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Barcoded multiple displacement
amplification for high coverage
sequencing in spatial genomics

Jinhyun Kim 1, Sungsik Kim2, Huiran Yeom 3, Seo Woo Song 4,
Kyoungseob Shin1, Sangwook Bae5, Han Suk Ryu 6,7, Ji Young Kim8,
Ahyoun Choi2, Sumin Lee1,15, Taehoon Ryu 9, Yeongjae Choi10, Hamin Kim2,
Okju Kim9, Yushin Jung9, Namphil Kim1, Wonshik Han 6,8,11,
Han-Byoel Lee 6,8,11 , Amos C. Lee 12,15 & Sunghoon Kwon 1,2,8,12,13,14

Determining mutational landscapes in a spatial context is essential for
understanding genetically heterogeneous cell microniches. Current approa-
ches, such as Multiple Displacement Amplification (MDA), offer high genome
coverage but limited multiplexing, which hinders large-scale spatial genomic
studies. Here, we introduce barcodedMDA (bMDA), a technique that achieves
high-coverage genomic analysis of low-input DNA while enhancing the multi-
plexing capabilities. By incorporating cell barcodes during MDA, bMDA
streamlines library preparation in one pot, thereby overcoming a key bottle-
neck in spatial genomics. We apply bMDA to the integrative spatial analysis of
triple-negative breast cancer tissues by examining copy number alterations,
single nucleotide variations, structural variations, and kataegis signatures for
each spatial microniche. This enables the assessment of subclonal evolu-
tionary relationshipswithin a spatial context. Therefore, bMDAhas emerged as
a scalable technology with the potential to advance the field of spatial geno-
mics significantly.

Integrating genomic aberrations in each spatial microniche in the
tumor microenvironment provides thorough insights into tumor
development1. Despite its importance in understanding cancer, the
integrated analysis of genomic aberrations, such as copy number
alterations (CNA)2, single nucleotide variants (SNV)3,4, structural

variations (SV)5, and kataegis6, poses technical challenges within the
spatial context. Achieving a higher spatial resolution requires a scal-
able genome amplification technology that can simultaneously pro-
cess multiple spatial microniches7, whereas integrative genomics
requires high genome coverage of each spatial microniche.

Received: 16 March 2023

Accepted: 21 August 2023

Check for updates

1Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea. 2Interdisciplinary Program in Bioengi-
neering, Seoul National University, Seoul 08826, Republic of Korea. 3Division of Data Science, College of Information and Communication Technology, The
University of Suwon, Hwaseong 18323, Republic of Korea. 4Basic Science and Engineering Initiative, Children’s Heart Center, Stanford University, Stanford,
CA, USA. 5Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham andWomen’s Hospital, HarvardMedical School, Boston,
MA,USA. 6Cancer Research Institute, SeoulNational University, Seoul 03080, Republicof Korea. 7Department of Pathology, SeoulNational UniversityCollege
of Medicine, Seoul 03080, Republic of Korea. 8Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea. 9ATG
Lifetech Inc., Seoul 08507, Republic of Korea. 10School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju
61005, Republic of Korea. 11Department of Surgery, SeoulNational UniversityCollege ofMedicine, Seoul 03080, Republic of Korea. 12Bio-MAX Institute, Seoul
National University, Seoul 08826, Republic of Korea. 13Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of
Korea. 14Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Republic of Korea. 15Present address:Meteor Biotech, Co. Ltd.,
Seoul 08826, Republic of Korea. e-mail: hblee80@gmail.com; amoslee89@gmail.com; skwon@snu.ac.kr

Nature Communications |         (2023) 14:5261 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1835-7142
http://orcid.org/0000-0002-1835-7142
http://orcid.org/0000-0002-1835-7142
http://orcid.org/0000-0002-1835-7142
http://orcid.org/0000-0002-1835-7142
http://orcid.org/0000-0001-8836-2249
http://orcid.org/0000-0001-8836-2249
http://orcid.org/0000-0001-8836-2249
http://orcid.org/0000-0001-8836-2249
http://orcid.org/0000-0001-8836-2249
http://orcid.org/0000-0001-8537-6557
http://orcid.org/0000-0001-8537-6557
http://orcid.org/0000-0001-8537-6557
http://orcid.org/0000-0001-8537-6557
http://orcid.org/0000-0001-8537-6557
http://orcid.org/0000-0002-1359-7382
http://orcid.org/0000-0002-1359-7382
http://orcid.org/0000-0002-1359-7382
http://orcid.org/0000-0002-1359-7382
http://orcid.org/0000-0002-1359-7382
http://orcid.org/0000-0003-4634-5189
http://orcid.org/0000-0003-4634-5189
http://orcid.org/0000-0003-4634-5189
http://orcid.org/0000-0003-4634-5189
http://orcid.org/0000-0003-4634-5189
http://orcid.org/0000-0001-7310-0764
http://orcid.org/0000-0001-7310-0764
http://orcid.org/0000-0001-7310-0764
http://orcid.org/0000-0001-7310-0764
http://orcid.org/0000-0001-7310-0764
http://orcid.org/0000-0003-0152-575X
http://orcid.org/0000-0003-0152-575X
http://orcid.org/0000-0003-0152-575X
http://orcid.org/0000-0003-0152-575X
http://orcid.org/0000-0003-0152-575X
http://orcid.org/0000-0002-0350-7080
http://orcid.org/0000-0002-0350-7080
http://orcid.org/0000-0002-0350-7080
http://orcid.org/0000-0002-0350-7080
http://orcid.org/0000-0002-0350-7080
http://orcid.org/0000-0003-3514-1738
http://orcid.org/0000-0003-3514-1738
http://orcid.org/0000-0003-3514-1738
http://orcid.org/0000-0003-3514-1738
http://orcid.org/0000-0003-3514-1738
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41019-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41019-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41019-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41019-w&domain=pdf
mailto:hblee80@gmail.com
mailto:amoslee89@gmail.com
mailto:skwon@snu.ac.kr


There is high demand for scalable genome amplification tech-
nology that can process numerous spatial microniches with sig-
nificantly reduced costs to achieve integrative genome analysis across
the entire tumor space. For example, the majority of spatial omics
technologies that profile tumor architectures, according to
genomics1,8–10, transcriptomics11–14, epigenomics15,16, and multi-omics12,
utilize in situ barcoding as a core strategy to become scalable. By
barcoding biomolecules with region-specific DNA sequences, the
barcoded products can be pooled to perform subsequent library
preparation in one pot, thereby enabling spatial tumor assays with
reduced cost and labor. However, these technologies are either not
applicable to genome analysis or have low genome coverage, which
allows the analysis of only CNA out of several other complex genomic
aberrations17–19. This has resulted in the need for a scalable, high-
coverage genome amplification technology for integrative spatial
genomics; however, this remains technically challenging.

Multiple displacement amplification (MDA) is widely preferred for
amplifyingwhole genomeswith high genome coverage7,20–25, which is a
prerequisite for the integrative analysis of genomic aberrations. Unlike
other polymerase chain reaction (PCR)-based genome amplification
technologies that can amplify only specific genomic regions with fixed
DNA sequences, MDA uses random hexamers as primers to broadly
initiate amplification across the whole genome. Another breakthrough
enabled by MDA was the use of a primer concentration ~100 times
higher than that used in conventional PCR to enable phi29 DNA
polymerase-mediated uniform and exponential amplification of dis-
placed DNA strands. These characteristics of MDA, which facilitate the
amplification of an arbitrary genome with high coverage, have con-
tributed substantially to several scientific discoveries, such as the
detection of SNV and kataegis from single cells26,27. Investigating the
SNV for each spatial microniche became feasible with MDA26,28 and
resulted in answers to long-held questions on the evolution of a tumor
over time21,29,30, metastasis of cancer31, and progression of pre-
malignant cancers to invasive malignancies4. However, analyzing the
landscape of genomic aberrations in a large set of spatial microniches
using MDA requires a large budget for the preparation of next-
generation sequencing libraries from MDA products. Although the
cost ofNGS is decreasing rapidly,MDAand librarypreparation canbe a
significant portion of the overall cost of whole-genome sequencing.
Therefore, applying a barcoding strategy in spatial genomics can
increase the scalability of MDA. However, in contrast to other scalable
single-cell omics technologies that usuallyutilize PCR-basedbarcoding
strategies with barcoded primers, where barcode addition negligibly
affects the amplification reaction, modification of the MDA primers
significantly inhibited the MDA reaction because of the atypically high
primer concentration (Supplementary Fig. 1). Therefore, realizing
barcode-based scalable MDA is technically challenging, and the high
cost and low-throughput nature of the MDA workflow considerably
hamper the analysis of a large number of spatial microniches17–19, even
though MDA has innovative potential in the life sciences. This
inhibition-free barcoded MDA method will significantly advance our
understanding of heterogeneous cellular systems by allowing large-
scale analysis of spatial microniches in a cost-effective and high-
throughput manner.

Here, we demonstrate barcoded MDA (bMDA) to realize scalable
and high-coverage genome analysis, which would enable an in-depth
analysis of the spatial genomic landscape (Fig. 1). In bMDA, cell bar-
codes are incorporated into the MDA products by replacing the con-
ventional MDA primer with a barcoded primer, enabling sample
pooling before the subsequent library preparation step. The main
technical hurdle of the MDA reaction inhibition arising from primer
modification is explored to identify the key factors for realizing bMDA
(Supplementary Fig. 2). By reshaping the conventional workflow of
MDA-prep-and-pool (Fig. 1b) into MDA-pool-and-prep (Fig. 1c), our
approach allows one-pot library preparation, which reduces the

complicated and labor-intensive library preparation steps to 1/N,
where N is the number of samples to be simultaneously analyzed. We
demonstrate a 48-multiplexed sequencing library preparation per
reaction tube and prepared 720 bMDA libraries using only 15 reaction
tubes. Even with increased multiplexity, the technical performance,
such as amplification uniformity, coverage breadth, and false-positive
mutation detection rate, remain similar to that of conventional MDA.
Importantly, the single-cell bMDA data show sufficient genetic cover-
age to perform single-nucleotide resolution genome analyses, such as
the detection of SNV, SVs, and kataegis. To apply bMDA to integrative
spatial genomics, we used the spatially resolved laser-activated cell
sorting (SLACS) device32 and demonstrate its applicability in triple-
negative breast cancer (TNBC) to simultaneously analyze CNA, SNV,
SV, and kataegis in multiplexes. This has enabled a comprehensive
understanding of the spatial genomic landscape of tumors. TNBC tis-
sues were analyzed at a depth of ~5000× with a spatial resolution.
Using bMDA to analyze these tissues reduced the cost of library pre-
paration for integrative spatial genomics by 1/N, thereby demonstrat-
ing the scalability andpotential of bMDA in spatial genomics (Fig. 1e, f).

Results
Dealing with MDA inhibition mediated by barcoded primers
We added barcode sequences at the 5′ end of a conventional MDA
primer (random hexamer; N6) (Fig. 1c) to examine whether this would
significantly alter the MDA reaction. We further introduced universal
PCR handle sequences to selectively enrich the barcoded DNA frag-
ments after MDA. Thus, our trial barcoded primers consisted of a
cascade of Illumina Read 1 (15-mer), cell barcodes (8-mer), and random
hexamer sequences (6-mer), named R15B8N6 (29-mer in total) (Sup-
plementary Fig. 1a, b). A bMDA experimentwith the designed R15B8N6
primer confirmed thatprimermodification resulted in the inhibition of
the MDA reaction (Supplementary Fig. 1c); to the best of our knowl-
edge, an appropriate model to explain this phenomenon has not yet
been developed. After testing various hypotheses (Supplementary
Note 1),we found that the increased length of the barcodedprimer and
the unusually high concentration of the primer in the MDA reaction
(100× that in PCR) were the primary factors that inhibited the bMDA
reaction (Supplementary Fig. 1d, e). The effects of these two factors
were further quantitatively evaluated, revealing global trends of
decreased MDA amplification efficiency with increasing length or
concentration of the barcoded primer (Supplementary Fig. 2a, b). The
reduced amplification efficiency was partially mitigated by increasing
the enzyme quantity to a certain extent (up to 2×) (Supplementary
Fig. 2c). Based on these results, we formulated hypothetical models to
understand the mechanism underlying MDA inhibition caused by the
abovementioned prime factors and not by random hexamers (Sup-
plementary Note 2 and Supplementary Fig. 2d, e). The models indi-
cated that inhibition originated from the intrinsic properties of the
polymerase and primers; therefore, we reduced the concentration and
length of the barcoded primer.

However, this significantly affected the functionality of bMDA.
Thus, we need to engineer the level of reduction to consider the tra-
deoffs and simultaneously achieve a bMDA amplification efficiency
that is relatively similar to that of conventional MDA. First, a reduction
in primer length can diminish the functionality of the primer, including
(1) a cell barcode and (2) a motif for subsequent barcoded product
enrichment. To substitute the role of Illumina Read 1 (R15) in sub-
sequent PCR-based enrichment of the barcoded product, we intro-
duced a 5′ biotin modification as a capturing motif to substantially
reduce the primer length. The length of the cell barcode was also
reduced from8-mer to 6-mer to achieve a bMDAamplification slope of
82% compared to that of MDA (Supplementary Fig. 2b). The final
barcoded primer was composed of a 5′ biotin modification, cell bar-
codes (6-mer), and randomhexamers (Supplementary Fig. 2f), andwas
named bB6N6.
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Secondly, a reduced concentration of barcoded primers could
decrease the number of barcoded DNA products post-bMDA. If the
concentration is reduced significantly, the resulting bMDA librarymay
fail to cover the entire human genome, thereby precluding high-
coverage genome analysis. Considering this trade-off, we decided to
use 2% of the barcoded primers out of the total N6-containing primers

(1μM bB6N6 and 49μM N6) (Supplementary Fig. 2g). Typical MDA
amplifies the single-cell genome ~4,000,000-fold; therefore, bMDA
was estimated to cover the entire human genome at a depth of ~700×,
even though the concentration of the barcoded primer was only 2%
(Supplementary Note 3 and Supplementary Fig. 3a–d). Additionally,
the amplification efficiency of bMDA was comparable to that of
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conventional MDA when the proportion of bB6N6 primers was less
than 2% (Supplementary Fig. 2b). We maintained the total amount of
N6-containing primers (i.e., the sum of the barcoded primer and ran-
dom hexamer) while reducing the concentration of the barcoded
primer because a reduction in the N6 concentration resulted in an
increased amplification bias owing to the reduced number of strand
displacement events20,33 (Supplementary Fig. 1d).

The overall workflow, including bMDA and its downstream pro-
cesses, using the newlydesigned bB6N6 barcodedprimers, is shown in
Fig. 1d. We used the term bMDA-seq workflow to distinguish it from
bMDA, which solely represents the MDA reaction using a barcoded
primer. bMDA-seq was performed following the conventional ligation-
based library preparationmethod, with slight modifications to include
the pooling and enrichment of biotinylated (or barcoded) DNA frag-
ments. Notably, the cell barcode is designed to be found only at the
beginning of NGS Read 2 (Supplementary Fig. 3e) because 5′ biotin
modification blocks the ligation of biotinylated barcoded DNA strand
with the Illumina adapter’s Read 1 strand; thus, calling of the barcode
sequences becomes convenient post sequencing. Moreover, a biotin
enrichmentmethodwas developed tominimize double-stranded DNA
denaturation during the elution of biotinylated DNA fragments (Sup-
plementary Table 1 and Supplementary Note 4).

Correction of barcode bias and the multiplexing capability of
bMDA-seq
To demonstrate the feasibility of bMDA-seq, 48 different barcode
sequences of 6 nt length were designed to satisfy the minimum base
substitutions between any barcode pair of three nucleotides (Supple-
mentary Table 2, “Methods”). Next, using the designed barcode, we
tested whether the presence of a specific barcode sequence at the 5′
end of the primer could cause any systematic bias in the bMDA-seq
workflow. We predicted that differences in barcode sequences would
cause variations in the number of barcoded DNA fragments after
bMDAor library preparation (Fig. 2a and SupplementaryNote 5). Using
48 biotinylated barcoded primers, bMDA products were processed
after equivolume pooling. We observed that the number of NGS reads
belonging to a specific barcode varied among the different barcodes,
with a coefficient of variation (CV) of 29.9% (Fig. 2b and Supplemen-
tary Fig. 4a).

To resolve this issue, which we termed barcode bias, we
hypothesized that the variation is barcode-specific, and the number
of barcoded DNA fragments generated is proportional to the con-
centration of the barcoded primer. The linearity hypothesis was
experimentally validated (Supplementary Fig. 4b), and the con-
centration of the barcoded primer was fine-tuned by changing the
ratio between bB6N6 and N6, without modifying the total con-
centration of the N6-containing primers (Fig. 2a). After three cycles
of barcoded primer concentration balancing, a CV of 7.68% was
achieved (Fig. 2b, Supplementary Fig. 4a and Supplementary
Table 2), which was comparable to the variation observed using the
conventional concentration-based Illumina library pooling strategy
(CV = 8.53%; n = 107 samples). Barcode bias depended largely on the

barcode sequences; therefore, the normalization was reproducible
between experimental replicates and was unaffected by alterations
in the concentration of the template used for the bMDA reaction
(Supplementary Fig. 4c). Thus, we conclude that barcode bias could
be successfully corrected by fine-tuning the barcoded primer
concentration.

Next, the barcoding status of the bMDA-seq librarywas examined.
Six primers were arbitrarily selected from the 48 bMDA primers, and
bMDA-seq was performed for each barcode without pooling. Single-
plex bMDA-seq was performed to exclude confounding effects that
might arise from interactions between differently barcoded bMDA
products. Most NGS reads (82.5%) contained the expected barcode
sequence at the beginning of NGS read 2 (Fig. 2c and Supplementary
Fig. 4d, e). A detailed examination of the remaining non-barcoded
reads is provided in Supplementary Note 6.

To guarantee the absence of meaningful barcode swapping in the
bMDA-seq process, we amplified the human genome using 47 bar-
codes and the mouse genome using the remaining barcodes. After
pooling and library preparation, the barcode-swapping ratio was
determined by analyzing whether the barcoded NGS reads were
mapped to the human or mouse genome. We found that the prob-
ability of finding human genome sequences for barcodes used for
mouse genome amplification (0.33 ± 0.13% s.e.m.; n = 6) was less than
or equal to the previously reported ratio of Illumina index hopping
(0.58%)34, which is an incorrect assignment of an NGS library index to a
different index (Fig. 2d). The probability of finding mouse genome
sequences for barcodes used for human genome amplification
(8.9 × 10−3 ± 7.0 × 10−4% s.e.m.; n = 6) was much lower than that in the
opposite scenario. This canbe explainedby the fact that the number of
barcodes amplifying the human genome was 47 times that of the
mouse genome. We also confirmed that the CNA of the bMDA-
amplified products matched those of the bulk (Supplementary Fig. 4f,
g). From these results, we conclude that bMDA is an adequate multi-
plexing technology based on three criteria: (1) it shows a uniform read
count across barcodes, (2) most reads contain the expected barcode
sequences, and (3) the barcode swapping ratio is low.

Performance of bMDA was comparable to conventional MDA
To demonstrate the applicability of bMDA for single-nucleotide reso-
lution single-cell genome analysis, we isolated single HL-60 cells using
a phenotype-based high-throughput laser-aided isolation and
sequencing (PHLI-seq) platform4 (Fig. 3a). PHLI-seq is an infrared (IR)
laser-based high-throughput cell isolation technique that does not
cause DNA damage and is useful for spatially resolved omics analysis.
bMDA for each isolated single-cell and for comparison—in-houseMDA,
with a protocol similar to that of bMDA, except for the primer (MDA)
and MDA using a commercial kit (MDA kit)—were performed
concurrently.

bMDA showed high genome coverage breadth (86.7 ± 0.97%
s.e.m.; n = 3), and the result was comparable to that of in-house MDA
(84.7 ± 3.3% s.e.m.; n = 3) and MDA kit (81.1%; n = 1) (Fig. 3b and Sup-
plementary Fig. 5a). This result is better than the low coverage breadth

Fig. 1 | BarcodedMDA (bMDA) enablesmultiplexed preparation of a single-cell
genome sequencing library, realizing cost-effective and higher-throughput
single-nucleotide resolution single-cell genome analysis. a bMDA-seq can
expand our understanding of heterogeneous cell populations by allowing a large
number of single cells to be analyzed in multiplex and at single-nucleotide reso-
lution. Post bMDA-seq, each single-cell data showed a genome coverage depth that
was sufficient to perform integrative spatial genomics. b Conventional multiple
displacement amplification (MDA) involves preparing a sequencing library indivi-
dually for each single-cell because a cell barcode is incorporated at the end of the
library preparation step (marked as *). c Schematic of bMDA and its workflow
bMDA-seq. Since bMDA uses a barcoded primer instead of the conventional ran-
dom hexamer. The cell barcode used for sample demultiplexing is incorporated

during the bMDA reaction (marked as *). After pooling the barcoded MDA pro-
ducts, a sequencing library can be prepared in a single reaction tube (one-pot),
thereby reducing the number of library preparation reactions according to the
barcoding capacities. d Schematic illustration of bMDA-seq workflow. After per-
forming MDA using the barcoded primer, bMDA products were pooled in a single
reaction tube. Pooled bMDA products were first fragmented to obtain a desired
library insert size. Then, only barcoded DNA fragments were enriched using
streptavidin–biotin interactions. Finally, ligation-based library preparation was
performed in one-pot to obtain the final NGS sequencing library. e, f Detailed
procedures of conventional MDA and bMDA show that the multiplexing capability
of bMDA remarkably reduces reagent costs and labor required for integrative
spatial genomics.

Article https://doi.org/10.1038/s41467-023-41019-w

Nature Communications |         (2023) 14:5261 4



of tagmentation-based sparse single-cell genome analysis methods
(Tn5-based)35–37 (21.6 ± 3.7% s.e.m.; n = 2) (Fig. 3b). Although Tn5-based
technologies markedly increased the throughput and data quality of
single-cell genome analysis by omitting pre-amplification, the trade-off
of losing the ability to analyze the single-cell genome at a single-
nucleotide resolution was successfully accomplished (Supplementary
Fig. 6). We focused on increasing the multiplexity of single-cell gen-
ome analysis methods while retaining the capability of single-

nucleotide resolution genome analysis (Fig. 3c and Supplemen-
tary Fig. 5b).

Next, the coverage uniformity of bMDA was evaluated using a
Lorenz curve (Fig. 3d) to assess theuniformity ofgenomeamplification
by bMDA. The area under the Lorenz curve (AUC)was used to evaluate
coverage uniformity, and we observed no significant difference
between bMDA and conventional MDA in the 66 pg (p =0.1, Wilcoxon
rank-sum test) and single-cell groups (p = 0.14, Student’s t test)
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(Fig. 3e). bMDA showed a slight tendency to decrease the AUC, which
could be attributed to the effect of the barcoded primer on the MDA
reaction. However, this decrease was smaller than the intragroup
variation (cell-to-cell variation) in the bMDA, MDA, and MDA-kit
groups (one-way ANOVA, p =0.15).

To evaluate the accuracy of the CNA calls, the detected CNA was
displayed by decreasing the AUC order. No notable differences were
observed between bMDA and conventional MDA (Fig. 3f). CNAs were
successfully called for all samples amplified from 66 pg (10-cell
equivalent) of gDNA. However, only a few high AUCs showing single-
cell data exhibited reliableCNAcalls (Supplementary Fig. 5c), andmost
single-cell MDA products exhibited high false-positive CNA detections
compared to bulk CNA profiles. Single-cell bMDA, MDA, and MDA kit
groups showed high false-positive CNA calls; thus, the false detections
were mainly due to a fundamental limitation of MDA-based
chemistry38,39, rather than the modified primer in bMDA.

Finally, the allelic dropout (ADO) rate and false-positive mutation
detection rates (FPR) were assessed to determine whether bMDA can
accurately detect SNV. ADO rate of bMDA (13.2 ± 1.6% s.e.m.; n = 3) was
similar to that of in-houseMDA (19.0 ± 5.1% s.e.m.; n = 3) and the values
of previous studies (7–43%) (Fig. 3g)4,30. The FPR of bMDA (1.1 × 10−5)
was also comparable to that of in-house MDA (0.99 × 10−5) and pre-
viously reported methods (2 × 10−5–3 × 10−5)4,30. Furthermore, the var-
iant allele frequency (VAF) of the detected heterozygous single-
nucleotide polymorphisms (SNPs) confirmed that the performance of
bMDA and in-house MDA was highly similar in terms of evenly ampli-
fying the two different alleles in a single-cell (Supplementary Fig. 5d).

Application of bMDA in TNBC revealed a single-nucleotide
resolution mutational landscape
We applied bMDA-seq to TNBC tissues to demonstrate its potential in
resolving tumor heterogeneity at a single-nucleotide resolution. TNBC
tissue sectionswereacquired from twopatientswithTNBC (T1 andT2).
Using PHLI-seq4, we isolated 20 and 28 cell clusters from T1 and T2
patients, respectively. Each cell cluster consisted of ~20 cells, and with
guidance from H&E-stained tissue images and pathologist expertise,
we achieved an average tumor purity of 98.8% (Supplementary Figs. 7
and 8a, b). The 48 isolated cell clusters were processed simultaneously
using a 48-plex bMDA-seq workflow.

By isolating spatially adjacent cell clusters instead of individual
single cells, we mitigated the inherent amplification bias and errors
associated with MDA40 (Fig. 4a–d, Supplementary Fig. 8c–e and Sup-
plementary Table 3). This approach yielded a significantly improved
sensitivity of 91.0 ± 0.64% (s.e.m.; n = 27) for SNV detection, surpassing
the sensitivities of 77.8 ± 3.5% (s.e.m.; n = 10) of single-cell MDA and
8.6 ± 2.0% (s.e.m.; n = 6) of single-cell Tn5 amplification (Fig. 4b).
Moreover, we achieved a high sensitivity of 95.5 ± 2.5% (s.e.m.; n = 10)
and a specificity of 98.8 ± 0.8% (s.e.m.; n = 10) for CNA detection
(Fig. 4c and Supplementary Fig. 8e). The quality control (QC) pass
ratio, which measures amplification uniformity and CNA detection
accuracy, reached 92.6%, in contrast to the pass rate of less than 10%

observed in single-cell analyses (Supplementary Fig. 8f, g). Conse-
quently, our approach enabled concurrent detection of CNAs, SNVs,
and SVs in each cell cluster with a high degree of confidence.

For orthogonal validation, we first compared the bMDA-seq CNA
data with data generated by MDA in patients with the same cancer.
Hierarchical clustering of the bMDA-seq and MDA data showed that
the data from each method were intermixed, suggesting high agree-
ment between the two methods (Supplementary Fig. 9a).

Next, we integratively analyzed the genomic landscape of the T1
tumors in terms of CNA, SNV SV, and kataegis (Fig. 4e–i). Interestingly,
the hierarchical clustering results ofmicroniches differed according to
the CNA, SNV, SV, and kataegis data. While the SNVs revealed the
presence of three major subclones, additional analysis of CNA, SV and
kataegis further delineated each subclone (Fig. 4f–i). This result indi-
cates that different types of genomic variations can contribute to the
identification of finer subclonal landscape. Specifically, the dis-
crepancy between CNAs and SNVs in inferring evolutionary relation-
ships underscores the importance of utilizing an accurate method
such as bMDA to study spatial genomics. Thus, to determine the
evolutionary relationships between microniches in spatial genomics,
an integrative approach must be incorporated to gain a comprehen-
sive understanding of spatial genomic landscapes.

The same integrative spatial genomic analysis of T2 tumors pro-
vided another extensive view of the evolutionary landscape of the
tumor (Fig. 5a). CNA (Fig. 5b), SNV (Fig. 5c, d), and SV analyses (Fig. 5e)
revealed four major subclones within the same tumor, and the spatial
location of the microniches showed location-specific development of
these distinct subclones (Supplementary Fig. 9b). Spatial auto-
correlation analysis using first two principal components of the SNV
mutational profile yielded Moran’s I statistics of 0.484 and 0.478,
indicating a significant clonal expansion of tumor cells in adjacent
spatial regions.We also analyzed the spatial relationship between CNA
and SNV allele frequencies (Supplementary Fig. 9c). In some genes,
including NF1, a lower copy number correlated with higher SNV allele
frequencies. However, genes, such as LRP1B showed an increase in SNV
allele frequency with increasing copy number. The latter seems to be
more common because an increase in gene copy number seems to
correlate with an increase in SNV allele frequencies, simply because
there are more mutated copy numbers. However, the phenomena in
the case ofNF1provide insight that theremaybe other caseswhere the
SNV may affect the low copy number, or vice versa.

Interestingly, there was a consistent kataegis on chromosome 12
ERC1 gene in the upper microniches of the tumor (Fig. 6a and Sup-
plementary Fig. 10).When analyzing the SVof the regionswith kataegis
within these populations, we observed gene translocations between
ERC1 and TCOF1 (Fig. 6b, c). In addition, copy number amplification
was observed in the same region (Fig. 6d). However, populations
lacking kataegis on chromosome 12 did not show copy number
amplification or gene translocation (Fig. 6e). We observed other
notable SV on chromosomes 12 (Fig. 6f) and 5 (Fig. 6g) in terms of
duplications, deletions, inversions, and translocations. Figure 6h, i

Fig. 2 | bMDA-seqwas optimized and validatedwith cell line gDNA. a Schematic
illustration of the equivolume pooling approach, barcode bias, and its correction.
bNGS read count before and after barcode bias correction shows that the barcode
bias can be successfully corrected by fine-tuning the proportion of barcoded pri-
mers. The NGS read count of a specific barcode was normalized to ~1 to obtain the
normalized NGS read counts (y-axis). Points and lines represent the mean± s.e.m.
(n = 3 independent experiments). c Barcoding status of the bMDA-seq library was
analyzed using NGS, showing that themajority ofNGS reads (82.5%)were barcoded
as predicted. Other unpredicted NGS reads were classified by their barcode
sequences, and are shown as a bar chart. To eliminate the putative confounding
effect that may arise after the pooling of differently barcoded bMDA products, a
singlebMDAproductwas used for the analysis. The ratios fromeachbMDAproduct
(n = 8) were averaged to obtain a representative single plot. d The barcode

swapping ratio of bMDA-seqwas sufficiently lower than the otherwell-known index
swapping ratios, such as index hopping in multiplexed Illumina sequencing. To
assess the barcode swapping ratio, 47 out of 48 barcodes were used for amplifying
the human genome (HL-60), and the remaining barcode was used for amplifying
the mouse genome (NIH3T3). Notably, of the 48C2 possible barcode swapping
cases, theprobability of swapping fromhuman tomouse is 47 times higher than the
opposite due to its higher number of possible swapping cases. Number 1 vs.
number 47 was chosen to simulate the worst-case scenario. Box plot show the
median (center line),first and third quartiles (box edges), while thewhiskers extend
from the box edge to the largest or smallest value no further than 1.5 times the
interquartile range (IQR) from the box edge (n = 6 independent experiments).
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-41019-w

Nature Communications |         (2023) 14:5261 6



summarizes the visual comparison of chromosomal aberrations
between the two groups of spatial microniches.

Furthermore, by integrating all chromosomal aberrations (Sup-
plementary Data 1), we constructed a spatial map depicting the

inferred evolutionary relationships between thesemicroniches (Fig. 7).
While subclone c1 seems to serve as the ancestral lineage and
sequentially gives rise to subclones c2, c3, c4, and, ultimately, c5, it is
important to emphasize that the tumor section represents a snapshot
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Fig. 5 | Integrative spatial genomics in T2 breast cancer. The color and order of
each spatial microniche remain consistent throughout the figure. a Spatial land-
scape of different subclones of a triple-negative breast cancer tissue section. Sub-
clone information was inferred through phylogenetic analysis of SNVs (scale
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within the same tumor. Source data are provided as a Source Data file.
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of the tumor’s evolution. These subclones are believed to have
undergone diversification over time (Fig. 7), leading to their observed
spatial distribution. Rather than positing a specific evolutionary
direction, this analysis provides valuable insights into the spatial
relationships and potential evolutionary dynamics of tumor subclones
within tissues.

In addition, in the two analyzed tumors, we revealed significant
genetic nuances that were overlooked by bulk sequencing. First,
although not classified as actionable, variations in the ESR1 gene often
guide the use of elacestrants. Notably, we identified some subclones in
the T2 tumor exhibiting an ESR1 p.R548Hmutation that weremissed in
bulk sequencing (Supplementary Data 1). Intriguingly, we uncovered
heterogeneousCCNE1 amplification patterns associatedwith therapies
such as RP-6306 and BLU-222. In T1 tumors, bMDA-seq revealed sub-
clones with CCNE1 amplification that were absent from the bulk
sequencing data (Fig. 4f). In T2, both CCNE1 amplification and deletion
were observed in the subclones, despite the bulk data showing
amplification (Fig. 5b). This finding illustrates the importance of
acknowledging intra-tumoral heterogeneity when considering ther-
apeutic strategies. As precision oncology advances with more
mutation-matched treatments, technologies, such as bMDA-seq, will
be instrumental in guiding personalized treatment strategies by
revealing the intricate subclonal architecture of tumors. Detailed
interpretations of the detected mutations are summarized in Supple-
mentary Note 7.

Discussion
In this study, we developed a technology that effectively increased the
multiplexity of integrative spatial genome analysis. Multiplexing
chemistry was realized by incorporating barcodes during the bMDA
reaction, and the major obstacle to MDA reaction inhibition was
resolved by reducing the length and concentration of the barcoded
primers. Consequently, the cost of librarypreparation,which is amajor
bottleneck in large-scale single-cell genomics, was reduced to an
almost negligible level. Despite these improvements, the technical
performance of integrative spatial genome analysis remains similar to
that of conventional MDA. Because the protocol does not require
specialized equipment, the approach is simple to adopt by general
laboratories and robust enough to be widely used while allowing for

the analysis of hundreds to thousands of single cells. The potential of
this spatial genomic analysis using bMDA is that researchers can not
only infer evolutionary relationships between different intra-tumoral
subclones but also search for characteristic features with different
types of genomic aberrations occurring simultaneously. The demon-
stration at T2 showed that potential chimeric protein sequences could
be identified when the chromosomal structure and single-nucleotide
sequences were considered simultaneously. bMDA is a scalable,
robust, and highly sensitive method for revealing such aberrations
simultaneously and will provide a useful tool to dissect the spatial
genomic landscape of different biological systems.

Tn5-based technologies35–37 have been recently introduced to
increase the multiplexity of single-cell genome sequencing. Tn5-based
methods allow only sparse interrogation of the single-cell genome,
whereas bMDA allows single-nucleotide resolution single-cell genome
analysis. In addition, when comparing bMDA with other promising
single-cell technologies such as TapestriTM (Mission Bio)17 and linear
amplification via transposon insertion (LIANTI)41, it should be noted
that each approach has its own strengths and limitations.While LIANTI
faces challenges in achieving multiplexing chemistry, Tapestri is not
ideally suited for exome-wide interrogation of the single-cell genome
due to its typical limitation of amaximum target genome region size of
100 kb. Therefore, bMDA has the advantage of simultaneously ana-
lyzing a large number of single-cell genomes at single- and exome-wide
resolutions.More recently, amethod called primary template-directed
amplification (PTA)42 was introduced as an integrated approach that
combines amplicon displacement and quasi-linear amplification for
whole-genome amplification. PTA has some advantages over MDA,
including uniform amplification and high variant calling precision.
However, further investigation is required to determine the feasibility
of multiplexing their reaction chemistry to simultaneously analyze a
large number of tumor microniches. It should also be noted that the
use of PTA with cells in tissue sections has not yet been demonstrated
and its suitability for spatial genomic applications and barcoding
strategies remains to be investigated.

We believe that cancer cells possessing different SNV, SVs, or
kataegis, but similar CNA, are important for further decomposing the
genomic landscape of tumors. Identifying driver or passenger muta-
tions that distinguish different subclones within the same tumor can
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NF1, CACNA1D, LRP1B, PIK3R1,
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Fig. 7 | bMDA facilitates integrative spatial genomics, suggesting amore plausible tumor evolutionary history of T2 triple-negative breast cancer. Source data are
provided as a Source Data file.
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provide significant insights into how tumor cells evolve to form TNBC
and guide diagnostic or therapeutic strategies related to these muta-
tions. This analysis can be expanded to simultaneously analyze the
spatial subclonal landscape of both primary and metastatic tumors as
well as circulating tumor cells43. Additionally, cost-effective subclonal
profiling facilitated by bMDA enables the construction of personalized
circulating tumor DNA panels that target each subclone. Furthermore,
SV and kataegis analyses hold promise for revealing the potential
benefits of DNA damage repair pathway-targeted therapeutics.
Therefore, bMDA-seq-enabled integrative genomic profiling can pro-
vide a cost-effective approach for cancer treatment.

The applications of this study can be expanded beyond cancer
research. The sequencing of unculturable microbiomes44, investigat-
ing somatic mutations in humans25,45, and preimplantation genetic
diagnosis46 are only a few examples. Furthermore, by integrating
bMDA with single-cell multi-omics technologies, multiplexed profiling
of single-nucleotide-resolution single-cell genomes with tran-
scriptomic or epigenomic features can be achieved.

Methods
Ethical statement
Our research complies with all relevant ethical regulations. Fresh fro-
zen TNBC tissue sections were obtained from the archives of the
biorepository of the Lab of Breast Cancer Biology at the Cancer
Research Institute, Seoul National University, Seoul, South Korea. The
preparation of tissue was approved by the Institutional Review Board
(IRB) at Seoul National University Hospital (No. 1910-130-1072). The
patients provided written consent, without compensation, for the
archiving and use of tissue and blood samples for research purposes.

Cell culture and preparation
HumanHL-60 cells (CCL-240TM)wereobtained fromATCC; andhuman
SK-BR-3 cells (cat. no. 30030) and mouse NIH3T3 cells (cat. no. 21658)
were obtained from the Korean Cell Line Bank (KCLB) and cultured
according to the manufacturer’s instructions. HL-60 and SK-BR-3 were
cultured in IMDM (Thermo Fisher) with 1% penicillin-streptomycin
(Corning) and 10% fetal bovine serum (HyClone) at 37 °C under 95%
atmospheric air and 5% CO2. NIH3T3 cells were cultured in Dulbecco’s
modified eagle medium (DMEM) (Thermo Fisher) supplemented with
1% penicillin-streptomycin and 10% bovine calf serum (HyClone) at
37 °C under 95% atmospheric air and 5% CO2. Adherent cells, such as
SK-BR-3 and NIH3T3 cells, were grown to a confluence of 50–80% and
subsequently treated with TrypLE (Invitrogen) for five min in order to
detach the adherent cells. Next, TrypLE was quenched with an equal
volume of the growth medium, and spun down at 415 g for 3min after
transferring into another conical tube. Suspension cells, such as HL-60
cells, were grown to a concentration of 1 × 106 cells/ml and spun down
at 415 g for 3min. Then, the supernatant of both cell types was
removed, and the cells were resuspended in 1ml of 1× PBS. Spin-down
and supernatant removal were performed again to remove any resi-
dual culture medium. Cell pellets were resuspended in 10μl of 1× PBS
and spread on indium tin oxide (ITO)-coated glass (Fine Chemicals
Industry, Republic of Korea), followed by air drying and 30 s of
methanol fixation for single-cell isolation using PHLI-seq. A DNeasy
Blood & Tissue Kit (69504, QIAGEN) was used to extract gDNA from
the cultured cell line.

Tissue preparation
Fresh frozen TNBC tissue sections were cryosectioned and thawed on
ITO-coated glass slides. For hematoxylin and eosin (H&E) staining, the
tissue sections underwent the following procedures: (1) air drying at
room temperature for 15min, (2) rinsing the slide in tap water for
5min, (3) staining with Harris’ hematoxylin solution (Merck) for 3min,
(4) rinsing in tapwater via quick dipping, (5) rinsing in 1% hydrochloric
acid (HCl) in ethanol solution via quick dip, (6) rinsing in tap water for

5min, and (7) staining with Eosin Y (BBC Biochemical) for 3 s. After-
ward, the stained slides were washed and dehydrated using a series of
ten dips in each of the following solutions: (1) water, (2) 70% ethanol,
(3) 90% ethanol, and (4) 100% ethanol. A whole-slide image of the
prepared slide was obtained using automated microscopy (Nikon
Inverted Microscope ECLIPSE Ti-E).

For cell cluster isolation, H&E-stained tissue sections from two
patients with TNBC (T1 and T2) were pathologically inspected to dis-
tinguish the spatial locations of cancer cells from normal cells. Based
on the identified tumor cell locations, tumor cell clusters, each con-
taining an average of 20 cells, were isolated from unstained fresh
frozen tissue sections that were serial to the corresponding H&E
sections.

Participant information
T1 tissue was obtained from surgically resected triple-negative
inflammatory breast cancer of a 49-year-old woman who had
received neoadjuvant chemotherapy (five of six planned cycles of
docetaxel and adriamycin due to disease progression). The initial
clinical stage before neoadjuvant chemotherapy was cT4N2M0, and
the pathological staging post total mastectomy with axillary lymph
node dissection in May 2019 was pT2N1M0. There was no evidence of
recurrence.

T2 tissue was obtained from surgically resected triple-negative
invasive ductal carcinoma of a 50-year-old woman who had received
neoadjuvant chemotherapy (four cycles of adriamycin + cyclopho-
sphamide and two of four planned cycles of docetaxel owing to
adverse effects and limited response to chemotherapy). The initial
clinical stage before neoadjuvant chemotherapy was cT4N3M0, and
the pathological staging post total mastectomy with axillary lymph
node dissection in April 2019 was pT2N3M0. In July 2019, the patient
developed metastases to the brain and liver.

The application of the bMDA method described in this study was
demonstrated using data from two female participants. The study
design did not specifically consider sex and/or gender as a factor.
However, bMDA technology is designed for genomic data analysis and
its applicability is not limited by the gender or sex of the study parti-
cipants. While the study did not explore potential sex-specific effects
or differences, the bMDAmethod can be applied to genomic data from
individuals of any sex or gender.

Target selection in tissue samples
The spatial targets for isolating cell clusters in TNBC tissue section
were selected by expert pathologists who aimed to capture as many
representative heterogeneous subclones as possible. Their selection
was based on morphological characteristics, H&E staining, and other
pathological features that suggested the presence of distinct tumor
subclones. By selecting representative spatial samples, we ensured
that our analysis captured the diverse genomic landscape of the tumor
and provided insights into the spatial organization of its subclones.

To predominantly capture tumor cells and limit healthy cell
contamination, we carefully selected our target regions. By visually
examining H&E stained images, we avoided areas with substantial
infiltration of healthy cells. Our goal was to enrichour cell clusters with
tumor cells, which would reduce the potential confounding impacts
from healthy cell contamination in our later analyses.

Cell isolation using PHLI-seq
Single HL-60 cells or cell clusters of TNBC tissue sections were
isolated as described in the PHLI-seq paper4. Briefly, cells were pre-
pared on 100-nm thick ITO-coated glass slides. When an infrared (IR)
laser is applied, the ITO layer absorbs the energy of the laser and
vaporizes, thereby converting optical energy into physical energy.
Owing to evaporation pressure, cells in the region of interest (ROI)
were released from the glass slide and transferred to the retrieval cap
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strips. For cell retrieval, optical flat eight-strip PCR tube caps
(TCS0803, Bio-Rad) were used. An appropriate cell lysis solution was
pre-loaded onto the tube cap to transfer laser-isolated cells directly
into the solution. By observing the brightfield cell image, we adjusted
the region of cells to be isolated in real time or automatically using
pre-determined scripts.

In-housemultiple-displacement amplification (MDA) and bMDA
For cell lysis and lysed gDNA denaturation, 1μl of template containing
gDNA or cells was mixed with 3μl of cell lysis solution (400mMKOH,
10mM EDTA, 100mM DTT), 2μl of PBS (REPLI-g Single-Cell Kit, Qia-
gen), and 1μl of 500μM random hexamer. Cell lysis and denaturation
were performed on ice for 20min. Subsequently, 3μl of neutralization
buffer, consisting of 400mM HCl and 600mM Tris-HCl (pH 7.5), was
added to neutralize the lysis buffer. Finally, 40μl of MDA master mix
containing 23μl of water, 5μl of 10× phi29 DNA polymerase reaction
buffer [500mM Tris-HCl, 100mM MgCl2, 100mM (NH4)2SO4, 40mM
DTT, pH7.5], 4μl of 25mMdNTP, 2μl of 1mMrandomhexamer, 2μl of
phi29 DNA polymerase (Genomiphi V2 DNA amplification kit, Cytiva,
cat. no. 25-6600-31), 3.2μl of 40% (w/v) PEG 8000, 0.25μl of 1M DTT,
0.5μl of 50μM SYTO™ 13 Green Fluorescent Nucleic Acid Stain (Invi-
trogen), and 0.05μl of 500 nM ROX was added. A total of 50μl MDA
reaction mix was incubated at 30 °C for 12 h, followed by inactivation
at 65 °C for 10min. SYTO 13 andROXfluorescence dyeswere added for
the real-timemonitoringofMDAamplification. Thefirst 3 hof theMDA
reaction was monitored in real-time (RT-MDA), and the Applied Bio-
systems 7500 Fast Real-Time PCR System was used for quantitative
monitoring. Samples with an amplification start time of less than
30min were considered to pass the quality control (QC) and were
expected to exhibit low amplification bias, enabling accurate calling of
copy number alterations (CNAs). Random hexamers were replaced
with the appropriate barcoded primer mix for barcoded multiple-
displacement amplification (bMDA).

Barcoded primer design
To evaluate how various lengths of the barcoded primer influenced
bMDA amplification efficiency, shorter barcoded primers were
designed by trimming the 5′ end of the longer barcoded primer
(R15B8N6).

Barcrawl (v100310)47 was used to design the 5′ barcode sequences
of the bB6N6 primers. Among the 4096 (46) possible barcodes of
length 6, barcodes with at least three base differences between the
arbitrary pair of barcodes were selected to be tolerant of the sequen-
cing error at the barcode position. Minorly, barcodes that contained
homopolymers of length ≥4 or barcodes with GC content greater than
90% or less than 10% were excluded from the candidate barcodes.
Thus, the command-line argument for the barcode design was -l 6 -p 4
-g 90 -c 10. Among the 98 designed barcodes, 48 were arbitrarily
chosen for bMDA demonstration (Supplementary Table 2).

With the designed barcode sequences, bMDA barcoded primers
of sequence /5Biosg/JJJJJJNN NN*N*N were ordered from Integrated
DNA Technologies (IDT) with standard desalting purifications. Here,
/5Biosg/ represents 5′ biotin modification, and six consecutive Js
represent one of the designed barcode sequences.

Purification and fragmentation of the bMDA products
The bMDA products of equal volume were first pooled, and then
purified using 0.8× volume of solid-phase reversible immobilization
(SPRI) beads (Celemag Clean-up Bead, Celemics, Republic of Korea)
for 1× volume of bMDA products. DNA binding and bead wash were
performed according to the manufacturer’s instructions, and the
bound DNA was eluted with 0.4× volume of water. Since, the viscosity
of the eluate increases due to the increased DNA concentration (over
1.5μg/μl), magnetic separation of the SPRI beads becomes very slow.
The solution was centrifuged at 20,000 RCF for 1.5 h at room

temperature to separate the SPRI beads and the remaining eluate was
carefully transferred to a new tube.

Subsequently, the purified bMDA products were fragmented to a
peak size of 200bp using an S220 Focused-ultrasonicator (Covaris)
according to the manufacturer’s instructions. Since, the volume of the
pooled and purified bMDA products exceeded the volume of the tube
for fragmentation, we repeatedly used the same microtube for the
same bMDApool. The fragmentedDNAwaspurified using 1.8× volume
of SPRI beads, and the washed beads were eluted with 1× volume of
water. Although the concentration of the eluted DNA was similar, the
fragmented DNA no longer increased the viscosity of the solution
significantly, and the SPRI beads were magnetically separated. In the
subsequent purification step, the eluate was transferred to a new tube
carefully to prevent the transfer of SPRI beads. The contamination by
SPRI beads may result in a non-specifically purified DNA fragments,
leading to an increased number of non-barcoded DNA fragments post
biotin purification step. AQubit dsDNAAssay Kit (Invitrogen)was used
per bMDA-seq procedure to quantify the DNA mass.

Purification of biotinylated DNA using streptavidin
coated beads
Twenty microliters of DynabeadsTM MyOneTM Streptavidin T1 (Invitro-
gen) beads werewashed thrice with 1× wash buffer composed of 5mM
Tris-HCl (pH 7.5), 0.5mM EDTA, 1M NaCl, and 0.05% Tween 20. The
washed beads were dissolved in a desired volume of 2× binding and
washing (B&W) buffer, composed of 10mM Tris-HCl (pH 7.5), 1mM
EDTA, and 2M NaCl. An equal volume of the fragmented and purified
bMDAproductswas added tomake thefinal concentration ofNaClwas
1M. The mixture was then incubated for 15min at room temperature
(RT) with 20 rpm rotation to bind the biotinylated DNA to the strep-
tavidin beads. The total volume of biotin binding could be increased
up to 1ml without a significant loss of biotin-binding capability. Next,
biotin-bound beads were washed twice with 1× wash buffer and once
with 1× B&W buffer. During the washing step, the suspended beads
were incubated for 5min at RT to increase the washing performance.
Finally, the washed beads were resuspended in 100μl of biotin elution
buffer consisting of 10mM Tris-HCl (pH 8.0), 1mM EDTA, 1% SDS, and
0.73mM D-Biotin. After incubation at 54 °C for 1 h with 800 rpm
shaking, eluted biotinylated dsDNA was purified using MinElute PCR
Purification Kit (QIAGEN) or SPRI beads. The biotin purification pro-
cedure was repeated to increase the specificity of purification.

Sequencing library preparation
A conventional ligation-based Illumina sequencing librarywas prepared
using a KAPA HyperPrep Kit (KK8500). After end-repair and A-tailing
according to the manufacturer’s instructions, the adapter ligation was
performed at 20 °C for 8 h using 15μM of adapter (TruSeq DNA Single
Indexes Set A, Illumina). The ligation time was increased to 8 h because
the presence of the 5′ biotin modification at one end of the DNA frag-
ments can cause steric hindrance in the ligation reaction. The prepared
librarywas quantifiedusing aQubit dsDNAAssayKit (Invitrogen) and an
Agilent 2200 TapeStation System or Agilent 2100 Bioanalyzer System.

Target enrichment of the prepared library
Aprecapture pooling strategywas adopted to reduce the cost of target
capture. Target enrichment of the bMDA library was performed using
the SureSelectXT2 Reagent Kit (G9621A, Agilent) or SureSelect XTHS2
DNA Reagent Kit (G9981A, Agilent), as per the manufacturer’s
instructions, except for a few modifications that were suitable for the
structure of the bMDA library. We omitted the library preparation
procedure of the SureSelect system because the library had already
been prepared. The SureSelect XT2BlockingMixwas used to passivate
the Illumina adapter sequences of the bMDA library. For hybridization,
SureSelectXT Focused Exome probes (5190-7787, Agilent) (17.8Mb)
were used to study the FPR and ADO rates of HL-60 single-cells, and
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SureSelect HumanAll Exon V5 probes (Agilent) (50.4Mb)were used to
study SNV in TNBC tissue sections. A single reaction volume of the
capture probe was used to capture eight and four bMDA products for
the respective probe products, which reduced the number of target
enrichment reactions by eight and four folds, respectively. Even with
the reduced probe-to-sample ratio, we could cover target regions at
250× on average per sample. Thus, to capture a pool of 48-plex bMDA
products, we required 6 and 12 target enrichment reagents and probes
for the respective probe types.

To analyze somatic SNV from TNBC samples, we arbitrarily
selected 24 out of 28 samples fromT2 and 8out of 20 samples fromT1.

Tn5-based single-cell genome sequencing library preparation
A Tn5-based single-cell DNA sequencing library was prepared as
described previously48,49. To prepare Tn5 transposase, a pTXB1 cloning
vector with hyperactive E54K and L372P mutations was obtained from
Addgeneand transformed intoDH5acells (NEB). After cell culturing and
IPTG induction, sonication was carried out to lyse the cells. To get
purified Tn5 transposases, a chitin column was used with the super-
natant from the lysed cells and Tn5 transposase was dialyzed by a dia-
lysis buffer, which is composed of 100mM HEPES-KOH (pH 7.2), 0.2M
NaCl, 0.2mMEDTA, 2mMDTT, 20%glycerol, 0.2 % TritonX-100. Then,
transposome was assembled with the purified Tn5 transposase and
preannealedmosaic enddouble-strandedoligonucleotides.We isolated
a single SK-BR−3 cell line for the Tn5-based single-cell genome analysis.
The isolated cell was lysed using proteinase K (P4850, Sigma-Aldrich) at
50 °C for 1 h. The lysate was then mixed with Tn5 transposase and
incubated at 55 °C for 20min, and the tagmentation process was halted
by incubation at 37 °C for 1 h with proteinase K. The tagged DNA frag-
ments were subjected to PCR amplification for 13 cycles, followed by
purification and a second round of PCR for 7 cycles. The second round
of PCR were monitored in real-time to quantify the library conversion
efficiency resulting from the Tn5 tagmentation process.

Sequencing and data pre-processing
Illumina MiniSeq, HiSeq 2500, Hiseq 4000, or NovaSeq 6000 systems
were used for short-read sequencing. The generated FASTQ file was
first demultiplexed by comparing the first six base calls of read 2 with
the bMDA barcodes. After demultiplexing, the bMDA barcode
sequence was removed from FASTQ. Reads were then aligned to the
human reference genome (GRCh37) using BWA-MEM (v0.7.15)50 with
default parameters, and the resulting Sequence Alignment Map (SAM)
file was sorted by chromosomal coordinates using SAMtools (v1.11)51.
Subsequently, the Picard Toolkit (v2.9.2) (http://broadinstitute.github.
io/picard) MarkDuplicates was used to identify duplicated reads, and
theGenomeAnalysis Toolkit (GATKv3.7-0)52 was used toperform local
realignment around indels andbasequality score recalibration (BQSR).
Finally, reads with a mapping quality less than 30 or that were artifi-
cially generated by supplementary alignment were removed to pro-
duce an analysis-ready BAM file.

CNA and Lorenz curve analysis
The HL-60 cell line was used to evaluate the technical performance of
bMDA. bMDA and conventional MDA were performed using either
66 pg of gDNA or a single cell as the template. In single-cell experi-
ments, large cell-to-cell variations are usually detected either by cel-
lular variations in lysis efficiency or stochastic MDA amplification bias.
We performed MDA from 66pg of gDNA to prevent cellular variation
from affecting performance evaluation. Data obtained from formalin-
fixed paraffin-embedded (FFPE)-treated HL-60 cells were used as
representative of a low-quality sample.

CNAandLorenz curve analyseswereperformedbasedon shallow-
depthwhole-genome sequencing data. For each sample, ~1millionNGS
reads were generated for CNA analysis and 0.24 million reads were
generated for the Lorenz curve analysis. We used variable-sized

binning methods3 for both analyses. Briefly, the human genome was
split into 10 k (median bin size = 276 kb) or 15 k (median = 184 kb) bins,
where each bin size was adjusted to have an equal expected number of
uniquely aligned reads. After NGS reads were assigned to each bin, the
read counts of each binwere normalized by GC content using LOWESS
to correct the GC bias. Assuming that the samples to be analyzed are
near-diploid, the GC-normalized read densities of each bin were scaled
to have anaverage valueof 2. Then, CNAevents of a single samplewere
detected by circular binary segmentation (CBS) of the Bioconductor
DNACopy package53. The detected segments were processed using
MergeLevels54 tomerge segmentswhose differencewas not significant
for a group of samples amplified from the same cell line or from the
same patients with cancer. The parameters used for the CBS to per-
form theMergeLevelswere alpha = 10−10, nperm= 1000,min.width = 5,
undo.SD = 0.8., and Ansari. sign =0.1.

For Lorenz curve analysis, NGS reads were assigned to each
variable-sized bin and Lorenz curve was then constructed by accu-
mulating the fraction of reads assigned to each bin. Traditionally, the
Lorenz curve is generatedusinghigh-depthwhole-genome sequencing
data to visualize read depth bias at the base-pair (bp) resolution. In our
study, however, we specifically aimed to evaluate the efficacy of bMDA
in detecting copy number alterations (CNAs) through the use of low
depth whole-genome sequencing data, while simultaneously utilizing
high-depth targeted sequencing for the detection of SNVs.

SNV detection
To detect SNV, 150 paired-end (PE) sequencing was performed to
generate a 1.5 Gb/sample for the focused exome captured library and
10Gb/sample for the library captured using the SureSelect Human All
Exon V5 probe. The sequencing amount was determined to cover the
target region with a coverage depth of at least 100× for each bMDA
product.

Three different variant callers were used for reliable detection
of somatic SNVs in TNBC samples, as described previously4,55. First,
all bMDA and tumor bulk data were processed simultaneously using
GATK UnifiedGenotyper with default parameters. The GATK Var-
iantRecalibrator was used for variant quality score recalibration
(VQSR). Variant annotations used for the VQSR training included
DP, QD, MQ, FS, MQRankSum, and ReadPosRankSum; and highly
validated variant resources including HapMap 3.3, Omni 2.5M,
1000 G phase1, and dbSNP build 137 were used for the training
database. Variants with a quality score of less than 50 or germline
variants detected by the matched normal data were removed to
obtain GATK somatic variants. We used BEDTools (v2.26.0)56 for the
filtration of germline variants. VarScan2 (v2.3.9)57 and MuTect
(v1.1.4)58 were used with default parameters to obtain VarScan and
MuTect somatic variants, respectively.

For each sample, variants called by at least two different callers
were considered high-quality variant calls of the sample that were less
susceptible to false-positive mutation calls, which usually arise when
using an individual caller. To remove false-positive mutations caused
by MDA or bMDA amplification errors, high-quality variants detected
in at least two samples were selected to obtain confident variant sites
across all samples. Since the FPR of bMDA was ~10−5/base, the theo-
retical possibility of detecting the same false-positivemutations on the
same site of two different samples is ~10−10, which is almost negligible
or likely to be lower than the value because there are three possible
alternate bases that vary from the referencebase. Among the confident
variant sites, a somatic variant of a sample is called if (1) the confident
variant is called by one of three different callers, or (2) the variant allele
count of the loci is significantly larger than the count of other non-
reference bases occurring by sequencing errors (Fisher’s exact test,
p < 10−3). Both, NGS reads with mapping quality and base quality score
greater than 30 were used for base counting for the significance test
based on the read depth.
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ADO rate and false-positive mutation detection rates (FPR)
calculation
Tocalculate theADOrate, confident heterozygous SNPsweredetected
using bulk sequencing data. GATK UnifiedGenotyper, VarScan2 mpi-
leup2snp, and MuTect2 (GATK v4.1.9.0)58 were used with default
parameters to obtain the intersection of the SNPs detected by the
threedifferent callers (triple-called SNPs). Subsequently, heterozygous
variants detected in the genome region with copy number 2 were
regarded as confident heterozygous SNPs. Allelic dropout events were
counted if single-cell bMDA data had coverage ≥10, but one of the two
alleles was missing in the confident heterozygous SNP sites.

To calculate the FPR, confident homozygous sites were first
determined from bulk sequencing data. Among the genome regions
with coverage ≥20, a genome position was regarded as a confident
homozygous site if only one type of allele was detected at the site.
Varscan2 somatic was used with single-cell bMDA data as the tumor
pile-up input and bulk sequencing data as the normal pair input.
Somatic mutations detected by variant calls were used to determine
false-positive mutation detection events.

To assess the sensitivity and FPR of SNV calling in cell cluster of
TNBC tissue sections, we applied same pipeline for tumor cell clusters
and compared it with germline mutations detected in normal bulk
sequencing data.

Inference of the tumor purity
Tumor purity was inferred by feeding somatic single nucleotide var-
iants (SNVs) and the segment mean of copy number alteration (CNA)
detection results into the ABSOLUTE algorithm59. The sequencing data
from each tumor subclone (c2–c5) were merged and processed toge-
ther to obtain representative tumor purity values for each subclone.

Inference of the tumor phylogeny
To infer the phylogenetic tree based on SNV, a binary variant matrix
across samples was constructed from the detected somatic variants by
providing a value of 1 if the variant was detected, NA if coveragewas <5
and the variant was not detected at the locus, and 0 if the variant was
not detected. Subsequently, pairwise distances were calculated using
Manhattan distance, and a phylogenetic tree was inferred employing a
balanced minimum evolution algorithm60 using the R package ape
(v5.5)61. The inferred treewas rooted in an artificially generated diploid
node, which had zero values for each variant site. All trees were con-
structed using the ggtree62 software package.

Detection of SV and kataegis
We conducted whole-genome sequencing (WGS) of 8Gb per bMDA
sample to analyze SVs and Kataegis. WGS of 400Gb (120×) was also
performed for analyzing tumor bulk gDNA and 100Gb (30×) for ana-
lyzing matched normal gDNA. DELLY (v0.9.1)63, Manta (v1.6.0)64, and
GRIDSS2 (v2.12.2)65 were used with the default parameters for detect-
ing somatic SVs. First, somatic SV detected by MANTA and highly
confident somatic SV detected by GRIDSS2 were merged to obtain
highly confident somatic SV for each sample. The detected SVs were
merged across all bMDA samples and tumor bulk data, followed by the
removal of potentially false variants detected in the genomic region
where themapping quality of eachNGS readwas less than 20. Variants
detected by more than two different samples were retained to obtain
highly confident somatic SV across all samples.

To increase the sensitivity of SV detection, we also obtained low-
confidence somatic SVs by combining the variants detected by
DELLY2, Manta, or GRIDSS2. After combining the low-confidence var-
iants across all samples, variants detected at low-mapping-quality
genomic regions were removed. Finally, SV that were detected in the
tumor bulk data and those that were detected in at least two different
samples were retained to obtain bulk-supported highly confident SVs.

The highly confident somatic SV and bulk-supported highly confident
somatic SV were combined to obtain the final detected SVs. We used
SURVIVOR (v1.0.7)66 to filter or merge the SV. We used AnnotSV
(v3.1.2)67 to annotate the detected SV, Circos (v0.69-9)68 to visualize
the detected translocations, and ChromoMap (v4.1.1)69 to visualize the
detected SV on the chromosomal ideogram.

To detect Kataegis events, somatic SNV across the whole genome
were first called usingGATKUnifiedGenotyperwith default parameters,
and all bMDA, tumor bulk, and matched normal sequencing data were
processed simultaneously to obtain a single VCF file. After removal of
germline variants that were detected in matched normal data, SNV that
were detected by at least six different samples with more than 20 total
supporting reads for the variant were regarded as highly confident
somatic SNV. Through this filtration, we could avoid false-positive
mutation detection that can arise from theMDAprocess. Subsequently,
Kataegis Portal (v1.0.3)70 was used to detect Kataegis events.

Spatial tumor evolution inference
To visualize the integrative genomic profile over time and space, we
first analyzed subclone-specific mutations for single nucleotide var-
iants (SNVs), structural variants (SVs), and Kataegis (Supplementary
Data 1). For SNVs and Kataegis, we considered the presence of a
mutation based on themajority voting among the spatial microniches,
with the most prevalent mutation profile representing the mutational
profile of a specific subclone. For SVs, a mutation was considered
present if it was detected in at least two samples belong to either the
subclone or tumor bulk. Overlapping mutations between different
subclones was regarded as an evidence for the presence of a common
ancestor, suggesting shared evolutionary origins. Subclone-specific
mutations were considered as evolutionary changes specific to each
subclone over time, reflecting the progressive development and
diversification of subclones. To prioritize the genes to be displayed, we
employed the following criteria: (1) deleterious protein-altering muta-
tions based on the SIFT score, and (2) consideration of genes known to
be associated with breast cancer, as supported by a literature search.

Statistics and reproducibility
For the validation of the bMDA technology, all experiments were con-
ducted for at least in triplicate for each experimental group. Themean,
standard deviation, and standard error of the mean were computed to
facilitate comparisons between the different groups. Statistical analysis
was carried out using appropriate methods, including the Wilcoxon
rank-sum test, Student’s t test, and one-way ANOVA, as required, to
assess the significance of differences between the groups. In the
assessment of the applicability of bMDA in TNBC tissue sections, two
different TNBC tissue sections were evaluated. Sample sizes were cho-
sen based on the experimental context, or to demonstrate the potential
use of the developed technology, and no statisticalmethodwas used to
predetermine the sample size. All attempts at replication, including
both successful and unsuccessful ones, are transparently presented in
the figure plots and no data was excluded from all analyses. Breast
cancer patients were randomly selected and the investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data generated in this study have been deposited in the
NCBI Sequence Read Archive under accession code PRJNA986002. The
GRCh37 human genome reference is available for download from
Ensembl (https://grch37.ensembl.org/info/data/ftp/index.html). Source
data are provided with this paper.
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Code availability
All custom scripts are available on GitHub (https://github.com/BiNEL-
SNU/bMDA)71.
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