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QTG-Miner aids rapid dissection of the
genetic base of tassel branch number
in maize

Xi Wang 1,2,6, Juan Li1,2,6, Linqian Han1,2, Chengyong Liang1,2, Jiaxin Li1,2,
Xiaoyang Shang1,2, Xinxin Miao1,2, Zi Luo1,2, Wanchao Zhu1,2, Zhao Li1,2,
Tianhuan Li1,2, Yongwen Qi3, Huihui Li 4, Xiaoduo Lu5 & Lin Li 1,2

Genetic dissection of agronomic traits is important for crop improvement and
global food security. Phenotypic variation of tassel branch number (TBN), a
major breeding target, is controlled bymany quantitative trait loci (QTLs). The
lack of large-scale QTL cloning methodology constrains the systematic dis-
section of TBN, which hinders modern maize breeding. Here, we devise QTG-
Miner, a multi-omics data-based technique for large-scale and rapid cloning of
quantitative trait genes (QTGs) inmaize. UsingQTG-Miner, we clone and verify
seven genes underlying seven TBNQTLs. Compared to conventionalmethods,
QTG-Miner performs well for both major- and minor-effect TBN QTLs. Selec-
tion analysis indicates that a substantial number of genes and network mod-
ules have been subjected to selection during maize improvement. Selection
signatures are significantly enriched in multiple biological pathways between
female heterotic groups and male heterotic groups. In summary, QTG-Miner
provides a large-scale approach for rapid cloningofQTGs in crops anddissects
the genetic base of TBN for further maize breeding.

Genetic improvement of agronomic traits is an efficient way to pro-
duce high-yield and high-quality crop varieties and ensure global food
security. Most agronomic traits are mainly controlled by multiple
minor-effect quantitative trait loci (QTLs), which are often involved in
complex genetic regulatory networks1–3. Compared tomost functional
genes identified based on their associated mutants with pleiotropic or
extremephenotypes, causal genes underlyingQTLs often exhibitmore
moderate phenotypic variation, and the favorable alleles in natural
populations hold great value in the genetic improvement of cropplant
architecture, yield and quality1,3. Therefore, the rapid cloning and
functional dissection of quantitative trait genes (QTGs) are of great
importance in the genetic improvement of crops, which can help feed
the world population.

Map-based cloning and genome-wide association studies (GWAS)
are powerful tools for cloning QTGs1,4–9 and have enabled dissection of
the genetic mechanisms behind important agronomic traits3,8–11. How-
ever, both methods have some limitations in terms of operability and
efficiency. Map-based cloning largely depends on the construction of
mapping populations with a large number of recombinants whose
genotype and phenotype are assessed for fine mapping, which is time-
consuming and labor-intensive1,12. GWAS is powerful in detecting com-
mon alleles in diverse genetic populations, but is more limited for rare
alleles, as it must reach aminimal allele frequencywithin the population
to be detectable8,13,14. Complex population structures also affect the
identification of functional genetic loci8,13,14. More robust and large-scale
genetic methods are therefore desired for modern maize breeding.
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With the development of various omics technologies, the
acquisition of multi-dimension omics data is becoming cheaper and
easier. Multi-omics data provide an unprecedented chance for
functional gene cloning and dissection of the genetic mechanisms
behind important agronomic traits in crops15. Walley et al. con-
structed a large-scale integrated gene expression atlas composed of
messenger RNAs, nonmodified proteins, and phosphoproteins
quantified across maize development, which was effective in pre-
dicting known and novel regulatory relationships16. Using a systems
biology approach, Clark et al. integrated multi-omics datasets,
unraveled the molecular signaling events of the brassinosteroid
(BR) response in Arabidopsis (Arabidopsis thaliana), and verified
the involvement of transcription factor BRONTOSAURUS (BRON) in
regulating cell division modulated by BR-responsive kinases and
transcription factors17. Utilization of multi-omics networks is
therefore powerful for functional gene prediction. Nevertheless,
how to integrate multi-omics data and traditional QTL mapping for
the rapid fine mapping and cloning of QTGs remains elusive and
unclear.

One of the most widely cultivated crops, maize (Zea mays ssp.
Mays) contributes over 38% of the world’s cereal production18. High-
density planting due to the compact plant architecture of maize has
largely driven increasing global production19. Compact plant archi-
tecture is associated with reduced relative ear height, smaller tassels,
and fewer tassel branch numbers (TBNs). During maize domestication
and improvement, the tassel morphology of maize has changed sig-
nificantly. For instance, tassel size and TBN have diminished, which
directly affects light interception and grain yield11,19. Dissecting the
genetic architecture of TBN is important for the further genetic
improvement of plant architecture and maize yield. Cloning of con-
ventional TBN genes based on isolation of their corresponding
mutants has enabled the identification of a series of TBN genes and

uncovered severalmolecular pathwaysbehind TBN20–29. However, only
a few of the causal genes underlying QTLs have been cloned, even
though several hundredQTLs have been identified30,31, which limits the
pace of modern maize improvement.

Here, we devise QTG-Miner, a multi-omics data-basedmethod for
large-scale and efficient fine mapping and cloning of QTGs in maize.
We apply QTG-Miner to 12 TBN QTLs simultaneously and successfully
clone seven TBN QTLs. Selection analysis shows that lrs1 (liguleless-
related sequence1) has been subjected to selection during modern
maize improvement. Additionally, we assemble a comprehensive
molecular regulatory network underlying TBN in maize and uncover
that significant co-directional selection signatures are enriched at
multiple biological pathways between female heterotic groups (FHGs)
and male heterotic groups (MHGs). Our study provides an approach
for rapidly cloning QTLs and systematically dissecting the molecular
mechanisms underlying TBN in maize, which could be helpful for the
genetic improvement of this and other important agronomic traits
in crops.

Results
Rationale behind QTG-Miner for large-scale and rapid fine
mapping and cloning of QTLs
For rapid fine mapping and cloning of QTLs on a large scale, we
devised QTG-Miner, which consists of three steps (Fig. 1).

(1) Primary QTL mapping. Segregating populations can be con-
structed using two parents (P1 and P2) showing distinct phenotypes.
We devised QTG-Miner to accept various populations, which include
but are not limited to F2, doubled haploids (DHs), recombination
inbred line (RILs), and near isogenic line (NILs). Primary QTL mapping
can be conducted by anymethod of the user’s choice based on linkage
analysis and association mapping, for example, QTL IciMapping32,
WinQTLCart33 or R/qtl34.

Fig. 1 | Rationale behind QTG-Miner. QTG-Miner integrates three procedures: 1)
primary QTL mapping, 2) screening and sequencing on single QTL segregating
material, and 3) candidate gene mining by QTG-Miner. In 1), mapping population
types include but are not limited to F2, DHs, RILs, and NILs. In 2), single QTL-paired
materials are screened, planted, and sampled for RNA-seq. Identified DEGs and

sequence variants are considered as proportional weights during candidate gene
prediction. In 3), SD and ML algorithms are integrated into QTG-Miner. Using SD
and ML algorithms, candidate genes underlying the target QTL can be uncovered
and subsequently verified by EMS mutagenesis or CRISPR/Cas9-mediated editing.
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(2) Screening and sequencing on single QTL segregatingmaterial.
Based on the QTLs identified in part 1, individuals from the F2 segre-
gating, RIL, or NIL populations that harbor different genotypes across
the target QTL interval while being as close as possible genetically
outside of this region are then characterized for the identification of
differentially expressed genes (DEGs) and sequence variants by tran-
scriptome deep sequencing (RNA-seq).

(3) Candidate gene mining by QTG-Miner. QTG-Miner integrates
multi-omics networkmaps, artificial intelligence, and interpretation of
the biological consequences of mutations or polymorphisms detected
between the contrasting individuals above. We implemented two
algorithms in QTG-Miner, shortest distance (SD) andmachine learning
(ML), based on the multi-omics network maps. The SD algorithm
involves acquisition of a dataset of positive (known trait-associated)
genes, followed by calculation of the SD between genes located within
the QTL interval and these positive genes, and leading to the identifi-
cation of candidate genes. By contrast, ML relies on acquisition of a
dataset of positive (known trait-associated) andnegative (verified trait-
unassociated) genes, model training, and candidate gene prediction.
Several commonly used ML algorithms such as bagging, extreme
gradient boosting (XGBoost), logistic regression (LR), NeuralNet and
support vectormachine (SVM) were introduced into QTG-Miner35. The
best model can be determined by various metrics, such as receiver
operating characteristic (ROC), area under the curve (AUC) and area
under the precision-recall curve (AUPRC). During candidate gene
prediction, identified DEGs and genic sequence variants can be prior-
itized by giving themaproportionally greaterweight thannon-DEGs or
genes with no sequence polymorphisms between individuals under
consideration. Based on the prediction results and functional anno-
tations of all genes in the target QTL interval, a high-confidence can-
didate gene can be selected. Thereafter, mutagenesis of the candidate
gene can be explored in an existing ethyl methanesulfonate (EMS)
population or via clustered regularly interspaced short palindromic
repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated edit-
ing to verify the candidate gene underlying the target QTL (Fig. 1).

QTG-Miner therefore integrates QTL mapping, screening and
sequencing of materials segregating only at the target QTL, and can-
didate genemining, which should accelerate finemapping and cloning
of functional genes conferring important agricultural traits. We set out
to challenge QTG-Miner to identify genes involved in TBN below.

QTG-Miner rapidly narrowsdowncandidate genes underlying 12
TBN QTLs in maize
TBN is an important agronomic trait in maize production and breed-
ing. To dissect the genetic basis of TBN and to test the reliability of
QTG-Miner, we applied QTG-Miner simultaneously to 12 maize TBN
QTLs, which had been previously mapped in 10 RIL populations
derived from 14 diverse elite inbreds36. These 12 TBN QTLs map to six
different chromosomes (2, 3, 4, 7, 8, and 10) and can explain 4–14% of
the standing phenotypic variation in TBN (Supplementary Data 1).
Basedon the genotype of eachRIL, we identified 12 pairs of RILs for the
12 TBNQTLswith opposite genotypes over a singleQTLof interest, but
with a very similar genomic background outside the QTL interval
(Supplementary Data 1). The detailed genotype information of 12 pairs
of RILs were exhibited and graphically presented (Supplementary
Data 2–7, Supplementary Fig. 1). We sowed all lines in a field and col-
lected developing tassels of 2–4mm in length from each RIL for RNA-
seq analysis (Supplementary Data 8). We quantified the expression of
genes and annotated the genic sequence variants in all lines over each
specific target QTL interval, resulting in 12 lists of DEGs and genes with
polymorphisms (SupplementaryData 9 and 10). For sequence variants,
we focused on 13 types of variants with a high probability of altering
gene expression and/or protein structure or length: conservative in-
frame deletion, conservative in-frame insertion, disruptive in-frame
deletion, disruptive in-frame insertion, frameshift, splice acceptor,

splice donor, splice region, lost start codon, gained stop codon, lost
stop codon, 5_prime_UTR_variant and 3_prime_UTR_variant. We incor-
porated these identified DEGs and major-effect variants as propor-
tional weights during candidate gene mining by QTG-Miner.

With the rapid development of various sequencing methods, an
integrative multi-omics network map was assembled (Fig. 2a) and
evidenced to accelerate the dissection of biological pathways and
prediction of gene function37, which integrated multi-omics data from
ChIA-PET (chromatin interaction analysis by paired-end tag sequen-
cing), co-expression, co-translation and PPI (protein-protein interac-
tion). This multi-omics network map had not yet been applied for the
fine mapping and cloning of QTLs.

In this study, we integrated the above multi-omics network map
into QTG-Miner for the application of QTG mapping. We collected 57
known functional genes affecting TBN as positive genes and 63 nega-
tive genes with no evidence of being connected to TBN (Fig. 2b, Sup-
plementary Data 11). Based on the integrative network map, we
calculated the SD value (SDg) between each gene across the maize
genome and the positive genes. The mean SDg between 52 positive
genes and 52 positive genes was significantly higher than that between
26,044 background genes and 62 negative genes (Fig. 2c). Using five
ML algorithms, we conducted model training and predictions and
determined that NeuralNet exhibits the best prediction accuracy, with
a mean AUC of 0.93 compared to the other four algorithms (Fig. 2d,
Supplementary Table 1). We therefore used NeuralNet to predict the
candidate genes underlying each of the 12 TBN QTLs. We separately
extracted the prediction results of SD and ML for the 12 TBN QTLs,
treating the identifiedDEGs andmajor-effect variants as co-factors.We
narrowed down the QTL regions and prioritized the functional candi-
date genes underlying these 12 TBN QTLs (Fig. 2e, f).

Validation of functional genes underlying seven TBN QTLs
in maize
To validate the candidate genes identified by QTG-Miner, we used EMS
materials and CRISPR-edited materials for phenotyping validation
(Supplementary Data 12 and 13). Of the 12 TBN QTLs, we successfully
cloned and functionally analyzed sevenTBNcandidate genes underlying
seven TBN QTLs (Fig. 3, Supplementary Fig. 2). Taking qTBN3-1 and
qTBN7-1 as examples, the candidate gene Zm00001d042795was ranked
as the top candidate by both SD and ML algorithms (Fig. 3b, c).
Sequencing analysis of the two parental alleles (B73 and BY804) at
qTBN3-1 locus detected one polymorphism of type stop_gained (CAG>
TAG), resulting in a premature translation termination codon (Supple-
mentary Fig. 3).Zm00001d042795geneencodes aproteinwith a kinesin
motor domain, ZmKinesin. In Arabidopsis, a knockout mutant in the
homologousgene FRAGILE FIBER 1 (FRA1) exhibited adwarf plant stature
and a small inflorescence architecture38. Compared to their wild-type
sibling counterparts, EMS mutants exhibited significantly increased
tassel branchnumbers (Fig. 3d, e).Meanwhile, two independentCRISPR-
editedmaterials were phenotyped, and also showed significant increase
of tassel branch number, which further verified the causal gene of
qTBN3-1 (Fig. 3f–h). For qTBN7-1, the candidate gene Zm00001d020804
was ranked as the topand third candidatebybothSDandMLalgorithms
respectively (Fig. 3j, k). Sequencing analysis of the two parental alleles
(DE3 and BY815) at this locus detected one polymorphismof 8-bp InDel,
as well as differential expressions (Supplementary Fig. 3, Supplementary
Data 9). Zm00001d020804 gene encodes the homeobox leucine zipper
domain transcription factor ZmHD-ZIP120. CRISPR-edited materials
were phenotyped, and showed significant decrease of tassel branch
number, which verified the causal gene of qTBN7-1 (Fig. 3l–n).

Weobserved significant variation in TBNphenotypes in allmutants
compared to their wild-type sibling counterparts. Mutant plants for
both ZmHD-ZIP120 and ZmPRP4K (Pre-mRNA processing 4 KINASE, the
candidate gene for qTBN8-3) had significantly decreased TBN, while the
mutants of the remaining five genes exhibited significantly increased
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TBN across multiple environments. These results confirmed that the
genes prioritized by QTG-Miner are the genes underlying the TBNQTLs
(Fig. 3, Supplementary Fig. 2). We conclude that we validated a high
proportion of candidate genes identified by QTG-Miner.

Further, we summarized the success rate of cloning of TBN QTLs
with different effects. In field tests from at least two seasons/locations,
7 of the 12 TBN candidate genes highlighted by QTG-Miner were vali-
dated (Supplementary Fig. 4a). To test the performance of QTG-Miner
forminor-effect QTLs, we classified the seven verified TBNQTLs based
on the strength of their effects. These seven TBNQTLs have logarithm
of the odd (LOD) values ranging from 3.3 to 8.4 and effects of
4.6–14.4%. Of the 12 TBNQTLs, 5 QTLs whose LOD values below 5, and
2 QTLs whose LOD values larger than 5, were successfully verified,
respectively (Supplementary Fig. 4b). Taken together, these results
indicate that QTG-Miner exhibited good performance for the cloning
of TBN QTLs with both major and minor effects.

A comprehensive molecular network underlying TBN in maize
To systematically dissect the molecular mechanisms underlying TBN,
we utilized the multi-omics network map to decipher the molecular
network of TBN inmaize, which consisted of 65 well-known TBNgenes
and seven cloned genes from this study (Fig. 4a, Supplementary
Data 14). To construct the molecular network underlying TBN, we
performed RNA-seq analyses on the EMS mutants of six of the seven

cloned TBN genes and their wild-type sibling counterparts (Supple-
mentary Data 8). Totally, we identified 1349 DEGs, which are poten-
tially involved in the TBN network (Supplementary Data 15).
Additionally, we conducted transient and simplified Cleavage Under
Targets and Tagmentation (tsCUT&Tag)39 on the protein encoded by
the TBN gene, the homeobox leucine zipper domain transcription
factor ZmHD-ZIP120 (the causal gene for qTBN7-1), integrated the
multi-omics gene regulatory network constructed in our previous
study for the dissection of the regulatome of TBN genes40, and iden-
tified 957 potential target genes totally (Supplementary Fig. 5, Sup-
plementary Data 16). The integration of all information generated a
large-scale molecular network describing TBN in maize. This TBN
network included 21,280 interaction edges derived from 4278 genes
(Fig. 4a). Based on numerous published studies, the genes from the
total TBN network could be roughly divided into 12 biological path-
ways (abscisic acid [ABA] and reactive oxygen species [ROS], auxin,
boundary, brassinosteroid, cytokinin, cytoskeleton and cellulose,
flowering, gibberellin, histone modification, meristem maintenance
and determinacy, protein modification and transport, sugar and
nutrition). GeneOntology (GO) enrichment analysis showed that these
4278 genes are significantly enriched in 1247 terms, which included
these 12 biological pathways (Fig. 4b, Supplementary Data 17).

We aimed to infer the genetic basis of TBN in maize through
exploiting the assembled TBN network mentioned above. For

Fig. 2 | QTG-Miner quickly narrows down candidate genes underlying 12 TBN
QTLs in maize. a Multi-omics network map used by QTG-Miner. ChIA-PET, chro-
matin interaction analysis by paired-end tag sequencing. PPI, protein-protein
interaction. b Positive and negative gene datasets used for the SD and ML algo-
rithms. c Comparison of SD values from positive genes (n = 52), background genes
(n = 26, 044) and negative genes (n = 62) to positive genes. The y-axis indicates the
SD value. Violin plots: median ± upper and lower quartiles; P valueswere calculated
from two-sided Student’s t tests. d AUC values obtained from five different ML

algorithms. For five algorithms, n = 20 independent replicates, respectively. In each
box plot, the center line indicates the median, the edges of the box represent the
first and third quartiles, and the whiskers extend to span a 1.5 interquartile range
from the edges. e Weighted SD value (SDw) of each gene in the candidate interval
for 12 TBN QTLs. f Weighted probability (Pw) of each gene in 12 TBN QTLs, gray
dotted line indicates the cutoff of machine learning. In e, f, Salmon solid dots
indicate potential candidate genes, and gray solid dots indicate excluded genes.

Article https://doi.org/10.1038/s41467-023-41022-1

Nature Communications |         (2023) 14:5232 4



example, we constructed a subnetwork for qTBN8-2 (lrs1), which
comprised 91 interaction pairs derived from the multi-omics network
map, a transcription factor (TF)-centered gene regulatory network
(GRN) and DEGs identified using EMS-mutagenized materials (Fig. 4c).
We noticed several important genes in the resulting network, such as
tasselsheath4 (tsh4),NIGHT LIGHT-INDUCIBLE ANDCLOCK-REGULATED
GENE 1 (LNK1),REVEILLE 1 (RVE1),MADS52,Thiamine thiazole synthase 1
(Thi1), and Histone deacetylase 110 (hda110), whose paralogs partici-
pate in multiple plant developmental pathways41,42.

Key TBN QTGs were subject to strong selection during maize
breeding
Tassel branches were the subject of convergent selection in maize
inbred lines from the United States and China during modern
breeding11,43–45. To further understand the selection scenario of TBN
duringmodernmaize breeding, we calculated the nucleotide diversity
of the seven verified candidate genes across teosinte entries, landraces
and maize inbred lines using data from maize HapMap v346. We
detected dramatic nucleotide changes over the length of qTBN8-2
(lrs1) (Fig. 5a). For this gene, nucleotide diversity of maize was sig-
nificantly lower than that of teosinte and landraces, and that of land-
races was apparently lower than that of teosinte, although this
difference did not reach significance. This result indicated that lrs1
might have been subjected to selection during maize improvement.

Further, we investigated the allele frequency at lrs1 using data
from maize HapMap v346. We observed a gradual increase in the fre-
quency of alleles causing less TBN over the course of maize

domestication and improvement (Fig. 5b), with a rise from 24% (teo-
sinte) to 55% (landraces) and up to 66% (maize). This result is con-
sistent with a selection signature at lrs1 during maize improvement.

To further understand the genetic consequenceof selection at lrs1
during maize improvement, we conducted an association analysis and
allele frequency analysis using published resequencing data, which
included 350 elite maize inbred lines from China and the United
States11. Association analysis of lrs1 showed that four single nucleotide
polymorphisms (SNPs) within this locus are significantly associated
with TBN, suggesting that lrs1 perhaps contributes to the phenotypic
variation of TBN across elite maize inbred lines (Fig. 5c). By Investi-
gating allele frequencies of lrs1 in the 350 elite maize inbred lines, we
noticed that the frequency of the allele conferring less TBNwas high in
both China and the United States and rose slightly during modern
maize breeding (Fig. 5d). Moreover, the less TBN allele contributes to
the lower TBN values measured in inbreds from both China and the
United States (Fig. 5e).We conclude that qTBN8-2 (lrs1) underlies some
of the phenotyping variation of TBN and was subjected to strong
selection in maize.

Significant selection of TBN pathways between female andmale
heterotic groups during modern maize hybrid breeding
A recent study uncovered 4804 candidate genes subject to selection in
two heterotic groups during modern maize hybrid breeding. These
selection genes were categorized into three groups: specific to male
heterotic groups (MHGs), specific to female heterotic groups (FHGs),
and co-selected in both MHGs and FHGs45. We compared the 4278

Fig. 3 | Verificationof candidate genes identifiedbyQTG-Miner forqTBN3-1 and
qTBN7-1 in maize. a Primary genetic mapping results of qTBN3-1. b Detailed
weighted SD values (SDw) of genes in the interval of qTBN3-1. c Detailed weight-
ed_Probability (Pw) of genes in the interval of qTBN3-1. d Representative photo-
graphs showing the TBN phenotype in wild type (left) and mutant Zmkinesin-EMS
(right) derived from EMS materials. e TBN in wild type (gray violin plots) and
mutants (pink violin plots). 20DHN, Hainan in winter 2020. 21CSD, Shandong in
spring 2021. f Sequences of ZmKinesin target regions in wild type, Zmkinesin-KO#1
and Zmkinesin-KO#2 CRISPR/Cas9 knockout mutants. g Representative photo-
graphs showing the TBN phenotype in wild type (left), Zmkinesin-KO#1 (middle)
and Zmkinesin-KO#2 (right) mutants. h TBN in wild type (left), Zmkinesin-KO#1
(middle) and Zmkinesin-KO#2 (right) mutants. i Primary geneticmapping results of
qTBN7-1. j Detailed weighted SD values (SDw) of genes in the interval of qTBN7-1.

k Detailed weighted_Probability (Pw) of genes in the interval of qTBN7-1.
l Sequences of ZmHD-ZIP120 target regions in wild type, Zmhd-zip120-KO#1
CRISPR/Cas9 knockout mutants. m Representative photographs showing the TBN
phenotype in wild type (left) and Zmhd-zip120-KO#1 (right) mutant. n TBN in wild
type (left) and Zmhd-zip120-KO#1 (right)mutant. Inb and j, Pink indicates SDd, light
blue indicates SDv, and gray indicates SDg. In c and k, Pink indicates Pd, light blue
indicates Pv, and gray indicates Pg. In f, l, the target sites and protospacer-adjacent
motifs (PAM) are shown as underscored letters and pink letters, respectively. The
gap lengths of sequences are shown above the wild type sequences. Scale bars
referred above; 2 cm. In e, h, n, P values were determined by two-sided Student’s t
tests. *P <0.05, **P <0.01, ***P <0.001. Violin plots: median ± upper and lower
quartiles. Source data are provided as a Source Data file.
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genes from our constructed TBN network to these 4804 selection
genes and determined that 40 (0.94%), 203 (4.75%), and 344 (8.04%)of
our TBN network genes are FHGs, MHGs, and co-selected genes,
respectively (Supplementary Fig. 6). GO enrichment analysis showed
that 344 co-selected genes are significantly enriched in 470 terms and
203 MHGs were significantly enriched in 124 terms (Supplementary
Data 18 and 19), while 40 FHGs showed no significant enrichment.
These results indicate that MHGs and co-selected genes pre-
dominantly function in the convergent selection of TBNat the pathway
level during modern maize hybrid breeding.

To further explore the convergent selection of TBN trait at the
pathway level between the FHGs and MHGs, we compared the 4278
genes in the TBN network to the 1017 selection genes containing
nonsynonymous SNPs whose allele frequencies exhibited co-

directional or anti-directional changes between FHGs and MHGs45.
We determined that allele frequencies of 88 (2.06%) genes change co-
directionally between FHGs and MHGs, while the allele frequencies of
66 (1.54%) genes changed convergently only in MHGs, and the allele
frequencies of three (0.70%) genes changed anti-directionally between
FHGs and MHGs (Fig. 6a). Enrichment analysis showed that 88 co-
directional genes and 66 convergent genes exhibit a significant
enrichment in our TBN network compared to a random sampling of
equal gene number (Fig. 6b). The 88 co-directional genes and 66
convergent genes belonged to 10 biological pathways (Supplementary
Fig. 7). About 65% of co-directional and convergent genes were asso-
ciated with meristem maintenance and determinacy (Fig. 6c). GO
enrichment analysis showed that 88 co-directional genes are enriched
in 249 terms (Fig. 6d, SupplementaryData 20), which includesmultiple

Fig. 4 | Assembly of a comprehensive molecular network underlying TBN in
maize. a Constructed network of TBN in maize. The seven genes identified in this
study are indicated. Different colors indicated different biological pathways as
follows: Hotpink, abscisic acid and reactive oxygen species; Royalblue, auxin; Lime,
boundary; Brown, brassinosteroid; Cyan, cytokinin; Turquoise, cytoskeleton and

cellulose; Magenta, flowering; Tan, gibberellin; Goldenrod, histone modification;
Deepskyblue, meristem maintenance and determinacy; Orange, protein modifica-
tion and transport; Blueviolet, sugar andnutrition.b Significant enrichment of 4278
network genes in multiple biological pathways. c Subnetwork of qTBN8-2 (lrs1).
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biological pathways such as meristem maintenance and determinacy,
while 66 convergent genes were only enriched in two terms (Supple-
mentary Data 21). Taken together, these results suggest that the sig-
nificant selection of TBN occurred at multiple biological pathways
between FHGs and MHGs during modern maize hybrid breeding,
especially at the pathway of meristem maintenance and determinacy.

Discussion
The fast and accurate fine mapping and cloning of functional genes
underlying QTLs for agronomic traits is a critical component of crop
improvement. Here, wedeveloped amethod,QTG-Miner, for the large-
scale and efficient fine mapping and cloning of QTGs in maize. Addi-
tionally, using QTG-Miner, we rapidly dissected the causal genes
behind seven TBN QTLs with both major and minor effects ranging
from 4% to 14% in maize. Selection analysis showed that qTBN8-2 (lrs1)
contributed to the phenotypic variation of TBN inmaize. Furthermore,
we constructed a comprehensive molecular regulatory network
underlying TBN in maize, which helped us uncover significant co-
directional selection signatures enriched at multiple biological path-
ways between FHGs andMHGs duringmodernmaize hybrid breeding.
QTG-Miner is a high sufficient approach for systematically dissecting
the genetic and molecular mechanisms underlying important agro-
nomic traits in crops.

Most agronomic traits such as TBN are quantitative and con-
trolled by many QTLs with major or minor effects. Conventional
methods employ time-consuming and labor-intensive procedures,
and only relying on conventional methods for QTGs cloning is inef-
ficient and challenging, especially when dissecting such QTLs with
minor effects or represented by rare alleles1,8. Combining QTG-Miner
with conventional methods for QTGs cloning displayed obvious
advantages for QTGs cloning. First, by integrating QTG-Miner with
conventional methods, both major- and minor-effect QTLs could be
rapidly cloned. A large number of recombinants enabled it possible
that the selection of materials segregating for a single QTL alleviated
potential interference of unlinked and background QTLs to a great
extent, which helped ensure the accuracy of the identified DEGs and

variants. Second, with the help of various populations constructed
using conventionalmethods, QTG-Miner can achieve functional gene
cloning rapidly and efficiently when the genetic background of the
population is properly controlled. Population types can be biparental
or multiparental, including selfing and backcross populations,
derived RILs, backcross inbred lines, residual heterozygous lines,
nested association mapping populations, or multiparent advanced
generation intercross populations. Third, integrating QTG-Miner
with conventional methods could achieve large-scale gene cloning in
a rapid and efficient manner. With the help of QTG-Miner, iterative
and tedious fine mapping could be alleviated, and batch cloning the
functional genes could be achieved at a time. Therefore, integrating
QTG-Miner with conventional methods is a powerful strategy for
accelerating QTGs cloning.

Meanwhile, several limitationsor shortcomingsofQTG-Miner also
should be considered and overcome. Similar to conventional QTL
mapping, it is a big challenge for QTG-Miner to discriminate the co-
localized independent QTGs and clone them all in one. One alternative
to overcome this difficulty is to nominate several (2 or 3) candidate
genes and conduct phenotyping validation. In addition, QTG-Miner
couldnot identify the causal genetic polymorphisms forQTGsdirectly.
Several other methods could aid to dissect the causal genetic poly-
morphisms. Full-length resequencing of functional genes between two
parents, candidate gene association analysis and haplotype analysis
could help to identify the functional variants, as well as various
molecular and genetic experiments.

TBN is an important agronomic trait that affects plant archi-
tecture and grain yield in maize. Following the isolation of relevant
mutants, dozens of genes affecting TBN have been cloned and func-
tionally dissected, which uncovered several genetic pathways such as
meristem maintenance and determinacy22,24,47,48, phytohormones49–52,
or sugar and nutrition53. However, only a few quantitative TBN genes
have been verified, which limits our understanding of TBN genetic
architecture and how to harness this trait in crop breeding30,31.

Using QTG-Miner, we rapidly cloned and verified seven TBN
QTGs, which greatly expands our understanding of tassel branch

Fig. 5 | Selection analysis atqTBN8-2 (lrs1). aNucleotide diversity (pi value) across
teosinte, landraces, and maize. n indicate 380, 387, 356 independent data points
from left to right, respectively. ns, not significant. P valuesweredetermined by two-
sided Student’s t tests. ***P <0.001. Violin plots: median± upper and lower quar-
tiles. b Allele frequency of lrs1 across teosinte, landraces and maize. Less allele,
allele associated with less TBN; More allele, allele associated with more TBN.

c Association signals over lrs1 with TBN in a maize diversity panel. Four significant
SNPs were uncovered. d Allele frequency of the SNP (Chr8: 172048437) in lrs1
across different modern breeding populations. e Variation in TBN across different
populations, sorted as a function of the lead association SNP. n indicate 57, 13, 75, 8,
22, 6, 76, 15, 44, 7 independent inbred lines from left to right, respectively. Data
represent means ± s.d.
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number trait in maize. For example, qTBN4-1 encodes the TLD-domain
containing nucleolar protein OXIDATION RESISTANCE (ZmOXR),
whose ortholog in Arabidopsis, AtOXR2, improves photosynthesis
efficiency, leading to higher plant growth and biomass production54.
qTBN4-2 encodes the WUSCHEL-related homeobox 3 protein, narrow
sheath 2 (NS2). Themutant of ns2 exhibits a brachytic plant phenotype
with narrow sheath and shortened internodes55,56. Its putative ortholog
in Arabidopsis is PRESSED FLOWER (PRS), which is required for lateral
sepal development57. qTBN8-2, encodes a paralog of LIGULELESS2
(LG2), LRS1,whichaffects boundary identification and tassel branching
in maize58. qTBN8-3 encodes the CMGC_DYRK-PRP4 kinase, ZmPRP4K,
whose putative ortholog in Arabidopsis AtPRP4KA functions in plant
architecture and flower development including branching59. qTBN10-2
encodes a vesicle-associated membrane protein ZmVAMP. In Arabi-
dopsis, AtVAMP721/722 function in post-Golgi trafficking and are
required for auxin-mediated development60.

Multi-dimension omics data have been proved to exhibit great
conveniences for systematically dissecting the genetic mechanisms
behind important agronomic traits in model plants and
crops15–17,40,61–63. In this study, we provided a approach for rapid and
batch cloning of QTGs, which integrated the first-generation multi-
omics network map and transcriptomic data obtained from RIL
materials37. The first-generation multi-omics network map integrated
multi-omics data including genome, transcriptome, translatome and
proteome. Besides, the other types of omics data including

epigenomic andmetabolomic data, also could aid the identification of
functional genes64,65. These types of data could integrate into multi-
omics network map and function as attributes in machine learning for
aiding candidate gene mining.

By integrating the first-generation multi-omics network map,
GRNs, and DEGs between mutants of the cloned TBN genes and their
wild-type siblings, we constructed a comprehensive molecular net-
work underlying TBN. Based on this TBN molecular network, we pro-
pose that ZmHD-ZIP120 might affect TBN via the meristem
maintenance and determinacy pathway, while NS2 and LRS1 might
affect TBN by identifying boundaries between organs. ZmOXRmay be
involved in ABA-mediated regulation of TBN, while ZmPRP4K and
ZmVAMP might function in protein modification and transport, and
ZmKinesin might function in cytoskeleton development. Our assem-
bled TBN molecular network provides insights into the molecular
mechanisms underlying TBN in maize.

TBNhasbeen amajor selection target for theobserveddecreasing
tassel size during maize domestication and improvement11,20,43–45. So
far, many TBN genes have been verified that have been the subject of
selection during maize domestication or improvement11,20,45. Beyond
the single gene level, our study uncovered the selection trajectory at
the pathway level. Based on the assembled TBN network, we detected
significant selection signatures of TBN at multiple biological pathways
during modern maize improvement, which provides pathway targets
for the systematic large-scale improvement of maize.

Fig. 6 | Co-directional selection on TBN pathways between FHGs and MHGs
during modern maize hybrid breeding. a Venn diagram showing the extent of
overlap among node genes of the GRN, convergent selected genes only in MHGs,
anti-directional selected genes, and co-directional selection genes between MHGs
and FHGs. b Significant enrichments of convergent selected genes only in MHGs
and co-directional selection genes between MHGs and FHGs in the constructed

GRN. n indicate 100 independent experiments among three type background
genes. Data represent means ± s.d. P values were determined by Chi-squared test.
c Frequency of convergent selected genes only in MHGs and co-directional selec-
tion genes between MHGs and FHGs among 12 biological pathways. d Significant
enrichment of 88 co-directional selection genes in multiple biological pathways.

Article https://doi.org/10.1038/s41467-023-41022-1

Nature Communications |         (2023) 14:5232 8



Althoughwe tested and validated the procedure of QTG-Miner on
TBN in maize, we expect that QTG-Miner can be extended to other
traits and species. For example, QTG-Miner should be easily imple-
mented on the model species Arabidopsis and rice (Oryza sativa)
because of their small genome size, moderate genome complexity,
abundant multi-omics data, and many known causal genes. However,
QTG-Miner may be somewhat limited when implemented for non-
model species. In such a scenario, it would be necessary to generate
large-scale multi-omics data and assemble sets of positive genes prior
to starting machine learning predictions. The rapid advance of next-
generation sequencing technologies could help alleviate such chal-
lenges. Meanwhile, a series of studies have verified that many causal
genes underlying important agricultural traits, for example plant
height, flowering time, and tassel-related traits, are selection targets in
evolution and domestication, and are somehow conserved across
species66–68. Therefore, positive gene datasets can be obtained by
identifying putative orthologs to known causal genes in model plant
species. Thus, QTG-Miner has the potential to be widely applied to
various species and traits.

Methods
Plant materials, growth conditions and phenotypic
measurements
Twelve pairs of single QTL-segregating RIL materials were collected
from 10maize RIL populations36. Single QTL-segregating RIL materials
and their parental inbred lines were selected and sown at the Huaz-
hong Agricultural University experimental station (Sanya, Hainan
province). Young leaf tissues of parental inbred lines were harvested
for genomic DNA extraction. The immature tassel tissues (2–4mm) of
RIL materials with only one segregating QTL were collected for total
RNA extraction (each replicate consisting of immature tassel tissues
from six independent individuals). All samples were immediately fro-
zen in liquid nitrogen and subsequently stored at –80 °C. EMS-
mutagenized materials for 11 candidate QTGs were obtained from the
maize EMS mutant library (https://elabcaas.cn/memd/public/index.
html#/) andwere planted in two locations for phenotypic investigation
(Sanya, Hainan province and Zibo, Shandong province). Phenotypic
investigation of ZmKinesin and ZmHD-ZIP120 were conducted in
Huazhong Agricultural University experimental station (Wuhan, Hui-
bei province; Sanya, Hainan province). For the gene expression profile
analysis of EMS-mutagenized materials and their wild-type sibling
counterparts, populations were planted in Huazhong Agricultural
University experimental station (Wuhan, Hubei province). Immature
tassel tissues (from tassels 2–4mm in length) were collected for total
RNA extraction (two replicates per genotype, with each replicate
comprising immature tassel tissues from six independent plants). TBN,
taken as primary tassel branch number here, was measured after the
genotyping was concluded. For field trials, each mutant plot was
planted in replicate with a neighboring wild-type control plot. Two
replicates were used for these phenotyping trials, with a row length
and row space of 2.5m and 60 cm, respectively. The space between
plants in the same row was 25 cm.

Genomic DNA and total RNA extraction and RNA-seq analysis
All DNA samples referred here were extracted using the CTABmethod
with minor modifications69. Total RNA from immature tassel tissues
was extracted using a Direct-zol RNAMiniprep Kit (ZYMO RESEARCH)
according to the manufacturer’s instructions. mRNAs of RIL materials
were subjected to sequencing on a Novaseq 6000 instrument (Illu-
mina) as 150-bp paired-end reads. mRNAs of EMS-mutagenized mate-
rials were subjected to sequencing on a BGISEQ-500 instrument
(Illumina) as 150-bp paired-end reads. For each biological replicate of
RILmaterial, we obtained about 6Gb clean data (40million reads). For
each biological replicate of EMS-mutagenizedmaterial, we obtained at
least 20Gb clean data (150 million reads) (Supplementary Data 8).

For RNA-seq analysis, clean reads were mapped to the maize
reference genome (B73 RefGen_v4.36) using Hisat2 software (version
2.2.0)70. Gene expression levels were calculated using the fragments
per kilobase of exon model per million mapped fragments (FPKM)
method using cuffdiff (version 2.2.1)71. A GTF file containing the
genomic coordinates of exons, and coding sequences of nuclear genes
for maize (B73 RefGen_v4.36) was used to guide the annotation.
Expression differences were considered statistically significant if
q <0.05, where q is the P value adjusted for multiple tests to minimize
the false discovery rate (FDR). Genetic variants were called using GATK
(version 3.7)72 with default parameters; their effects on genes were
annotated and predicted using SnpEff (version 4.3t)73. For sequence
variants, based on their predicted effect on gene expression or protein
structure, 13 types ofmajor-effect variants were selected (conservative
in-frame deletion, conservative in-frame insertion, disruptive in-frame
deletion, disruptive in-frame insertion, frameshift, splice acceptor,
splice donor, splice region, lost start codon, gained stop codon, lost
stop codon, 5_prime_UTR_variant and 3_prime_UTR_variant). DEGs and
genes with major-effect variants were considered as proportional
weights during candidate gene mining.

ML and SD algorithms on the multi-omics network map in
QTG-Miner
The ML algorithms implemented in this study followed the method of
Han et al. with slight modifications (https://github.com/hanlinqian/
IntegrativeNetworkMap/tree/INM/Section5). A total of 32 TBN genes
were compiled from the literature into the positive training dataset,
and 55 non-TBN genes were curated from the classical maize
gene database (https://genomevolution.org/wiki/index.php/Classical_
Maize_Genes) and used as the negative training dataset (Supplemen-
tary Data 11). Log2-normalized transcripts per million (TPM) values
from RNA-seq data covering 31 tissues/stages and 21 tissues/stages
from translatome data were used as co-expression and co-translation
attributes, respectively. A total of 91 network attributes were collected
from the resulting interactome, consisting of node information:
eccentricity, closeness, degree, eigen centrality (four attributes)
(https://github.com/hanlinqian/IntegrativeNetworkMap/blob/INM/
Section1/code/NetInfo.r); and shortest distance to training positive
and negative genes (87 attributes) (https://github.com/hanlinqian/
IntegrativeNetworkMap/blob/INM/Section1/code/NetInfo.r). A total of
143 attributes were collated for subsequent predictions.

Five classical ML algorithms – bagging, XGBoost, LR, NeuralNet
and SVM – were used to train the prediction model, and only
NeuralNet algorithm was used to prioritize candidate TBN-related
genes. To improve the stability of model evaluation, the data were
randomly divided into two groups, with 80% as known data and the
remaining 20% asunknowndata; this analysis was repeated 20 times to
calculate the AUC values to evaluate each model. For each predicted
gene, a probability value was obtained. DEGs and sequencing variants
identified from RNA-seq data derived from RIL materials would func-
tion as proportional weight as follows:

Pw =
ðPn +Pd +PvÞ

3
ð1Þ

Pw is the weighted probability of a certain gene. Pn is the prob-
ability obtained from the NeuralNet algorithm, ranging from 0 to 1. Pd
and Pv are the weights of the DEG and variants, respectively. If a gene
was identified as a DEG, its Pd value equals 1, and otherwise is equal to
0. If a gene possessed sequencing variants as referred above among
both coding region and UTR region, its Pv value equals 1, while a gene
possessed sequencing variants among either coding region or UTR
region, its Pv value equals 0.5, and otherwise is equal to 0.

Total SD values in this dataset were stored in the GEO (Gene
Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/) under
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accession number GSE199932 asGSE199932_sd-slimio-highconf.txt.gz.
The distance value of each gene to 57 known TBN-related genes was
calculated, with the weight of one-layer distance of 1 and the second-
layer distance being 0.01, and the sum being the final value (SDg):

SDg =
X57

i = 1

SDg + 1, SDgi = 1

SDg +0:01, SDgi =2

(
ð2Þ

For each predicted gene, the corresponding SDg value was
obtained. DEGs and genic sequence variants identified from RNA-seq
data derived fromRILmaterials would function as proportional weight
as follows:

SDw =
ðSDg + SDd + SDvÞ

3
ð3Þ

SDw is the weighted SD value of a certain gene. SDg is as described
above. SDd and SDv are weights for the DEG and variants, respectively.
If a gene was identified as a DEG, its SDd value equals to largest SDg

among target QTL region, and otherwise equals 0. If a gene possessed
sequence variants as referred above among both coding region and
UTR region, its SDv value is equal to the largest SDg among target QTL
region, while a gene possessed sequencing variants among either
coding region or UTR region, its SDv value equals to half of the largest
SDg, and otherwise equals 0.

Candidate gene mining and validation of causal sites
Candidate genes were prioritized based on the prediction results of
the ML and SD algorithms. Candidate genes were selected by inte-
grating gene functional annotations and literature on paralogs from
Arabidopsis and rice. Genes with differential expression and sequence
variants as referred to above were amplified and sequenced by
Shanghai Sangon Biotech.

Knockout of ZmKinesin and ZmHD-ZIP120 by CRISPR/
cas9 systems
The CRISPR/Cas9 constructs for ZmKinesin and ZmHD-ZIP120 were
generated. The specific guide-RNAs designed for ZmKinesin and
ZmHD-ZIP120were incorporated into thepCPB-ZmUbi-hspCas9 vector,
respectively (Fig. 3 and Supplementary Data 13)74. All constructs were
introduced into the Agrobacterium strain EHA105 and transformed
into the immature embryo of the maize inbred line KN5585 through
Agrobacterium-mediated transformation. CRISPR/Cas9 knockout
experiments of ZmKinesin and ZmHD-ZIP120were conducted byWimi
Biotechnology Co., Ltd. (Changzhou, China).

The target regions of ZmKinesin and ZmHD-ZIP120were amplified
from KN5585 and corresponding transgenic lines and sequenced to
identify the mutations. For ZmKinesin, we obtained two independent
homozygous knockout lines named Zmkinesin-KO#1 and Zmkinesin-
KO#2. For ZmHD-ZIP120, we obtained one independent homozygous
knockout line Zmhd-zip120-KO#1 (Fig. 3 and Supplementary Data 13).
The relevant primers used are listed in Supplementary Table 2.

Nucleotide diversity, candidate gene association mapping and
allele frequency analysis
To investigate the selection signature of seven genes identified in this
study during maize domestication or improvement, the maize Hap-
Map v.3 was downloaded (http://pan.baidu.com/s/1eRNGtxw)46. The
variants among teosinte, landraces andmaizewere extracted and used
to calculate nucleotide diversity (Pi value) and allele frequencies. Pi
values were calculated with VCFtools (version 0.1.16) with “--max-
missing 0.1 --mac 0.05 --recode --recode-INFO-all” parameters after
removing SNPs with missing values greater than 10% or minor allele
frequency (MAF) < 5%.

To further investigate the selection signature of qTBN8-2 (lrs1)
during modern maize breeding, a candidate gene association
mapping and allele frequency analysis were conducted in a modern
breeding population consisting of diverse genetic inbred lines.
Candidate gene associationmappingwas conductedwith 350maize
inbred lines, which are widely used in modern maize breeding
programs in both China and United States11. Variants from upstream
of the start codon (~2000 bp) to downstream of the stop codon
(~2000 bp) in each candidate gene were extracted and analyzed.
SNPs with MAF > 5% were used in the analysis. The Blink model was
selected for the detection of SNPs significantly associated with TBN
using the GAPIT program75. Allele frequencies of qTBN8-2 (lrs1) were
calculated across 350 maize inbred lines widely used in both China
and United States.

GRN construction
The multi-omics GRNs were constructed based on transcriptome and
translatome datasets across maize development of the maize refer-
ence inbred line B7340 and deposited at http://zeasystemsbio.hzau.
edu.cn/dataset.html.

Network construction of TBN
Construction of the molecular network of TBN was performed based
on four different types of data: interaction edges, TF-centered GRNs,
DEGs from six EMS-mutagenized materials, and the regulatome iden-
tified by tsCUT&Tag of ZmHD-ZIP120. Interaction edges of 72 TBN
genes were obtained from the website http://minteractome.ncpgr.cn/
index.php. For TF-centered GRNs, all regulatory pairs of 72 TBN genes
inferred from both the transcriptional and translational levels were
extracted, and regulatory pairs whose weights were larger than 0.02
were selected for network construction. DEGs of six cloned TBN genes
between EMS-mutagenized materials and their wild-type sibling
counterparts were identified using the methods described above and
considered as interaction edges. Potential target genes of ZmHD-
ZIP120 were identified using tsCUT&Tag39. High-confidence target
genes of ZmHD-ZIP120 were identified from two independent biolo-
gical replicates. Target genes of ZmHD-ZIP120 were further identified
between the high-confidence target genes above and potential targets
identifiedby themulti-omicsGRN.Overlapping target geneswere used
as interaction edges during network construction. Modules in the
network were clustered using the Markov cluster algorithm (https://
micans.org/mcl/). Gephi (https://gephi.org/) was used for visualization
and feature extraction from the networks.

Selection signature analysis of TBN
Previously, 4804 genes were reported to be selected in at least two
heterotic groups during modern hybrid maize breeding45. To fur-
ther investigate their selection on TBN during modern maize
breeding, a comparative analysis was conducted between these
4804 genes and the genes in the TBN network. MHG-specific
selected genes, FHG-specific selected genes, and co-selected genes
in bothMHGs and FHGswere identified in the TBNnetwork. Further,
4278 TBN network genes were compared to 1017 selection genes
containing nonsynonymous SNPs and with an allele frequency
exhibiting co-directional or anti-directional changes between FHGs
and MHGs45. Genes changed co-directionally between FHGs and
MHGs, changed convergently only in MHGs, and genes changed
anti-directionally between FHGs and MHGs were identified. A GO
enrichment analysis was then conducted.

GO enrichment analysis
GO enrichment analysis was performed with agriGO (v.2.0) using the
Singular Enrichment Analysis (SEA) method. GO terms were con-
sidered significantly enriched if the Bonferroni false discovery rate was
below 0.05.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequence data discussed in this article can be found in the MaizeGDB
(https://www.maizegdb.org/) gene records under the following
accession numbers: qTBN3-1 (Zm00001d042795), qTBN4-1
(Zm00001d052219), qTBN4-2 (Zm00001d052598), qTBN7-1
(Zm00001d020804), qTBN8-2 (Zm00001d012295), qTBN8-3
(Zm00001d012452), qTBN10-2 (Zm00001d025939). Maize reference
genome (B73 RefGen_v4.36) was downloaded using command in linux
system [wget ftp://ftp.ensemblgenomes.org/pub/release-36/plants/
fasta/zea_mays/dna/Zea_mays.AGPv4.dna.toplevel.fa.gz]. The raw
sequencing data generated in this paper have been deposited in the
Genome Sequence Archive76 in National Genomics Data Center77,
China National Center for Bioinformation/Beijing Institute of Geno-
mics, Chinese Academy of Sciences under accession
CRA009203. Source data are provided with this paper.

Code availability
Machine learning codes forQTG-Miner are available atGitHub [https://
github.com/hanlinqian/IntegrativeNetworkMap/tree/INM/Section5].
Shortest distance codes forQTG-Miner are available at GitHub [https://
github.com/hanlinqian/TBNnetwork]. Codes are also available at
Zenodo (https://doi.org/10.5281/zenodo.8246635)78.
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