, the modularity
was significantly increased except the 5-DayAPAonpost-training day8
(Fig. 3c, and Supplementary Fig. S4c). 1-Day, but not 5-Day, APA
learning led to a significant decrease in transitivity, indicating that the
post-encoding network is rather distributed instead of tightly con-
nected (Fig. 3d, and Supplementary Fig. S4d). Similar trends could also
be observed using an unweighted network except for 5-Day APA on
post-training day 8 (Supplementary Fig. S5 and Supplementary
Fig. S6). Small-world features were calculated on individual RSNs
because the two-sample t-test matrices were too sparse. We found a
trend towards an increase in the small-worldness, sigma, after learning
due to a trendof higher local segregation (increased gamma) and long-
range integration (reduced lambda) compared to the control (Sup-
plementary Fig. S7). Interestingly, the small-worldness onpost-training
day 1 in 5-Day APA was significantly decreased (Supplementary
Fig. S7c) due to a significantly longer path length and lower clustering,
suggesting sparse segregation.

Fig. 1 | RSNchangesafter spatial learning inmice. aThe schematicdiagramof the
APA-rsfMRI experiment. b The left diagram shows the setup of the APA task. Four
distinct pictures were hung on the surrounding walls as visual cues. The orange
arrow indicates the direction of rotation. The 60o sector in red shows the location
of the invisible “shock zone”. The two plots on the right show the progressive
decrease in the number of shocks over the trials (two-way ANOVA, F5, 80 = 14.22,
p <0.0001), which is comparable between the 1-Day (N = 10) and 5-Day APA (N = 8)
groups (F1, 16 = 0.55, p =0.47 for groups). Similar trends can be seen in the time to
first entrance of the shock zone (two-way ANOVA, F5, 80 = 6.63, p <0.0001 for
training trials, F1, 16 = 1.27, p =0.28 for groups). Post hoc comparisons were per-
formed between the last training trial (T5) and other training trials (T1–T4) or probe
test (PT) with Dunnett’s multiple comparison test. The number of shocks for 1-Day
APA: T1, p = 7.1 × 10−6; T2, p = 7.1 × 10−6; T3, p =0.00016; 5-Day APA: T1, p = 1.9 × 10−5;
T2, p =0.00051. The time to first entrance for 1-DayAPA: T1,p =0.016; T2,p =0.017;

T3, p =0.018; 5-Day APA: T1, p =0.034. Data are represented as mean ± SEM.
*p <0.05; ***p <0.001; ****p <0.0001. c The seed-based correlation analysis used to
create the FCmatrix of each animal. dChanged functional connections in the 1-Day
and 5-Day APA, compared to their corresponding controls, on post-training day 1
and post-training day 8 (two-sample t-test, two-tailed, p <0.05, FDR corrected; see
Supplementary Table S4 for Nof eachgroup). The red connections represent APA>
control while the blue connections represent APA <control. The line thickness
indicates the t value. e Two functional connections from the 1-Day APA post-
training day 8 correlated with the memory retention probe test (N = 8; Pearson
correlation, two-tailed). See Supplementary Table S1 for the abbreviations of brain
regions. Number of animals is from biologically independentmice. Source data are
provided as a Source Data file. Significant connections were overlaid on the 3D-
rendered brain atlas using BrainNet Viewer for (d). (https://www.nitrc.org/projects/
bnv/), Copyright © 2007 Free Software Foundation, Inc.
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Such paradoxically increased network integration and segrega-
tion is also found in a recent study that reported repeated training,
which automates a cognitively demanding task, can increase the
integration and segregation of post-encoding RSNs46. To understand
the cause of these features, we examined the key elements behind the
modularitymeasure: the number of components and intra-component
connections. We found a steady increase in the proportion of con-
nections within components but a plateau in the number of compo-
nents with increased threshold (Supplementary Fig. S8). This indicates

that much stronger intra-component connections than those between
components caused an increase in modularity. Together these results
indicate that APA learning increases network integration and segre-
gation by forming loose-linked, larger andmore network components
while also strengthening the connectivity within components.

Optimal method for distinguishing integrator hubs
As network integration is a feature of post-encoding RSNs, pinpointing
the integrator hubs would allow us to test whether this is causally
required in memory consolidation. We predicted that when an inte-
grator hub is removed (inhibited), the network integration would be
greatly impeded, leading to the breakdown of the giant component.
The bestmethod for hub identificationwould beonewhich can reduce
the sizeof the giant componentwith the removal of the fewest number
of nodes. Centrality, which describes the importance of network
communication and integration, is typically regarded as reflecting
network integration. However, simulation showed that centrality is a
poor measure of causal inference66.

To determine the method for hub identification, we compared
four centrality measures (degree centrality, closeness centrality,
betweenness centrality, eigenvector centrality), a link authority HITS
(Hyperlink Induced Topic Search) score, and collective influence (CI),
which searches for nodes that can quickly break down large networks
in anoptimalpercolationmodel67,68.We calculated the reduction in the
giant component in the post-encoding RSNs by removing high rank-
ing/centrality nodes one by one. Figure 4b shows an example in which
the normalized giant component size quickly dropped by removing
nodes detected by the CI, followed by those identified by the degree
centrality and betweenness centrality, whereas closeness centrality,
HITS and eigenvector centrality had a slower effect. Similar trends
were observed in networks from both APA groups on post-training
days 1 and 8 (Supplementary Fig. S9). Comparing the AUC of the giant
component changes, theCI analysis resulted in the quickest collapseof
the giant component (Fig. 4c, Supplementary Fig. S10). This indicates
that CI is a better method for identifying integrator hubs.

Identification of integrator hubs that correlate with behavior
We next applied CI analysis to post-encoding RSNs to identify nodes
with FC that correlates with memory retention (Fig. 4a). As shown in
Fig. 1d, using the FDR-corrected threshold makes the network very
sparse without a giant component, thereby excluding the use of CI
analysis for hub identification67,69. Here, we usedmultiple uncorrected
thresholds, p <0.05, 0.01 and 0.005, to determine the averaged
ranking of a node in breaking down the RSNs after 1-Day APA training.
On post-training day 1, the 10 top-ranking nodes were mostly sub-
cortical, including regions in the basal ganglia, midbrain and brain-
stem, with cortical areas in the HPF (subiculum and entorhinal cortex)
and S2 being ranked lower (Table 1). On post-training day 8, more
cortical areas (parietal association, sensory and prefrontal cortices)
rose to the top ranking compared to subcortical areas. Compared to
the hubs identified by the HITS score, 8 out of the 20 hubs were the
same as those found by CI analysis albeit with a different ranking
(supplementary Table S3). To identify candidate nodes that are influ-
ential on behavior, we selected CI nodes with nodal FC correlated with
memory retention in the probe test (Table 2). We found that the right
caudate putamen had a connection with the highest correlation with
Nshock (CA1-LmolR −CPuR, r = −0.79, p = 0.0063, Cohen’s d = 1.25), and
the left LAchShhad a connectionwith the highest correlation (LAcbShL
− RtR, r =0.95, p = 3.7 × 10−5, Cohen’s d = 1.21) with Tenter on post-
training day 1. On post-training day 8, nodal FC with high behavioral
correlation included the left ventromedial thalamic nucleus
(VML −A30L, r =0.91, p =0.0015, Cohen’s d = −1.37), left primary
somatosensory cortex forelimb region (S1FLL − MeAR, r =0.89,
p =0.0033, Cohen’s d = 1.36), right LO (VLL − LOR, r = 0.87, p = 0.0045,
Cohen’s d = −1.25), right periaqueductal gray (EAL − PAGR, r = −0.84,
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p =0.0088,Cohen’sd = −1.43) and right primary somatosensory cortex
trunk region (PoDGR − S1TrR, r = −0.84, p =0.0095, Cohen’s d = −1.35;
Supplementary Fig. S3). Some of these nodes had high CI ranking (top
3)whereas somehad low ranking (bottom3). Based on the averagedCI
rank, we chose the LAchShL, LOR, VML, and S1TrR as the high, middle
and low ranking hubs for validation.

Validation of causal hubs by DREADDs inhibition
To verify the causal role of selected hubs inmemory consolidation, we
injected AAV2/1-pSyn-hM4D(Gi)-T2A-mScarlet to transfect inhibitory
DREADDs in all neurons in each area individually (Fig. 5a). One month
after the surgery, animals went through the 1-Day APA training.
Immediately after finishing the five training trials, animals were admi-
nistered clozapine N-oxide (CNO) by intraperitoneal injection, fol-
lowed by drinking water containing CNO to maintain inhibition of the
targeted hubs for 7 days until one day before the probe test, to allow
clearance of the CNO70,71. In addition to a naïve group to control for the
effect of CNO, we chose one cortical area, the right frontal association

cortex (FrAR), and one subcortical area, the right ventral poster-
iomedial thalamus (VPMR), which did not present in our analyses, as
negative controls. Figure 5b, e, g illustrates good viral expression in the
targeted areas in both the experimental and control groups, although
we did notice that there was some viral expression in nearby brain
areas, such as S2R and LAcbShL.

Animals successfully learned the 1-Day APA task (Fig. 5). The
consistent improvement over thefive training trials in the twonegative
control groups showed that the surgery itself did not affect spatial
learning, based on comparison of the first and last trials (t = 6.06,
p =0.0038 for VPMR; t = 8.55, p =0.0010 for FrAR; Fig. 5c). After
receivingCNO for oneweek, themice in the negative control (FrAR and
VPMR) or in the CNO control group (Fig. 5d) showed intact memory
recall in the probe test when compared to their own last training trial
(T5) (t = 2.28, p =0.085 for VPMR; t = 1.63, p =0.18 for FrAR; t = 1.76,
p =0.12 for CNO control). In contrast, the Nshock was significantly
increased after inhibiting each of the common hubs, S1BFL (t = 4.23,
p =0.0017), V1R (t = 3.76, p = 0.0045) and S2R (t = 3.57, p =0.0091), and
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Fig. 3 | Graph characteristics of post-encoding RSNs. Trends of (a) giant com-
ponent size, (b) global efficiency, (c) modularity and (d) transitivity of post-
encoding RSNs for 1-Day (left) and 5-Day (right) APA on post-training day 1 (red)
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tion test. PD probability distribution. Source data are provided as a SourceData file.
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the high or middle ranking integrator hubs, LAcbShL (t = 3.85,
p =0.0084), LOR (t = 3.63, p =0.0084) and VML (t = 2.49, p =0.034),
during the consolidation period (Fig. 5f, h). No difference was found
after inhibiting a low-ranking node, the S1TrR (t = 1.14, p =0.30).
Compared to the CNO control, a significantly larger ΔNshock between
T5 and the probe test was found when inhibiting S1BFL (Cohen’s
d =0.76, p =0.046), V1R (Cohen’s d =0.78, p =0.045), S2R (Cohen’s
d =0.94, p =0.025), LAcbShL (Cohen’s d = 1.04, p = 0.017) or LOR

(Cohen’s d = 1.10, p =0.0090), but not VML (Cohen’s d =0.40, p =0.20)
or S1TrR (Cohen’s d = −0.045, p = 0.47) (Fig. 5i). The Tenter also exhib-
ited similar trends in these regions except for V1R (Supplementary
Fig. S11). These results demonstrate that inhibition of common hubs,
or middle to high-ranking integrator hubs can impair memory
consolidation.

Discussion
Defining brain regions and their functional involvement in the spon-
taneous, brain-wide reorganization that occurs after learning is
essential for understanding the circuitry and mechanism of memory
consolidation. Although spontaneous network activity presented in
theRSNs has been identified for decades andproposed to play a role in
learning and memory, this function has not been directly demon-
strated. Here we demonstrate that, in addition to the HPF and mPFC,
sensory areas are commonly involved following APA learning and that
prefrontal, striatal and thalamic areas are pivotal for network inte-
gration. We confirm that inhibition of these RSN hubs after successful

learning impairs memory formation. Our results demonstrate a causal
link between post-encoding RSNs and memory consolidation, and
reveal that a distributed network mediates this process, as well as
providing effectivemethods for inferring causal hubs of behavior. This
expands our understanding of the brain-wide network involved in
memory formation. Considering the comparable organization and
properties of human and rodent RSNs72,73, our validated approaches
have the potential to identify targets for intervention to modulate
cognition and behavior.

Network hubs are typically defined based on their importance in
network topology using measures such as centrality, rich club, and
HITS20. However, a high centrality nodemaynot necessary be themost
influential node74. In particular, it is unclear whether and how a brain
network hub causally impacts behavior. In this study, we combined
behavioral and topological features to identify two kinds of post-
encoding RSN hubs that are influential on behavior: common network
and integrator. We found that behaviorally defined common network
hubs (shown in both APA tasks andhaving connections correlatedwith
memory retention) and topologically (breakdown of giant compo-
nent) and behaviorally defined integrator hubs can causally affect the
behavior. From topological point of view, an integrator hub would be
similar to a connector node that links two network modules20. How-
ever, a connector nodemay not necessarily be influential on behavior.
We also found that CI analysis can effectively detect integrator hubs
among the network measures tested. Identifying influential node
remains a challenge in network science. Other approaches, such as
k-shell decomposition74, integrated value influence75 and VIP76, would
be useful for selecting candidate nodes for testing their behavioral
effects.

The HPF and mPFC have been the most common targets in
memory research. Apart from these areas, we verified the engagement
of an extended network that commonly supports systems consolida-
tion. We found that several subcortical areas in the thalamus and basal
ganglia were invoked by both APA tasks, consistent with the highly
distributed subcortical engrams reported in a recent study of con-
textual fear conditioning10. Despite only a few neocortical connections
being found, their hubs are required in memory consolidation. We
discovered involvements of sensory areas (V1, S1BF, and S2) in systems
consolidation. The early visual cortex has been reported to play a role
in consolidating visual workingmemory77; however, its involvement in
long-term memory consolidation has not been demonstrated.

Table 1 | Top 10 nodes for network integration identified by CI
analysis

Post-training day 1 Post-training day 8

Node Mean
CI Rank

Node Mean
CI Rank

Ranking

PonsR 1.0 MPtAR 6.7 High

LAcbShL 3.7 PAGR 7.0

VIEntL 9.3 LOR 7.3

PNR 9.7 VML 10.7 Middle

MBR 10.0 S1FLL 12.0

CPuR 13.0 HypL 14.3

MMR 13.7 LDR 15.3

STrL 15.3 LSR 17.0 Low

CEntL 21.7 LAcbShR 20.0

S2L 22.0 S1TrR 21.7

This table shows the top 10 ranking nodes according to the mean CI rank under network
threshold of p < 0.05, p < 0.01 and p < 0.005 when comparing the 1-Day APA and control. See
Supplementary Table S1 for the abbreviations of brain regions. Source data are provided as a
Source Data file.

R right hemisphere; L left hemisphere.
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Fig. 4 | Comparison of hub selection methods for network integration.
a Procedures for identifying target hubs based on network integration. The dif-
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select top ranking nodes. Nodeswith FC that correlatedwith behaviors in the probe
test (PT) were selected.bThe relative giant component size decreases by removing
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between the 5-Day APA and its control on post-training day 1 (p <0.01, two-sample
t-test, two-tailed, uncorrected). Six hub selection methods, including CI (blue),
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smaller networks (reduced network integration). c Comparison of the area under
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*p <0.05; ****p <0.0001. Source data are provided as a Source Data file.
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Although the hippocampus does not directly drive primary sensory
areas, replay of maze-running activity patterns during slow-wave sleep
has been observed in V178, supporting its involvement. S1 has been
found to engage in motor, but not spatial, memory consolidation79.
Recently spatially selective activity, similar to that of the place cells in
the hippocampus, was found in S1, providing a mechanism for
location-body coordination80. Our result provides evidence showing
the involvement of S2 inmemory consolidation, likely due to its role in
integrating somatosensory information involved in the foot shock. Our
analysis indicated that S2 is functionally connected to the CA3 region
of the hippocampus, warranting further investigation of its interaction
with the HPF in spatial memory formation.

Our results demonstrate the essential roles of integrator hubs in
memory formation and support the notion that network integration is
a key factor in memory processes. This is consistent with a rodent
study which demonstrated that inhibition of brain regions estimated
from covariate c-fos activity networks led to a reduction in the giant
component correlating with the behavioral impairment11. We also
showed that CI is more efficient than centrality in identifying inte-
grator hubs, with another measure of hub importance, the HITS score
only detecting the LO but missing other integrator hubs (supplemen-
tary Table S3). In particular, we found a graded behavioral effect with
high-ranking integrator hubs (LAcbSh and LO) having large effect
sizes,whereas amid-ranking hub (VM) hadamoderate effect size and a
low-ranking hub (S1Tr) had a minimal effect. This indicates that our
analysis can predict behavioral effects. Among the integrator hubs
tested, the identification of LAcbSh is consistent with its involvement
in learning and memory (for review see ref. 81) and the integration of
spatial information82. It is also a hub that is active in both APA tasks
(Fig. 2b, c). LO is a critical prefrontal region for both decision making
and the acquisition of hippocampus-dependent memories58–60, but its
role inmemory consolidation is lessunderstood. VM, partof themotor
thalamus, is the site of convergence of sensory (including nociceptive)
and motor information and projects to the neocortex, particularly the
mPFC83,84. It is involved in decision making but its role in learning and
memory remains unclear.

Post-encoding replay of the spatiotemporal activity during
learning in the hippocampal-neocortex network has been shown to be

an important mechanism formemorymaintenance and consolidation.
In the neocortex, replay has been observed in the sensory (such as
visual and auditory) or motor cortex engaged during learning in
animals78,85 and humans86,87. Based on correlating with fMRI activation
during learning, hippocampal replay has also been found during post-
encoding rest in humans88–90. However, whether FC changes, such as
the post-encoding RSNs observed here, reflects hippocampal-
neocortical replay is unclear. High-frequency oscillations, called
ripples91, which facilitate replay, has been reported to couple the hip-
pocampus and association cortex after learning92, suggesting the
presence of post-encoding FC. Combining fMRI and electro-
physiology, a study in anesthetizedmonkey showed that hippocampal
ripples coincide with the activation of the default mode network93. A
similar result was recently found in mice by optical imaging94 and in
humans by magnetoencephalography95. These findings suggest that
post-encoding RSNs may reflect or coordinate replay.

Sleep plays several essential roles in supporting memory
consolidation96. Replaying of the information that is encoded during
wakefulness, and enhancing the crosstalk between the neocortex, hip-
pocampus and thalamus are most active during slow-wave sleep5. Sleep
also restores synaptic homeostasis, such as synaptic strength renorma-
lization anddendritic spinedown-selection,whichprepares thebrain for
the next day’s experiences97. Relevant activity has also been observed
using fMRI during or after sleep. Sleep can strengthen the hippocampal-
prefrontal functional connectivity and stabilize the network induced by
learning98,99. The post-encoding RSN between cortical and subcortical
areas, particularly the striatum, was enhanced during and after sleep27,28,
consistent with our findings that a broader network is involved. Replay
could also be induced by presenting previously associated cues during
sleep, leading to enhanced hippocampal-cortical FC and, particularly,
increased network integration100. Together these findings indicate an
important role of sleep in facilitating brain network reorganization to
consolidate memory. As the post-encoding RSNs of both kinds of APA
learningweremeasured after sleep, theymay reflect the effects of sleep.
The multiple days of sleep involved in the 5-Day APAmay contribute to
the different post-encoding RSNs compared to that of the 1-Day APA.

Systems consolidation can last for weeks, months or even
years101,102, but networks transform and interact with each other over

Table 2 | Behavior-correlated functional connections containing the top 10 CI nodes

Node 1 Structure name 1 Node 2 Structure name 2 r p value

Post-training day 1 Nshock CA1-LmolR CA1 lacunosum molecular layer CPuR Caudate putamen −0.79 0.0063

CEntL Caudomedial entorhinal cortex GPR Globus pallidus −0.78 0.0081

LHL Lateral hypothalamus PNR Pontine nucleus −0.72 0.018

TuL Olfactory tubercle VIEntL Ventral intermediate entorhinal cortex −0.69 0.029

Tenter LAcbShL Accumbens nucleus shell, lateral part RtR Reticular nucleus 0.95 3.7 × 10−5

TuL Olfactory tubercle VIEntL Ventral intermediate entorhinal cortex 0.82 0.0035

CEntL Caudomedial entorhinal cortex GPR Globus pallidus 0.82 0.004

Post-trainingday 8 Nshock VML Ventromedial thalamic nucleus A30L Retrosplenial area, dorsal part 0.91 0.0015

S1FLL Primary somatosensory cortex, forelimb
region

MeAR Medial amygdala 0.89 0.0033

VLL Ventrolateral thalamic nucleus LOR Lateral orbital cortex 0.87 0.0045

EAL Extension of the amygdala PAGR Periaqueductal gray −0.84 0.0088

PoDGR Polymorph layer of dentate gyrus S1TrR Primary somatosensory cortex, trunk
region

−0.84 0.0095

VOL Ventral orbital cortex S1TrR Primary somatosensory cortex, trunk
region

0.79 0.02

HypL Hypothalamus DTTR Dorsal tenia tecta 0.75 0.031

Tenter S1FLL Primary somatosensory cortex, forelimb
region

MeAR Medial amygdala −0.8 0.018

Each row shows the names of the nodes, the behavioral correlation r and p values. Brain regions shown in bold are the top 10 ranking nodes in the CI analysis (shown in Table 1). Source data are
provided as a Source Data file.

R right hemisphere; L left hemisphere.
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time remains unclear. Non-invasive rsfMRI allows longitudinal imaging
in both animal models and humans to complement invasive imaging,
such as c-fos imaging, which captures a snapshot during memory
encoding or recall10,11. The changes in RSNs and their hubs that we
observed across two time points support this ongoing plasticity.

Among the common hubs, the primary sensory areas were identified
on post-training day 1whereas S2was identified onpost-training day 8.
This suggests a transition from primary areas during early memory
consolidation to association areas later in this process. On the other
hand, the integrator hubs transit from theHPF and subcortical areason
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mice. Source data are provided as a Source Data file. The brain outlines were
created with BioRender.com.
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post-training day 1 to neocortical areas on post-training day 8. This is
consistent with the gradual reduction in the involvement of the HPF in
systems consolidation2,42.

The hubs identified during the post-encoding period could be
involved in forming, storing or recalling memory. We only inhibited
the hubs after learning until one day before the probe test. This
allowed us to determine their involvement in memory consolidation
without affectingmemory recall. Whether these hubs are also regions
for memory storage will require further investigation. For instance, a
recent study using activity tagging techniques reported that the
ventrolateral orbital cortex, but not the sensory cortex, could store
the contextual fear engram10. Future studies could combine similar
techniques to determine the specific role of RSN hubs in memory
storage.

We conducted the rsfMRI in this study using a sedative protocol
that is reliable in detecting RSNs103–105 and post-encoding
plasticity23,24, with a previous study showing that it does not affect
memory consolidation106. Nonetheless, the detection of certain
networks, such as the amygdala, which is involved in aversive
learning paradigms, may be affected107. Ultrafast fMRI allows
improved sensitivity for the ventral part of the brain108 and enables
the detection of FC with amygdala nuclei, such as the PLCo (Fig. 1).
Further development of awake imaging should facilitate more
comprehensivemapping and testing of functional networks not only
post-encoding but also during learning or recall. Due to the varying
volume of the atlas-based seed region-of-interest (ROI), the sensi-
tivity of a smaller region would be inferior due to less signal aver-
aging. The highly sampled rsfMRI data (6000 time points) in this
study partly compensated for this sensitivity issue. The use of a
regionally optimized seed ROI109 or cryoprobe would further
improve the sensitivity in future investigation.

Methods
Animals
121 male C57BL/6 mice (10–16 weeks old) were used in the experi-
ments. Animals were housed in transparent cages andmaintained on a
12 h light-dark cycle (lights on at 7 a.m. and off at 7 p.m.), 20–22 °C and
40–60% humidity. Food and water were provided ad libitum. Experi-
ments were performed during the light phase. All experimental pro-
cedures were approved by the Animal Ethics Committee of the
University of Queensland and conducted in compliance with the
Queensland Animal Care and Protection Act 2001 and the Australian
Code of Practice for the Care and Use of Animals for Scientific
Purposes.

Experimental design
Two sets of animal experiments were conducted, one for hub identi-
fication (Fig. 1) and the other for hub verification (Fig. 5). Four groups
of mice were used for hub identification: 1-Day APA (n = 10), 1-Day
control (n = 9), 5-Day APA (n = 7), and 5-Day control (n = 5). Ten groups
were used for hub verification: three groups for the common network,
four groups for network integration, two negative controls (see sur-
gical section for details) and one CNO control (n = 9) in naïve mice
without surgery.

We usedDREADDs for targeted inhibition (see surgical section for
detail). 4weeks after the surgery, animalswere trained in the 1-DayAPA
task. Immediately after they finished the last training trial (T5), they
were given a water-soluble CNO (CNO dihydrochloride; cat #6329,
TocrisBioscience) via intraperitoneal (i.p.) injection (1mg/kgdissolved
in saline), followed by CNO (1mg/kg/day) dissolved in their drinking
water to continuously suppress the network hub until one day before
the probe test. This one-day interval allowed the CNO to be cleared
from the body, therebyminimizing its interference in the probe test70.
Memory retention in the probe test was used to examine whether
memory consolidation was affected by hub inhibition.

Behavior
In the APA task, an animal stands in a rotating circular arena (diameter:
0.9m; rotation speed: 1 rpm) with four pictures as spatial cues on each
side of the wall (APA equipment: Bio-Signal Group). Once the animal
enters an invisible sector (shock zone) that is stable in relation to a
spatial cue, a mild electric shock (0.5mA, 60Hz, 500ms) is adminis-
tered. The animal needs to learn to use the visual cues to identify the
exact location of the aversive zone and to avoid it. Two training pro-
tocols were used:
i. In the 1-Day APA, animals received five 10min training sessions

with an inter-session interval of ~1 h completed in one day.
ii. In the 5-Day APA, animals received one 10min training session

each day for 5 consecutive days.

Training started with a habituation session (15min) one day
before the training, duringwhich the animal did not receive any shock.
Nine days after the last training day, a 10minprobe testwasperformed
to measure memory retention in the same environment. A foot shock
was delivered when the animal entered the aversive zone in the probe
test. During each training orprobe session, behaviorwas recordedby a
video camera. Two control groups were included: 1-Day sham control
and 5-Day sham control. In these groups, animals went through the
same APA procedure as the experimental group but did not receive
any foot shocks. To ensure consistency, all the behavioral experiments
were started at the same time of the day. For data analysis, the number
of shocks and the time to first entrance of the shock zone were ana-
lyzed by Bio-Signal Track software. Repeated measures one-way
ANOVA was performed using Prism (GraphPad Software LLC).

MRI
MRI was conducted on a 9.4T system (BioSpec 94/30, Bruker BioSpin
MRIGmbH). Two rsfMRI scan sessions were performed on each animal
for hub identification. Animals were initially anesthetized using 3%
isoflurane in a 2:1 air and oxygen mixture. After being secured in an
MRI-compatible holder using custom-made tooth and ear bars, a bolus
of medetomidine was delivered via an i.p. catheter (0.05–0.1mg/kg)
and the isoflurane level was progressively reduced to 0.25–0.5% over
10min, after which sedationwasmaintained by a constant i.p. infusion
of medetomidine (0.1mg/kg/h) using a syringe pump. Key physiolo-
gical parameters, including arterial oxygenation saturation (SpO2),
rectal temperature, heart rate and respiratory rate, were measured by
an MRI-compatible monitoring system (SAII Inc). Body temperature
was maintained at 36.5 °C with a heated waterbath.

After high-order shimming, structural T2-weighted MRI
(resolution =0.1 × 0.1 × 0.3mm3) and the visual task were first con-
ducted to ensure optimal physiology and neurovascular coupling. A
flashing blue light at 5Hz was delivered by an optical fiber in a block
design with 21 s on and 39 s off. The rsfMRI scan was then acquired
using multiband gradient-echo echo-planar imaging108 with TR/TE =
300/15ms, 4 slice bands, matrix size = 128 × 64 (7/8 partial Fourier),
thickness = 0.5mm, gap=0.1mm, 16 axial slices covering the whole
cerebrum with in-plane resolution of 0.3 × 0.3mm2. 2000 volumes
were acquired in 10min and repeated three times with an inter-run
interval of 2min. To ensure consistency, the rsfMRI scan started
~45min after the bolus injection of medetomidine.

Surgical procedure for DREADDs
Surgeries were performed at least one month before behavioral
training. The animal was anesthetized with 1.5–2% isoflurane during
surgery. Enrofloxacin (6mg/kg) and carprofen (5mg/kg) were injected
subcutaneously to prevent infection and relieve pain and inflamma-
tion, respectively. Body temperature was maintained at 37 °C with a
heating pad. During surgery, 0.25–0.3μL of virus (AAV2/1-pSyn-
hM4D(Gi)-T2A-mScarlet) was injected into the following target areas
based on the rsfMRI connectivity map and the Paxions and Franklin
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Mouse Brain atlas, fifth edition. The coordinates (relative to
Bregma) were:

Common hubs:
(i) V1R (n = 10). ML: −2.30mm; AP: −4.15mm; DV: −0.50mm.
(ii) S2R (n = 8). ML: −3.70mm; AP: −0.71mm; DV: −1.40mm.
(iii) S1BFL (n = 11). ML: +2.88mm; AP: −1.07mm; DV: −0.85mm.

Integrator hubs:
(iv) LAcbShL (n = 7). ML: +1.70mm; AP: +1.10mm; DV: −3.85mm.
(v) LOR (n = 8). ML: −1.65mm; AP: +2.57mm; DV: −1.9mm.
(vi) VML (n = 10). ML: +0.75mm; AP: −1.18mm; DV: −4.05mm.
(vii) S1TrR (n = 7). ML: −1.63mm; AP: −1.60mm; DV: −0.57mm.

Negative control:
(viii) VPMR (n = 5). ML: −1.5mm; AP: −1.80mm; DV: −3.3mm.
(ix) FrAR (n = 5). ML: −1.70mm; AP: +3.00mm; DV: −0.50mm.

Viruswas injected using a Nanoject III (Drummond Scientific)with
a slow injection rate (0.03μL/min) over 10min. The glass pipette was
retained in place for another 6min and then slowly retracted. After
injection, the wound was closed using Vetbond (3M) and sutured.
Enrofloxacin and carprofen were administered for another two days.
Animals were kept in their home cage (group housing of 2–4 animals
per cage) for 4 weeks to recover and to allow expression of the virus
before APA testing.

Behavior and CNO treatment
The same 1-Day APA task was used for spatial memory training.
Immediately after the 1-Day APA training, water-soluble CNO was
administered to the animals (1mg/kg, i.p.) to inhibit the neuroactivity
of the target brain regions. Water containing CNO (1mg/kg/day) was
thenprovided for 7 days to keep the target brain areas inhibitedduring
memory consolidation. This was replaced with normal water 24 h
before the probe test to minimize the effects of CNO on behavioral
performance. On post-training day 8, a 10min probe trial was per-
formed to test memory retention.

Histology
Mice were administed an overdose of sodium pentobarbitone and
transcardially perfused with 40ml of phosphate-buffered saline (PBS),
followed by 45ml of 4% paraformaldehyde in PBS for fixation. The
brain was extracted and fixed at 4 °C for 12–24 h. It was then washed
once with PBS and transferred to a 30% sucrose solution for 36 h prior
to sectioning. 40μmthick sections were cut using a slidingmicrotome
and collected in a 1:6 series. Cell nuclei were stained by 4’,6-diamidino-
2-phenylindole (DAPI, catalog #6329; Sigma Aldrich). Sections were
firstwashedonce in PBS for 10min, and then incubated in 1:5000DAPI-
PBS solution for 15min at room temperature. After two washes, the
sections were mounted on SuperFrost slides using fluorescence
mountingmedium (Dako, Agilent). Images were captured using a slide
scanner (Metafer VSlide Scanner, MetaSystems) andmicroscope (Axio
Imager Z2, Zeiss) with a 20 ×0.8 NA/0.55mm objective lens.

rsfMRI data processing
The rsfMRI data were processed using MATLAB (MathWorks Inc), FSL
(v5.0.11, https://fsl.fmrib.ox.ac.uk/fsl), AFNI (ver 17.2.05, National Insti-
tutes of Health, USA) and ANTs (v2.3.1, http://stnava.github.io/ANTs).
The k-space data of the multiband EPI were first phase-corrected and
reconstructed in MATLAB. After motion correction by FSL mcflirt, the
geometric distortion was corrected by FSL TOPUP. The brain mask was
extracted automatically using PCNN3D110, followed by manual editing.
Nuisance signals, including quadratic drift, six motion parameters and
their derivatives, ten principal components from tissues outside the
brain which included muscle and scalp, and mean signal of the cere-
brospinal fluid from a manually drawn ventricular mask, were then
regressed out111. The data were band-pass filtered at 0.01–0.3Hz to
account for anypotential frequency shift under sedation. This frequency

range could also remove the aliased respiratory and cardiac signal var-
iations in the high sampling rate data. The rsfMRI was coregistered to an
EPI template by linear and nonlinear transformations using ANTs. The
data were then smoothed by a 0.6mm Gaussian kernel.

Seed-based correlation analysis was used to measure FC across
the brain. Based on the Australian Mouse Brain Mapping Consortium
(AMBMC) atlas (https://imaging.org.au/AMBMC/AMBMC), the brain
was divided into 190 bilateral ROIs in the cortex, hippocampus, tha-
lamus, and basal ganglia in accordance with the parcellation in the
Paxions and Franklin mouse brain atlas112. The DSURQE atlas (https://
wiki.mouseimaging.ca/) was used to label regions not yet defined in
the AMBMC atlas (40 ROIs), such as the amygdala, hypothalamus,
midbrain and brainstem (pons). The combined 230 ROIs were used in
the following seed-based correlation analysis. The mean time-series of
each brain region was extracted as a seed signal. Pearson’s correlation
coefficients between seed time-courses were calculated using AFNI
3dNetCorr. Fisher’s z-transformation was used to convert correlation
coefficients to z values. Connectivity matrices from the three repeated
scans were calculated for each animal. Quality control (QC) was con-
ducted based on the presence of visual task activation. If the visual
activation was not detectable, the physiological condition and neuro-
vascular coupling were regarded as sub-optimal, and the scan was
discarded. Based on this criterion, 24% of scans were discarded (Sup-
plementary Table S4). As an animal’s physiological condition can vary
between scanning sessions, it may show a visual response on post-
training day 1 but not onpost-training day 8, or vice versa, as a result of
which the dataset was not one-to-one matched at the two time points.
The matrices of each animal at each time point that passed the QC
were averaged.

Between-group differences were calculated by two-sample t test
and thresholded at p < 0.05 (FDR corrected) using the Network Based
Statistics toolbox (https://sites.google.com/site/bctnet/comparison/
nbs). To detect common network hubs, the network and behavioral
correlations were each thresholded at p <0.05, uncorrected (see
details in the subsection “Behavior-correlated common networks
between 1-Day and 5-Day APA” below). To identify integrator hubs,
three uncorrected thresholds, p < 0.05, p <0.01 and p <0.005, were
used to generate unweighted (t-score) network matrices for CI analy-
sis. Significant connections were overlaid on the 3D-rendered brain
atlas using BrainNet Viewer (https://www.nitrc.org/projects/bnv/).

Group independent component analysis with dual regression
Group ICA was performed on preprocessed rsfMRI datasets for the
1-DayAPAand 1-Day control usingFSLMELODIC (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/MELODIC). After separation into 30 components, dual
regression (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression) was
performed to determine the between-group difference. A two-sample
t-test was conducted using FSL-glm with the cluster-level correction
estimated by AFNI 3DClusterSim (p <0.05, two-tail, overall family-wise
error rate p<0.05). The ICA components were classified into signal and
artifact basedonother rsfMRI studies inmice113. 21 componentsonpost-
training day 1 and 18 components on post-training day 8were identified
as the signal. The group-level spatial ICA maps were thresholded at |
Z| ≥ 1.96 (equivalent to p <0.05, uncorrected) for visualization.

Graph theory analysis
To characterize the RSNs, both weighted and unweighted versions,
when applicable, of the following graph theory parameters were cal-
culated by the Brain Connectivity Toolbox (http://www.brain-
connectivity-toolbox.net) and the graph functions in Matlab:

Global efficiency:

E =
1
n

X
i2N

P
j2N,j≠id

�1
ij

n� 1
ð1Þ
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wheredij is the shortest path length between nodes i and j, andN is the
total number of nodes. A value of 1 indicates maximum efficiency.

Modularity was calculated using the Newman’s spectral commu-
nity detection algorithm:

Q=
X
u2M

euu �
X
v2M

euv

 !2
2
4

3
5 ð2Þ

where the network is fully subdivided into a set of nonoverlapping
modulesM, and euv is the proportion of all links that connect nodes in
module u with nodes in module v. The higher the Q value, the larger
degree of network segregation.

Transitivity:

T =
P

i2N2tiP
i2kkiðki � 1Þ ð3Þ

where ki is the degree of a node i, and ti is the number of triangles
around a node i. Transitivity is a variant of the clustering coefficient.
The higher the T value, the larger the degree of network segregation.

Degree centrality of a node i:

ki =
X
j2N

aij ð4Þ

where aij is the connection between nodes i and j. aij = 1 when a
link (i, j) exists, and aij = 0 otherwise (aii = 0 for all i).

Closeness centrality of node i:

L�1
i =

n� 1P
j2N, j≠idij

ð5Þ

Betweenness centrality of node i:

bi =
1

ðn� 1Þðn� 2Þ
X

h,j 2 N

h≠j,h≠i,j≠i

ρhjðiÞ
ρhj ð6Þ

where ρhj is the number of shortest paths between nodes h and j, and
ρhjðiÞ is the number of shortest paths between h and j that pass
through i.

Eigenvector centrality of node i:

xi =
1
λ

X
j2N

aijxj ð7Þ

where λ is a constant and x is the eigenvector of the binarized network
matrix.

The HITS score is a link analysis algorithm used to assign authority
and hub indices to a network114. The authority of a node indicates how
manyhigh-quality nodes link to itwhile thehub indexof anode indicates
how many links of this node are connected to high-quality nodes. Here
we used aMatlab implementation (https://people.sc.fsu.edu/~jburkardt/
m_src/hits/hits.html) to rank a post-encoding RSN hub based on its hub
index, as the authority showed similar ranking (data not shown).

The giant component is defined as the largest connected com-
ponent in a network11. It can be represented by the number of nodes in
the largest connected component. The ratios of the giant components
in the CI analysis were used to represent the change in the giant
component when nodes were removed from the network.

To evaluate the small-world property of the brain network, the
normalized characteristic path length, lambda, the normalized clus-
tering coefficient, gamma, and the small-world index, sigma, were

calculated. Individual FC matrices were first thresholded in a pre-
defined range (0.01 < z <0.07, step 0.01, with z = 0.0254 correspond-
ing to p =0.05, z =0.07 corresponding to p <0.00001). Themaximum
threshold selected was the value for which all FC matrices were fully
connected (no isolated node). Sigma, gamma and lambda were cal-
culated from the thresholded network using a Matlab code (https://
github.com/mdhumphries/SmallWorldNess). To calculate sigma, the
Erdos Renyl random graph was used to estimate the path lengths and
clustering coefficients of random network by inputting the total node
number (230) and mean degree of the thresholded network. After
plotting the trends in the above range, AUC was calculated and a two-
sample t-test was performed to examine the difference between the
APA and control groups.

FC–behavior correlation
We correlated the strength of each significant FC with two behavioral
indices (the number of shocks and the time to first entrance of the
shock zone) in the probe test using Pearson’s correlation coefficient,
with p < 0.05 (two-tailed) regarded as significant. After correlation
analysis, we sorted the significant connections based on their absolute
value of the correlation coefficient.

Behavior-correlated common networks between 1-Day and
5-Day APA
We defined the behavior-correlated common network as a connection
shown in both tasks, the connection strength of which correlated with
memory retention. This required a connection to fulfill two network
thresholds and one behavioral threshold, which together are equiva-
lent to a much stricter threshold that reduces both true and false
positive rates. Therefore, the node-wise threshold was reduced to
achieve suitable power while controlling for the false positive rate. We
detected overlapping connections between the 1-Day and 5-Day APA
tasks from their network matrices obtained by two-sample t-test
between the APA and control groups with each network being threh-
solded atp <0.05, uncorrected. From theoverlapping connections, we
calculated FC–behavior correlations and sorted (ranked) the sig-
nificant connections (p <0.05, uncorrected) by their absolute value of
behavior correlation. Combining these uncorrected thresholds toge-
ther resulted in a family-wise error rate ofp <0.05 according to the null
distribution estimated by a permutation test.

CI analysis
CI analysis was applied to the between-group differencenetwork using
an optimized implementation69 (https://github.com/zhfkt/ComplexCi/
releases) that calculates the value of each node with the following
formula:

CIl ið Þ= ki � 1
� � X

j2δBði,lÞ
ðkj � 1Þ ð8Þ

where ki is the degree of node i, and δBði, lÞ is the frontier of the ball of
radius l which is the set of nodes at a particular distance from i. The
value is calculated iteratively by removing nodes until all nodes in the
network areeliminated67. In this analysis,weused theball radius l =2 as
we found that a larger radius gave nearly the same results. We ranked
the nodes according to how fast the size (number of nodes) of the
“giant component” collapsed by removing the selected node. To find
the reliable ranking list, we calculated the mean CI ranking of each
node under three thresholds (p <0.05, p < 0.01, p <0.005) and sorted
the node by the mean CI rank value. The top 10 CI nodes were then
defined as high (1–3), middle (4–7) and low (8–10) ranking hubs.

Null distribution of network property analysis
To determine whether the difference matrices between the APA and
control groups were significantly different from random networks,
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5000 random networks were created using the function “null_mode-
l_und_sign” of the Brain Connectivity Toolbox that preserves the
degree and strength distributions of the real network. For each of the
5000 random networks, curves of three network properties, including
the giant component, global efficiency andmodularity were generated
under thresholds ranging from t = 2 to 3.8 (step of 0.2). The AUC of
each curve was calculated to form the null distribution for each net-
work property.

Null distribution of common network analysis
To estimate the null distribution of the common network, 5000 per-
mutations of FC matrices were created by randomly assigning each
individual FCmatrix into the APA groups and controls. Between-group
differences of these permutatedmatrices were tested by two-sample t-
tests and thresholded at p <0.05, uncorrected. The common FC of the
permutated 1-Day APA and 5-Day APA data was correlated with the
Nshock or Tenter of the probe test and thresholded at p < 0.05. The
number of connections surviving these thresholds from the 5000
permutations formed the null distribution of the common network
detection (Supplementary Fig. S2a).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The fMRI data and theAMBMCatlas labels generated in this study have
been deposited in the Zenododatabase at https://zenodo.org/deposit/
8161802 (https://doi.org/10.5281/zenodo.8161802). Source data in this
paper are provided in the Supplementary Information and a Source
Data file. Source data are provided with this paper.

Code availability
Data analyses were conducted using public domain software, includ-
ing: FSL (https://www.fmrib.ox.ac.uk/fsl), AFNI (https://afni.nimh.nih.
gov/), ANTs (http://stnava.github.io/ANTs/), Brain connectivity tool-
box (https://sites.google.com/site/bctnet/), Network Based Statistics
toolbox (https://sites.google.com/site/bctnet/comparison/nbs), HITS
score (https://people.sc.fsu.edu/~jburkardt/m_src/hits/hits.html),
Small-worldness (https://github.com/mdhumphries/SmallWorldNess),
ComplexCI (https://github.com/zhfkt/ComplexCi/releases), 3D-PCNN
(https://sites.google.com/site/chuanglab/software/3d-pcnn), and
BrainNet Viewer (https://www.nitrc.org/projects/bnv/).
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