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Prediction of base editor off-targets by deep
learning

Chengdong Zhang1,2,3,9, Yuan Yang 1,2,9, Tao Qi1, Yuening Zhang4, Linghui Hou1,
Jingjing Wei1, Jingcheng Yang1, Leming Shi 1, Sang-Ging Ong 5,6,
Hongyan Wang1,9, Hui Wang2 , Bo Yu 1 & Yongming Wang 1,7,8

Due to the tolerance of mismatches between gRNA and targeting sequence,
base editors frequently induce unwanted Cas9-dependent off-target muta-
tions. Here, to developmodels to predict such off-targets, we design gRNA-off-
target pairs for adenine base editors (ABEs) and cytosine base editors (CBEs)
and stably integrate them into the human cells. After five days of editing, we
obtain valid efficiency datasets of 54,663 and 55,727 off-targets for ABEs and
CBEs, respectively. We use the datasets to train deep learning models, result-
ing in ABEdeepoff and CBEdeepoff, which can predict off-target sites. We use
these tools to predict off-targets for a panel of endogenous loci and achieve
Spearman correlation values varying from 0.710 to 0.859. Finally, we develop
an integrated tool that is freely accessible via an online web server http://www.
deephf.com/#/bedeep/bedeepoff. These tools could facilitate minimizing the
off-target effects of base editing.

Base editors enable the programmable conversion of a single nucleo-
tide (nt) in themammalian genomeand have a broad range of research
and medical applications. They are fusion proteins that include a cat-
alytically impaired Cas9 nuclease (Cas9D10A) and a nucleobase
deaminase1,2. Cas9D10A nuclease and a ~ 100 nt single-guide RNA
(sgRNA) form a Cas9D10A-sgRNA complex, recognizing a 20 nt target
sequence followed by a downstream protospacer adjacent motif
(PAM)3–5. Once the Cas9D10A-gRNA complex binds to target DNA, it
opens a single-stranded DNA loop3. The nucleobase deaminase
modifies the single-stranded DNA within a small ∼5nt window at the 5′
ends of the target sequence1,2. Two classes of base editors have been
developed: cytidine base editors (CBEs) convert target C:G base pairs
to T:A1, and adenine base editors (ABEs) convert A:T to G:C2. Base

editors have been successfully used in diverse organisms, including
prokaryotes, plants, fish, frogs, mammals, and human embryos6–11.

Although there exist several tools for base editor on-target effi-
ciency prediction12–14, a major safety concern is that base editors can
induce unwanted off-target effects, including Cas9-independent off-
target and Cas9-dependent off-target effects. Cas9-independent off-
target effects are caused by random deamination, which can be mini-
mized by using modified deaminases15,16, or a cleavable deoxycytidine
deaminase inhibitor17. Cas9-dependent off-target effects are caused by
tolerance to mismatches between the gRNA and targeting
sequence18,19. Cas9-dependent off-targets can be minimized by careful
gRNA selection, but experimental evaluation of off-targets is time-
consuming18–20, prompting us to develop in silico tools for off-target
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prediction. We previously used a high-throughput strategy for gRNA-
target library screening for SpCas9 activity21.

In this study, we design libraries of gRNA-off-target pairs and per-
form a high-throughput screen, obtaining valid 54,663 and 55,727 edit-
ing efficiencies for ABE and CBE, respectively. The resulting datasets are
used to train deep learning models, resulting in ABEdeepoff and CBE-
deepoff, which can predict editing efficiency at potential off-targets.

Results
AguideRNA‒target pair strategy for testing of editing efficiency
at off-target sites
To investigate mutation tolerance at off-target sites, we designed two
gRNA-target pair libraries (Fig. 1a, Supplementary Fig. 1). These gRNAs
were randomly selected from our previously designed gRNA library
targeting the human genome21. The ABE library contains 91,287 gRNA-
target pairs distributed among 1383 gRNA groups (Supplementary
Data 1). The CBE library contains 91,174 gRNA-target pairs distributed
among 1378 gRNA groups (Supplementary Data 2). Each group con-
tains one gRNA-on-target pair and multiple gRNA-off-target pairs. The
mutation type includedmismatches (1-6 bpmismatches per off-target,
71,099 pairs for ABE, and 70,594 pairs for CBE), deletions (1-2 bp per
target, 6521 pairs for ABE, and 6759 pairs for CBE), insertions (1-2 bp
per target, 11,396 pairs for ABE, and 11,562 pairs for CBE) and mis-
matches mixed with insertions/deletions (indels, 1-2 bp mismatches
plus 1-2 bp indels, total mutations are 2-3 nt; 888 pairs for ABE, and 881
pairs for CBE). TheGCcontent of theABE library accounted for 52.99%;
the GC content of the CBE library accounted for 55.15%. The GC con-
tent of the ABE library positionally varied from 38.83 at position 7 to
65.80% at position 20; the GC content of the CBE library positionally
varied from 43.40% at position 14 to 66.04% at position 20 (Supple-
mentary Data 3 and 4).

Next, we generated a panel of single-cell-derived clones that sta-
bly express ABE or CBE base editors. Optimized versions of base edi-
tors (ABEmax for ABE; AncBE4max for CBE)22 were stably integrated
into the genome using the Sleeping Beauty (SB) transposon system
(Supplementary Fig. 2a)23–25, and single-cell clones were formed. We
tested the conversion efficiency in these clones and selected an effi-
cient clone for each base editor (Supplementary Fig. 2b, c).

We packaged the gRNA-target pair library into lentiviruses and
transduced them into base editor-expressing cells. Five days after
transduction, genomic DNAwas extracted, and synthesized off-targets
were PCR-amplified for deep sequencing. Deep sequencing results
revealed that A to G conversion for ABE and C to T conversion for CBE
occurred (Fig. 1b). In this study, editing efficiency was defined as the
number of edited reads divided by the number of total reads. Only
reads number over 100was considered valid data. The screening assay
was experimentally repeated twice, and editing efficiency in two
independent replicates showed a high correlation (Pearson correla-
tion, 0.970 for ABE and 0.994 for CBE, Supplementary Fig. 3a–d). This
paves the way for merging the two replicates to expand the training
dataset. An off-target efficiency was calculated as the average of two
replicates (Supplementary Fig. 3e, f). For example, if an off-target
efficiencywas0.5 in replicate 1 and0.7 in replicate 2, thefinal off-target
efficiency was 0.6.

We obtained ABE off-target efficiencies of 54,663 varied from 0%
to 100%; we obtained ABE on-target efficiencies of 1110 varied from
13.7% to 97.6% (Supplementary Data 1). Similarly, we obtained CBE off-
target efficiencies of 55,727 varied from 0% to 100%; we obtained CBE
on-target efficiencies of 1076 varied from 28.9% to 100% (Supple-
mentary Data 2). Since the on-target editing efficiencies vary over a
wide range, we used the ratio of off-target efficiency to on-target
efficiency (off:on-target ratio) to normalize the off-target efficiency.

The large-scale datasets generated here allowed us to analyze the
effects of mutation type on the off-on-target ratio. For both base edi-
tors, all mutation types have a negative impact on the off:on-target

ratio on average (off:on-target ratio of 0.673 for ABE and 0.695 for
CBE). The off:on-target ratio decreased with an increasing number of
mismatches (Fig. 1c, d). Deletions had a stronger influence than
insertions and mismatches. The overall off:on-target ratio of ABE was
ranked as 1mis > 1ins > 1del > 2mis > 2ins > mix > 3mis > 2del > 4mis >
5mis > 6mis (Fig. 1c); the overall off:on-target ratio of CBE was ranked
as 1mis > 1ins > 2mis > 1del > 2ins > mix > 3mis > 2del > 4mis > 5mis >
6mis (Fig. 1d).

Next, we investigated the positional effects of mutation on the
off:on-target ratio. For both base editors, on average, mutations at
target positions 1-10 had higher tolerance compared to mutations at
target positions 11–20. Due to the average off:on-target ratio in 1mis
being 0.844 for ABE and 0.888 for CBE, we considered that an off:on-
target ratio ≤ 0.8 represented a significant decrease in off-target
editing efficiency compared to its perfectly matched targets. In our
research, one mismatch significantly decreased the off:on-target ratio
at positions 14–16; one insertion significantly decreased the off:on-
target ratio at positions 11–18; one deletion significantly decreased the
off:on-target ratio at positions 3–7 and 10–20 (Fig. 1e, f). We observed
that one mismatch and one insertion at positions 19–20 did not
influence the off-on-target ratio (Fig. 1e, f). Previous studies have
shown that some singlemismatches at position 20did not significantly
influence the off-target editing efficiency19,20. We further used an
independent T-test to compare the off:on-target ratio across different
positions, and a Bonferroni correction formultiple tests was applied. It
is obvious that the statistical results (p-value) indicate significant dif-
ferences in most positions within the 1mis, 1ins, and 1del mutation
types (Supplementary Data 5 and 6).

Next, we investigated the positional effects of every single-
nucleotide mutation on the off:on-target ratio. The off:on-target ratio
was standardized by the Z-score, where values higher than 1 or lower
than −1 signified that the mutation had an important contribution to
the off:on-target ratio than the average. The results revealed that ABE
and CBE had similar z-score distribution (Supplementary Fig. 4a, b).
For a given mutation type, all four nucleotides showed similar z-score
distribution. For example, z-scores for one nucleotide deletion at
positions 1–10 were over zero, demonstrating that one nucleotide
deletion at these positions had a less negative impact on the editing
efficiency than average (i.e., more tolerant tomutations than average).
Z-scores for one nucleotide deletion at positions 11–20 were lower
than zero, demonstrating that one nucleotide deletion at these posi-
tions hadmore negative impact on the editing efficiency than average
(Supplementary Fig. 4a, b). We further investigated the influence of
two mismatches on the off:on-target ratio. Two mismatches had a
strong influence on the off:on-target ratio when they both occurred in
the seed region (1 ~ 9 nucleotides proximal to the PAM) (Supplemen-
tary Fig. 5a, b). Two mismatches on the seed region have been shown
to strongly influence the indel efficiency of SaCas926 and SpCas927.

Developing models for predicting off:on-target ratio at off-
targets
Next, we used the ABE off-target editing datasets to train a fusion
embedding-based deep learning model where a gRNA-target pair was
considered a unique sequence and used as input (Fig. 2a). The embed-
ding design encoded the input gRNA and off-target sequences in the
same scheme and then embedded the representation vectors in the real
value matrix spaces with the same weight initialization settings. Both
generalization ability and training speed will benefit from sharing the
same weight initialization parameter. Besides, an attention mechanism
was also applied in the model to get more representative features from
the LSTM output to be fed into the fully connected neural network.

We grouped the datasets according to on-target sequences and
obtained 1110 ABE gRNA groups. These groups were randomly divided
into training and testing datasets by 10-fold “GroupKFold”, with 90%
(999) of the gRNA groups assigned to the training set and 10% (111) to
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Fig. 1 | High-throughput screen of off-target efficiencies. a Schematic of the
pooled pairwise library screen for ABE and CBE off-targets. Black dots indicate
mutations; Nucleotide conversions are indicated by red letters; red arrows indicate
primers for target site amplification. b Examples of gRNA-target pair design and
their valid editing pattern. Editing efficiencies are shownon the right.Mutations are
indicated by purple letters; PAM is indicated by green letters. On: on-target
sequence; 1mis/2mis: 1 or 2 bpmismatch; 1del/2del: 1 or 2 bp deletion; 1ins/2ins: 1 or

2 bp insertion. c,d Influenceofmutation types on the off:on-target ratios.Mutation
types are labeled on the left; the average off:on-target ratio (off-target number) is
shown on the right. Mix: mismatches mixed with indels. e, f Positional effect on
off:on-target ratio for 1 bpmismatch (n = 33264 and 31732), 1 bp insertion (n = 4561
and 5336), and 1 bp deletion (n = 3203 and 3432). Data are presented asmean ± s.d.
Source data are provided as a Source Data file.
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the testing set. The internal validation set were randomly sampled
from the testing excluded dataset to tune hyperparameters. This
resulted in 50,196 training gRNA-off-target pairs and 5577 testing
gRNA-off-target pairs (Fig. 2b, Supplementary Fig. 6). The internal
testing datasets were never used during the training process. The
resulting model was named “ABEdeepoff”, which can predict off:on-
target ratios at potential off-targets. The model achieved a Spearman
correlation (R) of 0.797 ±0.012 for the testing dataset. We also used
the above training datasets to train conventional hand-crafted feature
algorithms, including Linear Regression, Ridge Regression, Multiple
Perceptron, and XGBoost. The Spearman correlations of thesemodels
were lower than that of the ABEdeepoffmodel (Fig. 2c, Supplementary
Data 7). These results demonstrated that the deep learning models
outperformed the four conventional algorithms in the ABE dataset.

Next, we used ABEdeepoff to analyze different mutation types in
the testing datasets. The model achieved very strong correlations for

1 bp deletion (R =0.836 ±0.014); strong correlations for 2 bp mis-
match (R =0.767 ±0.031), and 1 bp insertion (R =0.727 ± 0.050);
moderate correlations for 1 bp mismatch (R = 0.592 ±0.026) and 2 bp
insertion (R= 0.478 ± 0.195); weak correlations for 2 bp deletion
(R = 0.347 ±0.141), 3 bp mismatches (R =0.334 ±0.099) and mixed
mutations (R = 0.301 ± 0.246), and very weak correlations for the
remaining mutations (Fig. 3a). These results suggested that ABE-
deepoff performed well for off-targets with 1–2 bpmismatches, 1–2 bp
insertions, and 1 bp deletion. Next, we evaluated the performance of
ABEdeepoff with six groups of off-target datasets collected from the
literature18,20, where a series of 1–4 nucleotides of mismatched gRNAs
were designed to target endogenous loci, and achieved Spearman
correlation values that varied from 0.745 to 0.839 (Fig. 3b, Supple-
mentary Data 8).

In parallel, we used the CBE off-target editing datasets to train the
embedding-based deep learning model (Fig. 2a). The 56,803 gRNA-
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target sequence are paired together as input and embedded in the matrix space to
obtain the dense real-valued representation. Their representations are further
processed by a matrix summation to obtain the combined features. The combined
features are further processed by a two-layer BiLSTM to obtain the hidden repre-
sentation, which is then processed by the attention mechanism to obtain the
Attention Pooling feature. The Attention Pooling was concatenated with the Max

Pooling and Last Hidden features. These features serve as the input of the fully
connected layers. Finally, a sigmoid transformation is performed to obtain the
predicted off:on-target ratios. c Performance of different algorithms for the off:on-
target ratio prediction revealed by Spearman correlation for ABE and CBE. LSTM is
the backbone structure used in our deep learning models. The bar plot shows the
mean ± s.d for the Spearman correlation coefficient between predicted and ground
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Fig. 3 | Evaluation of ABEdeepoff/CBEdeepoff for off:on ratio prediction at off-
targets. a Evaluation of ABEdeepoff prediction for different mutation types with a
testing dataset (n = 10 testing datasets). Data are presented as mean ± s.d.
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presented as mean ± s.d. d Evaluation of CBEdeepoff prediction for off:on-target
ratio at six groups of external off-targets (N is the number of gRNA and off-target
sequence pairs). Data are presented as mean predicted ratio. Source data are
provided as a Source Data file.
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target pairs in 1076 groups were randomly split into two parts by 10-
fold “GroupKFold”: one contained 51,123 pairs (968 groups), and the
other contained 5,680 pairs (108 groups) for testing (Fig. 2b, Supple-
mentary Fig. 6). The resulting model was named “CBEdeepoff”, which
can predict off:on-target ratios at potential off-targets. The model
achieved a Spearman correlation of 0.863 ±0.012 for the testing
dataset.We also used the above training datasets to train conventional

hand-crafted feature algorithms, including Linear Regression, Ridge
Regression, Multiple Perceptron, and XGBoost. The Spearman corre-
lations of thesemodels were lower than that of the CBEdeepoff model
(Fig. 2c, Supplementary Data 9). These data demonstrated that the
deep learningmodels outperformed the four conventional algorithms
in the CBE dataset.

Next, we used CBEdeepoff to analyze different mutation types in
the testing datasets. The model achieved very strong correlations for
1 bp deletion (R =0.887±0.015), 2 bpmismatch (R =0.845 ±0.032), and
1 bp insertion (R =0.811 ±0.022); strong correlations for 1 bp mismatch
(R =0.694±0.029) and 2bp insertion (R =0.689±0.077); moderate
correlations for 3bp mismatches (R =0.575 ±0.116), mixed mutations
(R =0.549 ±0.188), and for 2 bp deletions (R =0.478 ±0.075); and very
weak correlations for the remaining mutations (Fig. 3c). These results
suggested that CBEdeepoff performed well for off-targets with 1–3bp
mismatches, 1–2bp insertions, 1–2bp deletions, and 2–3bp mix muta-
tions. Next, we evaluated the performance of the CBEdeepoff with six
external groups of off-target datasets collected from the literature19,20,
where a series of 1–4 nt mismatched gRNAs were designed to target
endogenous loci and achieved Spearman correlation scores varying
from 0.710 to 0.859 (Fig. 3d, Supplementary Data 10).

Next, we evaluated our models with off-target datasets generated
with a method called “Digenome-seq”. This is a very sensitive in vitro
method for genome-wide specificity detection of base editors19,20. We
evaluated the performance of ABEdeepoff with 14 groups of off-target
datasets generated by Kim et al.20 and achieved a very strong corre-
lation for gRNA 7 and a strong correlation for gRNA 8, mild correla-
tions for four groups (gRNA 9-12), and weak or very weak correlations
for the remaining eight groups (Supplementary Fig. 7, Supplementary
Data 11). We evaluated the performance of CBEdeepoff with seven
groups of off-target datasets generated by Kim et al.20 and achieved
strong correlation for gRNA 7, the mid correlation for gRNA 8, and
weak or very weak correlations for the remaining groups (Supple-
mentary Fig. 8, SupplementaryData 12). Ourmodels performed poorly
for these in external off-target datasets, probably due to the low
editing efficiencies of thedatasets. Themajority of off-targets detected
by Digenome-seq were 3–5 bp mismatches followed by mismatches
plus a 1 bp deletion (Supplementary Fig. 9a, b). Other types of muta-
tions were rarely observed. The editing efficiencies of these off-targets
were similar to the background level except for 1-2 bpmismatched off-
targets (Supplementary Figs. 9c, d).

Model post-hoc explainability
To understand the feature contribution of the ABEdeepoff and CBE-
deepoff models, we implement the “LayerIntegratedGradient” class
from the Captum package28 to the embedding layers to evaluate the
attribution score for each nucleotide position in the input sequences.
The attribution scores were calculated by taking the mean value of that
position across the entire testing dataset. We found that attribution
scores at mutation positions were all below zero, indicating that fea-
tures contributed negatively to the off:on-target ratio (ABE = −15.96;
CBE= −9.65, Fig. 4a). Attribution scores atmatchedpositionswere close
to zero, indicating that features had minimal influence on the off:on-

CBE, Ground truth: 0.92, Predict: 0.95

ABE, Ground truth: 0.04, Predict: 0.07

a

b

1del

1mis

1ins

d

1mis

1ins

1del

c

Fig. 4 | Analysis of positional feature attributions associated with off:on-target
ratio by LayerIntegratedGradient. a Distribution of the attribution score for
mutational nucleotides. b Two specific examples of feature attribution analysis.
The mutational nucleotide alignment was marked in red. The numerical value
below the nucleotidewas the attribution score for that specific nucleotide position.
The ground truth and predicted off:on-target ratio was also provided under the
whole alignment sequence. c, d Positional feature attributions of off-target for 1 bp
mismatch, 1 bp insertion, and 1 bp deletion on ABE and CBE, respectively. The
attribution scores were standardized by the Z-score, where values higher than 1 or
lower than −1 signified an important contribution. Source data are provided as a
Source Data file.
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target ratio (Fig. 4b). Furthermore, to estimate the contribution of the
specific mutation types, we comprehensively analyzed the attribution
score for 1mis, 1del, and 1ins for ABE and CBE. The attribution scores
were standardized by the Z-score, where values higher than 1 or lower
than −1 signified an important contribution. Overall, regardless of the
mutation type, mutations at positions 1-10 had a relatively small impact
on theoff:on-target ratio (z-score above0),whilemutations at positions
10-20 usually had a large negative impact on the off:on-target ratio
(Fig. 4c, d).However, for 1ins both inABE andCBE,mutations atposition
20 had a small impact on the off:on-target ratio.

We finally provided an online web server named BEdeepoff
(http://www.deephf.com/#/bedeep/bedeepoff), which contains ABE-
deepoff andCBEdeepoff for off-target prediction. Eachmodel contains
twomodes. The text mode is for single off-target mutation prediction,
and the file mode is for genome-wide off-target mutation prediction.
For genome-wide off-target mutation prediction, users first use Cas-
OFFinder (http://www.rgenome.net/cas-offinder)29 or CRISPRitz30 to
identify DNA sequence similarity to the on-targets in the whole gen-
ome. We suggested setting up mismatches up to 3 nt, DNA bulge size
1nt, andRNAbulge size 1nt, whichwould cover all the high efficiencyof
off-targets. Next, the files generated from the suggested tools are
uploaded to theABEdeepoff/CBEdeepofffilemode, resulting inoutput
files that contain the predicted off:on-target ratio for each sequence.
One limitation of our study is that the gRNA-off-target pair library did
not include sequences without editable nucleotides. In theory, the
editing efficiency is 0 for such sequences. Therefore, the off:on-target
ratio is set to0 for sequenceswithout editable nucleotides. In addition,
theoff:on-target ratio is set to 1 for sequences identical to theon-target
sequence.

Discussion
Off-target editing is always a major concern of base editing. As Cas9-
deaminase fusion proteins, both ABE and CBE base editors can induce
Cas9-dependent off-target mutations18,19,31–33. Eukaryote genomes
contain hundreds of sequences similar to the target sequences and
potentially be recognized by Cas934. However, only a small portion of
sequences can be edited by base editors. For a given target, it is crucial
to know where and the efficiency of the off-target effect. In this study,
we developed models to predict editing efficiencies on off-targets for
both ABE and CBE, facilitating the evaluation of target specificity in
silico. These models are particularly useful when a large number of
potential gRNAs are available, for example, when generating stop
codons to knock out a gene and designing gRNA libraries for knockout
screens.

The fusion embedding-based deep learning models used here
have a simple yet efficient structure that unifies on-target and off-
target input. It can be seamlessly extended to other versions of base
editors, such as SauriABEmax, SauriBE4max, SaKKH-BE3, BE4-CP,
dCpf1-BE and eA3A-BE335–39, for off-target prediction.

Methods
Cell culture and transfection
HEK293T cells (ATCC) were maintained in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% FBS (Gibco) at 37 °C and 5%
CO2. All media contained 100 U/ml penicillin and 100mg/ml strepto-
mycin. For transfection, HEK293T cells were plated into 6-well plates,
and DNA was mixed with Lipofectamine 2000 (Life Technologies) in
Opti-MEM according to the manufacturer’s instructions. Cells tested
negative for mycoplasma.

Plasmid construction
The sequences of the oligonucleotides are listed in Supplementary
Data 13. The SB transposon (pT2-SV40-BSD-ABEmax and pT2-SV40-
BSD-BE4max) was constructed as follows: first, we replaced the NeoR

gene (AvrII-KpnI site) onpT2-SV40-NeoRwithBSD, resulting in thepT2-

SV40-BSD vector; second, the backbone fragment of pT2-SV40-BSD
was PCR-amplified with Gibson-SV40-F and Gibson-SV40-R, and the
ABEmax fragment was PCR-amplified from pCMV_ABEmax_P2A_GFP
(Addgene#112101) with Gibson-ABE/BE4-F and Gibson-ABE/BE4-R, and
the BE4max fragment was PCR-amplified from pCMV_AncBE4max
(Addgene#112094) with Gibson-ABE/BE4-F and Gibson-ABE/BE4-R;
third, the backbone fragments were ligated with ABEmax and BE4max
using Gibson Assembly (NEB), resulting in pT2-SV40-BSD-ABEmax and
pT2-SV40-BSD-BE4max, respectively.

Generation of cell lines expressing ABEmax or BE4max
HEK293T cells were seeded at ~40% confluency in a 6-well dish the day
before transfection, and 2μg of SB transposon (pT2-SV40-BSD-ABE-
max or pT2-SV40-BSD- BE4max) and 0.5μg of pCMV-SB100x were
transfected using 5μl of Lipofectamine 2000 (Life Technologies).
After 24 h, cells were selected with 10μg/ml blasticidin for ten days.
Single cells were sorted into 96-well plates for colony formation.
Conversion efficiency was performed to screen cell clones with high
levels of ABEmax and BE4max expression.

gRNA-target library construction
The off-target library was designed as follows: both ABEs and CBEs
libraries contained 91,556 oligonucleotides, distributed among 1383
and 1378 gRNA groups for ABEs and CBEs, respectively; for ABEs, the
off-target library included 51,170 1 bp-mismatch, 10,889 2 bp-mis-
match, 10,310 1 bp-insertion, 4960 1 bp-deletion, 2261 3 bp-mismatch,
22644bp-mismatch, 2255 5 bp-mismatch, 22606bp-mismatch, 10862
bp-insertion, 1561 2 bp-deletion, 888 mix, 279 nontarget and 1383 on-
target; for CBEs, the off-target library included 50,676 1 bp-mismatch,
11,054 2 bp-mismatch, 10,481 1 bp-insertion, 5128 1 bp-deletion, 2221 3
bp-mismatch, 2226 4 bp-mismatch, 2203 5 bp-mismatch, 2214 6 bp-
mismatch, 1081 2 bp-insertion, 1631 2 bp-deletion, 881 mix, 392 non-
target and 1378 on-target; each oligonucleotide chain contained left
sequence (tgtggaaaggacgaaacacc), gRNA sequence (NNN
NNNNNNNNNNNNNNNNN), BsmBI site (gttttgagacg), Barcode 1
(NNNNNNNNNNNNNNNNNNNN), BsmBI site (cgtctcgctcc), Barcode 2
(NNNNNNNNNNNNNNN), target sequence (gtactNNNNNNNNNN
NNNNNNNNNNNgg), and right sequence (cttggcgtaactagatct). The
off-target library was constructed as follows: first, full-length oligonu-
cleotides were PCR-amplified and cloned into the BsmBI site of the
LentiGuide-U6-del-tracRNA vector by Gibson Assembly (NEB), named
LentiGuide-U6-gRNA-target; second, the tracRNA was PCR-amplified
and cloned into the BsmBI site of the LentiGuide-U6-del-tracrRNA
vector by T4 DNA ligase (NEB). The Gibson Assembly products or T4
ligation products were electroporated into MegaX DH10BTM T1R

ElectrocompTM Cells (Invitrogen) using a GenePulser (BioRad) and
grown at 32 °C and 225 rpm for 16 h. The plasmid DNA was extracted
from bacterial cells using Endotoxin-Free Plasmid Maxiprep (Qiagen).

Lentivirus production
Lentivirus productionwas describedpreviously21, briefly, for individual
sgRNA packaging, 1.2μg of gRNA-expressing plasmid, 0.9μg of
psPAX2, and 0.3μg of pMD2. G (Addgene) was transfected into
HEK293T cells by Lipofectamine 2000 (Life Technologies). The med-
ium was changed 8 hours after transfection. After 48 h, virus super-
natants were collected. For library packaging, 12μg of plasmid library,
9μg of psPAX2, and 3μg of pMD2. G (Addgene) were transfected into
10-dish HEK293T cells with 60 μl of Lipofectamine 2000. Viruses were
harvested twice at 48 h and 72 h posttransfection. The virus was con-
centrated using PEG8000 (no. LV810A-1, SBI, Palo Alto, CA), dissolved
in PBS, and stored at −80 °C.

Screening experiments in HEK293T cells
HEK293T cells expressing ABEmax or BE4max were plated into
15 cm dishes at ~30% confluence. After 24 h, cells were infected with
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a library with at least 1000-fold coverage of each gRNA. After 24 h,
the cells were cultured in media supplemented with 2 µg/ml pur-
omycin for five days. Cells were harvested, and genomic DNA was
isolated using Blood and cell Culture DNA Kits (Qiagen). The inte-
grated region containing the gRNA coding sequences and target
sequences was PCR-amplified using Q5 High-Fidelity 2X Master Mix
(NEB). We performed 60-70 PCRs using 10 µg of genomic DNA as a
template per reaction for deep sequencing analysis. The PCR con-
ditions were 98 °C for 2min, 25 cycles of 98 °C for 7 s, 67 °C for 15 s
and 72 °C for 10 s, and a final extension at 72 °C for 2min. The PCR
products were mixed and purified using a Gel Extraction Kit
(Qiagen). The purified products were sequenced on an Illumina
HiSeq X by 150-bp paired-end sequencing.

Data analysis
FASTQ raw sequencing reads were processed to identify gRNA-target
editing activity. The nucleotides in a read with a quality score <10
were masked with the character “N”. Due to the integrated design
strategy, we first separated a read to the designed gRNA region,
scaffold region, and target region to extract the corresponding
sequence. The designed gRNA was then aligned to the reference
gRNA library tomark the reads. A valid sequencing readmust contain
two designed barcode pairs. The target sequence was compared to
the designed gRNA tomark if the target was edited. We screened out
gRNAs with a total valid reading of less than 100. Then, the efficiency
for a specific gRNA-target pair can be calculated by the following
formula:

editing efficiency=
NO:of edited reads

NO:of total valid reads

Further, in line with previous studies26,27, to estimate the editing
specificity (i.e., mutation tolerance) of a single-guide RNA, we also
calculated the ratio of off-target efficiency to on-target efficiency
(off:on-target ratio). The higher the off:on-target ratio, the lower the
editing specificity. This metric made it possible to compare the spe-
cificity of all single-guide RNAs without considering the editing effi-
ciency of their original matched target.

Encoding
Drawing on concepts from the field of NLP, nucleotides A, C, G, and T
can be regarded as words in a DNA sequence. Therefore, we can utilize
the widely used algorithms in the NLP field to solve prediction tasks in
the CRISPR field, especially embedding algorithms, to obtain the
continuous representation of discrete nucleotide sequences40. Unlike
the ordinary efficiency prediction that only needs to input one single
sequence for regression models, in this research, the gRNA-off-target
pair has two different sequences as inputs. For a gRNA, there are four
words in the index vocabulary (i.e., A, C, G, and T); however, after
alignment, there might exist a DNA bulge or RNA bulge and thus lead
to a “-” word to represent the insertion or deletion in the gRNA or off-
target sequence. Meanwhile, to be able to align sequences to the same
length in every single batch, we add a <pad> token to the vocabulary:

D= f0: <pad>, 1: A, 2: C, 3: G, 4: T , 5:�g

The input sequence can be described as:

xi = fxi0, xi1 � � � xit , � � � xiðT�1Þg,

where i 2 1,2f g denotes the i-th sequence in a gRNA-off-target pair, xit
is the t-th element of the i-th sequence, and T is the sequence length.
For example, ACGCTTCATCA-ATGTTGGGATGG (seq1, gRNA + NGG)

and ACGC-TCATCAaAaGTT-GGATGG (seq2, off-target) can be
encoded as:

x1 = ½1, 2, 3, 2, 4, 4, 2, 1, 4, 2, 1, 5, 1, 4, 3, 4, 4, 3, 3, 3, 1, 4, 3, 3� ði:e:,seq1Þ

and

x2 = ½1, 2, 3, 2, 5, 4, 2, 1, 4, 2, 1, 1, 1, 1, 3, 4, 4, 5, 3, 3, 1, 4, 3, 3�
ði:e:,seq2Þ,respectively:

Embedding feature fusion
Inspired by the algorithms in the recommender system41 and click-
through rate (CTR)42 prediction modeling, both the generalization
capacity and training speed will benefit from the sharing of the same
embedding matrix instead of training independent embedding
matrices for each input. In this research, we use the same weight
initialization settings instead of directly using the same embedding
matrix and found it converged much faster. A discrete nucleotide
encoding xit is projected to the dense real-valued space Ei 2 RT ×m (m
is a hyperparameter corresponding to the embedding dimension) to
obtain the embedding vectoreðxit Þ. Then, afinal embeddingmatrixE is
needed to obtain the combined information from those two embed-
ding matrices by:

E= gðE1,E2Þ ð1Þ

where g can be a sum, mean, or even a simple concatenate function.
However, the sum or mean function is more suitable because it can
reduce the redundant features in E1 and E2. We choose the sum
function here for simplicity.

Feature extraction and model prediction
The long short-termmemorynetwork (LSTM) and gated recurrent unit
network (GRU) are recurrent neural network (RNN) algorithms used to
address the vanishing gradient problem in modeling time-dependent
and sequential data tasks43. Usually, a bidirectional manner is used to
capture the information from the forward and backward directions of
a sequence,which is biLSTMor biGRU.Ourwork andothers’workhave
shown that, as an important component, biLSTM can be used alone or
with a convolutional neural network (CNN) to achieve good perfor-
mances in various regression and classification tasks involving biolo-
gical sequences21,44–46. Here, we tested biLSTM, biGRU, and the newly
proposed transformer structure47 and found that biLSTM had the
fastest convergence speed. The input and output of biLSTM can be
described by the following equations:

h
*

t = LSTM
*

ðeðx*tÞ, h
*

t�1Þ ð2Þ

h
(

t = LSTM
(

ðeðx(tÞ, h
(

t�1Þ ð3Þ

Thus, the output context vectors of biLSTM are h0 = ½h
*

0; h
(

L�1�,
h1 = ½h

*

1; h
(

L�2�, etc. Thus, we can concatenate the forward and back-
ward hidden state asH= fh0,h1,,hL�1g, which contains the bidirectional
information in the embedding feature matrix. Before the fully con-
nected layers, we tried different input features based on the trade-off
of the convergence speed and the performance of the model. The
aforementioned features are the last hidden unit, max pooling
operation on H and attention pooling on H. The equations are as
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follows:

hLast = ½h
*

L�1; h
(

L�1� ð4Þ

FMaxPool =maxL�1
t = 1ht ð5Þ

FAttentionPool = attention
L�1
t = 1ht ð6Þ

A max pooling and attention pooling function were applied
separately toH to obtainmore useful features and combine themwith
the final hidden state to produce the concatenated feature
c = hLast ;FMaxPool ;FAttentionPool

� �
. The predicted off:on-target ratio o

for a specific gRNA-off-target pair can be obtained by:

o= σ f cð Þð Þ ð7Þ

where f are fully connected layers and σ is the sigmoid activation
function.

Considering that the sample sizes of off-target types vary greatly,
to be able to dynamically adjust the loss weight of off type in the
training data, we use the inverse ratio of prevalenceof each category in
each batch to weight the Mean Squared Error of corresponding
mutation type.

Training setting
To avoid overfitting, off-target datasets were grouped by on-target
sequence to get different gRNA groups, and these groups were ran-
domly divided into training and testing datasets, with 90%of the gRNA
groups assigned to the training set and 10% to the testing set. The
stability of model performance was estimated by a 10-fold “GroupK-
Fold” validation together with the external off-target datasets. The
ABEdeepoff and CBEdeepoff models share the following hyperpara-
meters: embedding dimension, 256; LSTM hidden units, 512; LSTM
hidden layers, 2; dropout rate, 0.5; fully connected layers, 2 (6*512-
> 3*512- > 1).

For all the models, the Adam optimizer was used with a custo-
mized learning rate decay strategy that gradually reduced the learning
rate from 0.001, 0.0001, and 0.00001 to 0.000005.

Comparison with baseline models
We compared four conventional hand-crafted feature algorithms:
Linear Regression, Ridge Regression, Multiple Perceptron, and
XGBoost with the proposed deep learning methods ABEdeepoff and
CBEdeepoff, which are primarily constructed using LSTM.The features
used in the conventional algorithms were 1-mer position-dependent
nucleotide composition, 1-mer position-independent nucleotide
composition, GC content, and RNA/DNA binding free-energy48,49. The
nearest neighbor method was used to calculate the binding free
energy: a 2 bp sliding window traverses the matching part of the off-
target sequence when aligned with the gRNA, every two bases in the
sliding window correspond to a unique energy, and the sum of all
window energy is the final energy used in themodel.We use a Bayesian
optimization method named TPE (Tree-structured Parzen Estimator)
provided by Optuna50 package to obtain the optimal hyperparameters
(Supplementary Data 14).

Tools used in the study
BWA-0.7.17 was used to identify the designed gRNA51. The global
algorithm of pairwise2 in BioPython 1.7852 was used to obtain the
alignment result of the off-target sequence. Scikit-learn 1.1.153 and
PyTorch 1.13.154 were used for conventional machine-learning algo-
rithms and deep-learning models, respectively.

Statistics and reproducibility
All the data are shown as the mean ± S.D. The sample size were
determined by the limited library size. These gRNAs were randomly
selected from our previously designed gRNA library. The gRNA with
total reads less than 100 were removed. The testing datasets were
randomly selected.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The editing efficiency and off:on-target ratio of the entire dataset can
be found in SupplementaryData 1-2. The raw sequencing data hasbeen
submitted to the NCBI Sequence Read Archive SRA PRJNA587328.
Source Data is available as a Source Data file. Source data are provided
with this paper.

Code availability
All software codes of the study are available on GitHub (https://github.
com/izhangcd/BEdeep)55. We have integrated the model (trained with
the full dataset instead of leaving a holdout testing) into an online web
server (http://www.deephf.com/#/bedeep/bedeepoff). One can input
gRNA and off-target sequence pairs to predict the off:on-target ratio.
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