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Deep and fast label-free Dynamic Organellar
Mapping

Julia P. Schessner 1, Vincent Albrecht 1, Alexandra K. Davies 1,2,
Pavel Sinitcyn 3 & Georg H. H. Borner 1

The Dynamic Organellar Maps (DOMs) approach combines cell fractionation
and shotgun-proteomics for global profiling analysis of protein subcellular
localization. Here, we enhance the performance of DOMs through data-
independent acquisition (DIA) mass spectrometry. DIA-DOMs achieve twice
the depth of our previous workflow in the same mass spectrometry runtime,
and substantially improve profiling precision and reproducibility. We leverage
this gain to establish flexible map formats scaling from high-throughput ana-
lyses to extra-deep coverage. Furthermore, we introduce DOM-ABC, a pow-
erful and user-friendly open-source software tool for analyzing profiling data.
We apply DIA-DOMs to capture subcellular localization changes in response to
starvation and disruption of lysosomal pH in HeLa cells, which identifies a
subset of Golgi proteins that cycle through endosomes. An imaging time-
course reveals different cycling patterns and confirms the quantitative pre-
dictive power of our translocation analysis. DIA-DOMs offer a superior work-
flow for label-free spatial proteomics as a systematic phenotype
discovery tool.

The compartments of eukaryotic cells organize the proteome into
dynamic reaction spaces that control protein activity. The large num-
ber of diseases caused by disrupted protein transport demonstrates
that protein localization must be tightly regulated to ensure correct
protein function1,2. Our understanding of cellular homeostasis thus
requires a comprehensive view of protein localizations and move-
mentswithin the cell3. The growingfieldof spatial proteomics provides
diverse approaches to study protein localization on the whole pro-
teome scale3–5. Broadly, methods can be categorized into those based
on high-throughput imaging6,7, and those based on quantitative mass
spectrometry (MS). The latter group includesmethods that determine
protein localization via protein interaction networks8, as well as
methods that determine protein localization more directly via orga-
nellar profiling4.

Organellar profiling relies on the partial separation of organelles
from cell lysates by fractionation, based on their differing physical

properties (size/density). MS is then applied to quantify the relative
abundance of proteins across the fractions, yielding protein abun-
dance profiles (Supplementary Note 1) that are characteristic of the
harbouring organelles. Unlike imaging- or interaction-based techni-
ques, organellar profiling provides localization information for thou-
sands of proteins in a single experiment. Established organellar
profiling approaches include Protein Correlation Profiling (PCP)9,
Localization of organelle proteins by isotope tagging (LOPIT)10,11,
SubCellBarCode12, and Dynamic Organellar Maps (DOMs)13, which was
developed by our lab. The technical differences and individual
strengths of each method are extensively reviewed elsewhere4.

The DOMs approach is particularly powerful for comparative
applications, due to its robust fractionation protocol. Briefly, cells are
lysed mechanically and the released organelles are partially separated
by differential centrifugation13,14. Pelleted proteins are quantified
across the fractions byMS and the obtained abundance profiles can be
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used to predict protein localization by supervised machine-learning;
the result is an organellar ‘map of the cell’13. Since DOMs are highly
reproducible, they allow capture of induced protein localization
changes (translocations; Supplementary Note 1) and have thus driven
phenotype discovery in diverse biological contexts. For example,
DOMs have been applied to reveal themolecular pathomechanisms of
AP-4 deficiency syndrome, a severe neurological disorder15,16; to char-
acterize the function of a lysosomal retrieval pathway17; to quantify
translocation events triggered during EGF signalling13; to identify the
target of drugs selected from a phenotypic screen18; and to uncover
how HIV infection alters the composition of extracellular vesicles19.
DOMs can also be easily adapted across different biological sample
types, with published studies so far including HeLa cells13,15–17, a den-
dritic mouse cell line18 and primary cortical neurons20.

While our original DOMs method utilized SILAC (stable isotope
labelling by amino acids in cell culture)21 for protein quantification13,
the application of DOMs beyond cultured cell lines required imple-
mentation of different quantification strategies4,20, including label-free
quantification (LFQ; Supplementary Note 1)22 and the peptide-labelling
methods TMT23 and EASI-tag24. SILAC-based maps yield the most pre-
cise profiles, but offer limited depth due to increased MS1 spectral
complexity (Supplementary Note 1). LFQ maps achieve greater depth
but suffer from lower precision, while TMT and EASI-tag maps have
intermediate quality4. These strategies all applied data-dependent
acquisition (DDA; Supplementary Note 1) of MS data25,26. The DDA
approach only selects high-abundant peptides for identification and
quantification, as they are most likely to generate high-quality
MS2 spectra (Supplementary Note 1). This simplifies data analysis
but introduces a stochastic element to the data collection, leading to
inconsistent protein identifications across samples. In the context of
DOMs, missing values severely limit the depth of analysis, since pro-
filing requires quantification of the same protein in the majority of
measured subcellular fractions and replicates. To alleviate this pro-
blem, we previously fractionated peptide samples prior to MS
analysis13,27. This resulted in improved map depth, but increased MS
time requirements.

Owing to recent advances inMS instrumentation anddata analysis
software, data-independent acquisition (DIA; Supplementary Note 1) is
increasingly replacing DDA28. In contrast to DDA, the DIA approach
does not isolate individual peptides for fragmentation. The resulting
MS2 spectra are more complex, which creates technical and compu-
tational challenges, but conceptually the approach allows the quanti-
fication of all peptides present in a sample. Moreover, unlike in DDA,
both the MS1 precursor and the MS2 fragment ions can be used for
quantification, which increases precision29. DIA is hence becoming the
strategy of choice for extensive profiling-based approaches such as
SEC-MS30 andhas recentlybeen applied in high-throughput subcellular
phosphoproteomics31.

Here, we harness the power of DIA for generating label-free
DOMs. We show that proteomic depth, precision and reproducibility
of DIA-DOMs increase dramatically relative to DDA-DOMs, both for
generating static maps and in comparative mapping applications. For
this purpose, we introduce the software tool DOM-ABC, which enables
rapid standardized analysis and quality control of DOMs and other
types of profiling data. We provide optimized DIA-DOMs formats with
shortMS runtimes suitable for high-throughput experiments, andwith
longer MS runtimes for maximum coverage. Finally, we investigate
subcellular rearrangements upon starvation and inhibition of lysoso-
mal acidification in HeLa cells, to demonstrate the power of DIA-DOMs
for phenotype discovery.

Results
DOM-ABC, a web app for in-depth analysis of profiling data
Our goals were to establish and optimize a DIA-DOMsworkflow, and to
empower a broad usership of non-proteomic specialists to apply

organellar profiling in biological studies. Therefore, we first imple-
mented DOM-ABC, a software tool for Analysis, Benchmarking and
quality Control of dynamic organellar maps. DOM-ABC provides in-
depth automated data analysis and interactive info-plots via a graphi-
cal user interface (https://domabc.bornerlab.org). As input data, the
tool handles raw output files from MaxQuant32 and Spectronaut33, as
well as any other tabular profiling data.Multiplemaps can be uploaded
together and directly compared. Firstly, extensive quality control is
performed: Proteomic depth is assessed before and after filtering for
usable profiles, per map, and across replicates. Principal component
analysis (PCA; Supplementary Note 1) plots provide a visual overview
of map topology. Two novel metrics are calculated to gauge map
quality: 1. Profile scatter of proteins that are part of the same complex
(‘intra-complex-scatter’; Supplementary Note 1). This reflects within-
map profiling precision, based on the assumption that tightly bound
proteins co-fractionate with near-identical profiles. 2. Profile scatter of
individual proteins across map replicates, which reflects inter-map
reproducibility (Supplementary Note 1). Furthermore, subcellular
localization is predicted for all profiled proteins by machine-learning,
using support-vector machines (SVMs, Supplementary Note 1) based
on pre-defined (or customized) compartment marker protein lists
provided through the tool. Localization prediction performance is
assessed by scoring recall and precision of marker proteins (Supple-
mentary Note 1). Importantly, all of these quality metrics can be
benchmarked across experiments and easily compared with reference
data to gauge performance over time, across sites or between meth-
ods. Lastly, DOM-ABC can perform a differential analysis between
multiple maps to identify proteins with altered subcellular localiza-
tions (Movement-Reproducibility ‘MR’ analysis of translocation, Sup-
plementary Note 113). In summary, DOM-ABC provides a user-friendly
and automated end-to-end analysis pipeline for spatial
proteomics data.

DIA maps outperform DDA maps across all metrics
First, we extensively optimized DIA-methods for generating label-free
DIA-DOMs using a benchmark sample set prepared from three inde-
pendent subcellular fractionations from HeLa cells, each with six
fractions, label-free, as described20. We tested a variety of liquid
chromatography-mass spectrometry (LC-MS) setups and data acqui-
sition strategies for MS (see Fig. 1 for an overview of the experimental
design, and Supplementary Fig. 1 for DIA method optimization). Data
were processed with MaxQuant 2.1.3, which features the MaxDIA
algorithm34.

To compare DIA-DOMs to our previous label-free DDA-DOMs
workflow, we measured our benchmark samples with DIA and DDA,
using a 100min gradient on a nanoLC. DIA data were processed either
with a custom spectral library (ca. 157,000 unique peptide sequences,
acquired in DDA mode), or with an in silico spectral library predicted
by DeepMassPrism35 (MaxQuant’s ‘discovery DIA’ mode34). PCA plots
of the DDA, library DIA and discovery DIA maps looked topologically
similar (Fig. 2a). However, DIA maps showed reduced blending of
compartment clusters (e.g., mitochondria and Golgi), due to the
higher sensitivity of DIA. This leads to better quantification of proteins
in fractions where they are of low abundance, resulting in more
nuanced profiles (see also Supplementary Fig. 2A).

As expected, the unfiltered proteome depth (Supplementary
Note 1) was only slightly increased by DIA (DDA: 6706 protein groups
(PGs; Supplementary Note 1); discovery DIA: 7883 PGs; library DIA:
8022 PGs). In contrast, the number of proteins profiled across all three
map replicates dramatically increased from 2764 PGs with DDA, to
5866 PGs with discovery DIA (+112%), and to 6571 PGs with library DIA
(+138%; Fig. 2b). This performance leap is explained by themuchmore
consistent identification of proteins across samples, reflected by a rise
in data completeness from 69% with DDA to 93% with discovery DIA,
and to 96% with library DIA (Supplementary Fig. 2B). The proteins
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profiled in the DIA datasets mostly overlapped and contained almost
all proteins quantified with DDA (Fig. 2b).

Next, we assessed support-vector machine (SVM)-based com-
partment classification (Supplementary Note 1), analyzing a set of 839
established marker proteins13 common to all three maps. DIA maps
moderately but clearly outperformed DDA maps (Fig. 2c). Overall F1
score of the hold-out test set (Supplementary Note 1) increased from
91.6% (DDA) to 95.1/93.5% (discovery/library DIA). The combination of
increased depth and better SVM performance resulted in a greatly
increased number of high and very high-confidence localization pre-
dictions, up from 1354 (non-marker proteins) with DDA, to 2884 with
discovery DIA (+113%), and to 3204with libraryDIA (+136%) (Fig. 2d). In
addition, DIA maps provided many more medium-confidence predic-
tions (Fig. 2d). For all three datasets, the concordance with our pre-
viously published predictions based on SILAC DOMs13 was >94% in the
high-confidence category (Supplementary Fig. 2C). Finally, we eval-
uated profile quantification precision and reproducibility (Supple-
mentary Note 1), which are key for comparative spatial proteomics4.
Within-map profiling precision was markedly improved with DIA
(complex scatter reduced by 21% with discovery DIA and by 17% with
library DIA; Fig. 2e), and inter-map profile reproducibility was greatly
enhanced (profile scatter reduced by 43% with discovery DIA and by
44% with library DIA; Fig. 2f; sample correlations shown in Supple-
mentary Fig. 2D).

Taken together, these data demonstrate that DIA-DOMs strongly
outperform our previously established label-free DDA-DOMs with
regards to proteomic depth, organellar resolution, precision and
reproducibility. Discovery DIA and library DIA provide maps of similar
quality, but the measured peptide library boosts depth even further.

High-throughput LC enables faster and deeper DIA-DOMs
Based on the excellent depth of DIA-DOMs with 100min LC gradients,
we next evaluated the performance of shorter LC formats,with the aim
to establish a fast organellar mapping workflow. We used the Evosep
One LC system36, which runs pre-mixed gradients with standard
lengths, e.g., 21 or 44min, and reduces overhead time between sam-
ples to a few minutes. To avoid any confounding effects caused by
peptide library generation, we first gauged the performance with dis-
covery DIA. We compared DIA-DOMs run with 100min (nanoLC),
44min or 21min gradients (Evosep), which revealed an almost linear
relationship between the number of profiled proteins and runtime
(Fig. 3a and Supplementary Fig. 3A, B). Remarkably, the 44min gra-
dient DIA-DOMs had an increased depth compared to our previous
100min gradient DDA-DOMs (3,076 PGs profiled across all three map
replicates vs. 2,764 PGs with DDA; Fig. 2b), and even with 21min

gradients, more than 1900 PGs were profiled across three replicates.
The compartment prediction performance of the shortest gradient
maps was lower (Fig. 3b), but still fairly high in absolute terms (overall
F1 = 0.87). The difference was mostly caused by substantial drops in
the classifications of three organelles, Golgi, endosome and peroxi-
somes, which are particularly challenging to resolve in HeLa cells
(Fig. 2a, Supplementary Fig. 3C). As expected, shortening the LC gra-
dients also reduced profiling precision (Fig. 3c) and reproducibility
(Fig. 3d). Nevertheless, even the shortest (21min) gradient provided
astonishingly well-resolved maps in only around 2.5 h of MS machine
time, equivalent to a throughput of over 9 maps per day compared to
<2 maps per day using the 100min nanoLC gradient. Furthermore,
processing with a measured peptide library increased the depth of
21min gradient maps to 3048 PGs (+60%), and the depth of 44min
gradient maps to 4338 PGs (+41%; Supplementary Fig. 3D), with sub-
stantial gains in reproducibility (Supplementary Fig. 3E). This makes
fast DIA-DOMs even more useful for high-throughput screens and
rapid pilot experiments.

We next explored if off-line peptide fractionation and analysis
spread over several short LC runs would improve performance
relative to a ‘single-shot’ LC run of equivalent length. Since the
Evosep LC system minimizes sample loading overheads, this
approach also optimizes the machine-time to gradient-time ratio.
We triple-fractionated our benchmark samples by peptide STAGE-
tipping27 and analyzed them with 3 × 44min LC gradients (with
5min overheads), which requires little more overall machine time
than a single run with a 100min nanoLC gradient (with 35min
overheads). Remarkably, fractionation yielded ~600 additional
profiled PGs relative to the single-shot 100min gradient (6504 vs
5866 PGs, +11%; Fig. 3a), with similar SVM performance, precision
and profile reproducibility (Fig. 3b–d).

We also analyzed maps with 3 × 21min gradients. Relative to the
100min gradient, this reduced machine time by ~50%, yet incurred
only a moderate drop in performance (Fig. 3a–d). Thus, the 3 × 21min
format provides a useful compromise between speed and quality.
Finally, we ran fractionated samples with 3 × 100min nanoLC gra-
dients, to provide extra-deep coverage (7443 PGs, +48% vs. single-shot
100mindiscoveryDIA).Of note, these are thedeepest organellarmaps
from HeLa cells to date, providing a rich resource for protein sub-
cellular localization predictions (Supplementary Data 1).

In conclusion, our data show that deep, high-accuracy DIA-DOMs
can be prepared with short LC gradients, enabling high-throughput
spatial proteomics. In conjunction with off-line peptide fractionation,
single long gradients can be replaced with multiple short gradients,
optimizing machine time and enhancing map depth even further.

Dynamic Organellar Maps

Evosep
21/44 min
gradients DIA | DDA

Sample prep

NanoLC
100 min
gradient

LC-MS/MS MS data analysis

LFQ DDA

Discovery DIA

Library DIA

DOM-ABC web app

Organellar predictions
Translocation analysis

Proteomic
depth

Profile
reproducibility

Complex
scatter

increasing x g

Fig. 1 | Overview of the Dynamic Organellar Maps workflow, DIA optimization
strategy, and evaluation with DOM-ABC. HeLa cell lysates were fractionated by
differential centrifugation, to generate triplicate reference organellar maps. Fol-
lowing tryptic digest, samples were analyzed by LC-MS, using either a Thermo
EASY-nLC 1200 HPLC, or a high-throughput Evosep One HPLC, coupled to a
Thermo Exploris 480 orbitrap mass spectrometer. Data were acquired in DDA or

DIAmode, andDIA processingwasperformedwith library or discoveryDIA. For the
performance evaluation, data were analyzed with the web app DOM-ABC (https://
domabc.bornerlab.org), which provides multiple info graphics and metrics for
assessing map topology, proteomic depth, map resolution and reproducibility, as
well as differential analysis for detection of translocating proteins and machine
learning based localization prediction.
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DIA-DOMs reveal effects of starvation/BafA treatment in HeLa
We next tested the capabilities of DIA-DOMs for detecting induced
subcellular localization changes. Nutrient deprivation in combination
with Bafilomycin A1 (BafA) treatment is a widely used method for
investigating autophagy37. While the starvation induces metabolic
changes including autophagy38, the BafA treatment increases endo-

lysosomal pH by inhibiting vATPase function and thus prevents lyso-
somal protein degradation39,40. This helps to gauge autophagic flux
and facilitates the capture of autophagic structures by imaging37.
However, the endosome is a major protein trafficking hub, and
increasing lumenal pH blocks endosomal exit pathways. As a result,
proteins that normally cycle between endosomes and the plasma
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Fig. 2 | ComparisonofDDA,discoveryDIAand libraryDIA-basedmaps.Allmaps
were acquired with 100min LC gradients. Source data are provided as a Source
Datafile. aTopology of organellarmaps inPCA space. Coloureddots correspond to
organellar marker proteins. For comparability a single PCA was performed across
all three experiments and the comparative experiments displayed in Fig. 4. PCs 1
and 3 provide the best visual separationof non-nuclear compartments, as PC2 (30%
variability) is dominated by nuclear proteins. b Left panel: Number of proteins
identified or profiled in at least 1 or in all 3 out of 3 replicate maps. Right panel:
Overlap of profiled proteins between acquisitionmodes. c Performance of support
vector machine compartment classification. The same 839 marker proteins were
used for all threemaps. The numbers ofmarkers used for training (70%) and testing
(30%) are indicated for each compartment. F1 scores are the harmonic mean of
recall (true positives / [true positives + false negatives]) and precision (true

positives / [true positives + false positives]) based on the test set. Error bars show
the standard deviation of 20 sub-samples from the test set. dNumber of organellar
assignments, by confidence class - (I) very high, (II) high, (III) medium, (IV) low (see
Methods). The 839 marker proteins are not included. e Normalized profile scatter
within stable protein complexes. Only non-redundant complexes with at least five
subunits quantified across all datasets were included. Each point represents the
average normalized distance to the median complex profile in one map replicate.
Horizontal lines indicate the median from n = 57 quantifications across 3 biological
replicates. f Inter-replicate scatter, for the 2656 proteins profiled across all condi-
tions and replicates. X-axis shows the average absolute distance of replicates to the
corresponding average protein profile. The lines and numbers indicate the 70th
percentile. Lower scatter reflects higher map reproducibility (X-axis cut at 0.2; <1%
of profiles not shown).
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Fig. 3 | Comparison of DIA-DOMs performance with different LC gradients and
sample fractionation. Comparison of maps measured with a 100min nanoLC
gradient, or with 44min / 21min gradients on the Evosep One LC system. SDB-RPS
STAGE-tipping was employed for triple-fractionation. All maps were analyzed with
discovery DIA. Source data are provided as a Source Data file. a Proteomic depth
after filtering for profile completeness across three replicates in relation to the MS
runtime investment. b SVM classification performance (overall marker F1 score) in
relation to the MS runtime investment. For the single-shot 100min and the triply-
fractionated 44min and 100min maps, the same 988 organellar marker proteins
were used. For shorter gradient single-shotmaps and the triply-fractionated 21min

maps, only the 637 markers overlapping between these were used. c Normalized
intra-complex scatter, quantified by the average absolute distance to the median
complex profile. Only complexes with at least five subunits quantified across all
datasets were included. Points represent scatter in individual replicate measure-
ments relative to the median across all experiments. The median of 39 quantifi-
cations across 3 biological replicates is indicated. d Inter-replicate scatter for the
1743 proteins quantified across all datasets. This number was limited by the depth
of the 21min dataset. (X-axis cut at 0.3; <8% of profiles not shown.) Inset: equivalent
plot for the 5201proteins quantifiedacross the 100min, 3 × 44min, and3 × 100min
datasets.
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membrane, or between endosomes and the Golgi, become trapped in
endosomes41,42. This ‘side effect’ of BafA treatment is largely ignored in
investigations of autophagy, but may have considerable bearings on
the interpretation of results.Moreover, it is not generally knownwhich
proteins get trapped, as only relatively few have been identified to
date17,41–43. Here, we applied DIA-DOMs for a global analysis of sub-
cellular localization changes induced by starvation and BafA
treatment.

We prepared triplicate DIA-DOMs (100min gradient, library DIA)
and full proteomes from HeLa cells that were either starved for 1 h in
the presence of BafA, or left untreated. Evaluation with DOM-ABC
showed that the two conditions yielded topologically very similar
maps (Fig. 4a). The strength of DIA-DOMswas highlighted again by the
remarkable profiling depth (>5800 PGs in each condition) and the
almost complete overlap of profiled proteins (Supplementary Fig. 4A).

To identify proteins with altered subcellular localizations, we
performed our previously established movement and reproducibility
(MR) analysis13,44, now implemented in DOM-ABC with additional
reproducibility filters and automated downstream processing (see
Methods). Since starvation/BafA treatment drastically reprograms
cellular metabolism, we expected pleiotropic subcellular rearrange-
ments, in addition to endosomal trapping. We identified 164 proteins
with significant localization shifts (False discovery rate (FDR) < 5%
(Supplementary Note 1)) (Fig. 4b; Supplementary Fig. 4B; Supple-
mentary Data 2). Of these, 142 were also quantified in our full pro-
teomes (Supplementary Fig. 4D), and none changed significantly in
abundance. Thus, our MR analysis specifically revealed proteins that
respond to starvation and BafA treatment by subcellular re-
localization. To categorize hits functionally, we performed hier-
archical clustering (Supplementary Note 1) on the profile changes and
identified sevenmaingroups (Fig. 4c). Five of these groupswere highly
enriched in specific functions or localizations (Supplementary Fig. 4C).
One cluster (red) contained 10 Golgi proteins (shown in black in
Fig. 4b), as well as several other transmembrane and soluble secretory
pathway proteins. A second cluster (purple) was enriched in endoso-
mal and late secretory pathway proteins (Fig. 4c). Inspection of Golgi
protein profiles in untreated vs. treated cells revealed that these shif-
ted towards an endosomalprofile, consistentwith endosomal trapping
(Fig. 4d, and interactive Supplementary Data 3).

The largest cluster (green) predominantly contained proteins
involved in translation and mRNA processing, including over 50 core
ribosomal proteins, which shifted towards the highest speed (80K)
fraction (Fig. 4c)). This is consistent with a starvation-induced sup-
pression of protein translation, resulting in an increased number of
free ribosomes or smaller translational assemblies45. Strongly sup-
porting this hypothesis, we observed an almost two-fold increase of
these proteins in the cytosolic fraction (Supplemental Fig. 4E; p = 1.4E
−30). A fourth cluster (blue) was enriched in transcriptional regulators.
Two of them, FOXK1 and FOXK2, were reduced in the nuclear fraction
(Supplementary Fig. 4F) and increased in the cytosol (Supplementary
Fig. 4E), consistent with their known function as negative transcrip-
tional regulators of autophagy46. The fifth cluster (orange) included
several mitochondrial proteins with a non-mitochondrial pool that
appears to be lost after starvation/BafA treatment (Supplementary
Data 3); mitochondria are known to be extensively modified during
starvation47. The hits in Fig. 4b, c represent only the most prominent
translocation events in our dataset; therefore, we created an inter-
active supplementary table for the detailed exploration of individual
profile shifts (Supplementary Data 3).

Next, we re-acquired treated and control maps with DDA and
repeated the analysis (Supplementary Fig. 5). As expected, DIA-DOMs
provided much greater reproducible profiling depth (4475 vs 2055,
Supplementary Fig. 5A), identified a greater number of significant
translocations (164 vs 128, Supplementary Fig. 5B-D), and obtained
better scores in the MR analysis (Supplementary Fig. 5E) as well as

quality metrics (Supplementary Fig. 5F) than DDA-DOMs. This
demonstrates that DIA-DOMs also provide superior performance for
comparative applications and reveal biological insights that would be
missed with DDA-DOMs (Supplementary Fig. 5G-J).

Taken together, our DIA-DOMs analysis revealed a broad spec-
trum of established and previously unknown subcellular rearrange-
ments related to gene regulation and metabolism induced by
starvation and BafA treatment, as well as endosomal trapping of
diverse endomembrane proteins. Intriguingly, we identified ten Golgi
proteins that shifted completely or partially towards endosomes
(Fig. 4b). This group contained some of the strongest hits in the MR
analysis (e.g., GLG1 and TM9SF2, Fig. 4b, d), prompting us to char-
acterize the behaviour of Golgi proteins in more detail.

DIA-DOMs detect cycling Golgi proteins with diverse kinetics
Endosomal trapping in response to increased endo-lysosomal pH has
been reported previously for a small number of Golgi proteins17,41–43,
but it has not been studied systematically. Such an analysis could
distinguish Golgi proteins which undergo anterograde cycling from
those that are relatively static, which would shed light on a funda-
mental feature of Golgi homeostasis (Fig. 5a). The ten endosome-
trapped Golgi proteins identified above (Fig. 4b) differed con-
siderably in shift magnitudes (Fig. 4b, d), indicating differential
degrees of trapping. This also suggested that there may be further
Golgi proteins with partial shifts below the detection limit of the MR
analysis. For a comprehensive and systematic characterization of
Golgi protein behaviour, we developed a targeted correlation ana-
lysis strategy. We first compiled a list of 42 transmembrane and 2
lumenal Golgi proteins from our untreatedmaps. We then calculated
all pairwise correlations of their profile shifts and performed hier-
archical clustering. Strikingly, three clearly segregated groups
emerged from the data (Fig. 5b). The first group (Cluster 1; 22 pro-
teins) contained all ten proteins identified by MR analysis, which
formed a particularly well-defined core. This group also included the
two lumenal Golgi proteins (SDF4 and FAM3C), suggesting they too
may be subject to endosomal trapping. To characterize cluster
behaviour in detail, we plotted the translocations of all proteins in
PCA space. Cluster 1 proteins showed largely parallel translocations
of different magnitudes from Golgi to endosomes/lysosomes
(Fig. 5c). In contrast, Cluster 2 proteins showed very small shifts
within the Golgi boundaries (Fig. 5d). The third group had more
variable shifts, but these did not indicate translocation towards
endosomes, and remained confined to the Golgi (Supplementary
Fig. 6A). Thus, our data reveal two classes of Golgi proteins—those
that undergo partial or complete endosomal trapping (Cluster 1,
cycling) and those that do not show any trapping under the experi-
mental conditions (Clusters 2 + 3, static). To assess the individual
degree of trapping for proteins in Cluster 1, we ranked them by
magnitude of translocation towards endosomes (Fig. 5e). The top
proteins mostly corresponded to the hits from our MR analysis.
Importantly, the remaining proteins included GOLM1, which has
previously been shown to undergo endosomal trapping, but was not
detected by the MR analysis43. Evaluating these endosomal shifts
relative to the distribution of all endosomal shifts in the dataset
(Supplemental Fig. 6B) allowed us to classify translocations as com-
plete, partial or negligible. We thus identified 15 Golgi proteins that
we predict undergo endosomal trapping to varying degrees (Fig. 5e).
As above, we then repeated the analysis with the equivalent set of
DDA-DOMs. The DDA dataset also yielded the split into cycling and
static proteins, but covered only 20 Golgi proteins, of which only 8
were identified as cycling proteins (Supplementary Fig. 7). Thus, as
expected, DIA-DOMsprovided amuchmore comprehensive analysis.

Next, we used immunofluorescence microscopy to validate our
predictions. Prior to fixation, cells were cultured for 1 h in either full or
starvation medium, with or without BafA. Labelling for the
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autophagosome marker LC3B confirmed that the treatments worked
as expected (Supplementary Fig. 6C). In response to BafA treatment,
GLG1 showed a complete transition from the Golgi to a punctate
endosomal pattern (Fig. 6a) and TGOLN2 (also known as TGN46)
underwent a partial translocation out of the Golgi (Fig. 6b), as pre-
dicted by our DIA-DOMs analysis. The translocations occurred in

response to BafA, in both full and starvation medium, but not in
starved cells in the absence of BafA. This confirmed our hypothesis
that endosomal trapping in our DIA-DOMs experiment was caused by
BafA treatment, and not by starvation. As expected, GALNT2 retained
its Golgi pattern under all conditions (Fig. 6a, b), suggesting it is a static
Golgi protein.
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Article https://doi.org/10.1038/s41467-023-41000-7

Nature Communications |         (2023) 14:5252 8



Differences in the magnitude of translocation of individual Golgi
proteins might reflect different cycling kinetics, or different propor-
tions of the mobile pool of a protein. To investigate this further, we
selected six proteins with different profiling behaviours for a detailed
imaging-based analysis: GLG1 and TM9SF2 (for which we predicted
complete translocations to endosomes after 1 h); TGOLN2, SDF4, and
GOLIM4 (for which we predicted partial endosomal translocations
after 1 h; Fig. 5e), and GALNT2 from the predicted static Cluster 2. We
treated HeLa cells with BafA and followed the journey of these six
proteins by immunofluorescence microscopy over a time-course of
eight hours (Fig. 7). First, we evaluated qualitative changes of the
staining patterns. As predicted by our DIA-DOMs after 1 h BafA treat-
ment, the GALNT2 Golgi pattern remained completely unchanged
throughout the time-course, even after 8 h (Fig. 7a). Thus, GALNT2 can
be considered a static resident of theGolgi. In contrast, GLG1, TM9SF2,
TGOLN2, SDF4 and GOLIM4 all changed localization from a pre-
dominantly Golgi pattern to a more peripheral punctate pattern,
consistent with endosomal trapping, but with differing dynamics over
the time-course (Fig. 7c, e, g, i, k). To quantify the translocations at
each timepoint, we next developed an automated image analysis
pipeline to quantify the fluorescence signal in the Golgi (marked by
static GALNT2) relative to the rest of the cell (marked by phalloidin)
(Fig. 7b, d, f, h, j, l). This revealed diversemovement behaviours for the
differentGolgi protein targets. GLG1 andTM9SF2underwent rapid and
complete transitions to endosomeswithin 1 h, withmost of the protein

having exited the Golgi after just 30min (Fig. 7c–f). While TGOLN2
showed equally fast endosomal transition in around 30min to 1 h, this
plateaued rapidly, with a significant pool of TGOLN2 remaining in the
Golgi until the last timepoint (Fig. 7g, h). This suggests that TGOLN2
maintains a relatively immobile pool at the Golgi. GOLIM4 showed
steady but relatively slow movement away from the Golgi, which was
detectable after 1 h but still ongoing after 8 h (Fig. 7i, j). The change in
distribution of the lumenal protein SDF4 was even more subtle and
only became detectable after 2 h, with a gradual decrease in Golgi
signal proceeding until the end of the time-course (Fig. 7k, l).

These data reveal that cycling Golgi proteins follow remarkably
different patterns and kinetics. Importantly, our DIA-DOMs data cor-
rectly predicted which proteins would show a complete transition at
1 h, and which proteins would show strong or weak partial transitions
(compare Fig. 7 with Fig. 5e). Remarkably, for SDF4 the quantitative
imaging data did not yet indicate a significant change at 1 h (only from
the next timepoint on); in contrast, our proteomic profiling data
already predicted a weak partial transition at 1 h, demonstrating the
superior sensitivity of comparative DIA-DOMs for detecting subtle
changes in protein subcellular localizations.

In conclusion, our targeted correlation-based analysis increases
the sensitivity of Dynamic Organellar Maps for detecting small, but
highly correlated shifts, and enables prediction of relative phenotype
strength. Our systematic assessment of Golgi protein anterograde
cycling behaviours illuminates an important aspect of Golgi organelle
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homeostasis, and demonstrates the power of DIA-DOMs for functional
investigations.

Discussion
Dynamic organellar maps (DOMs) capture protein localizations and
their changes at the proteome scale, and the approach has driven
diverse discoveries in cell andmedical biology13,15–19. The bottleneck of

our original DDA-based workflow was the considerable MS time
required to achieve deep coverage, which created a barrier for non-
specialist labs to use the approach. Here, we introduce label-free DIA-
DOMs, which overcome this limitation. DIA-DOMs achieve twice the
proteomic depth of label-free DDA-DOMs in the same MS time and
strongly improve map performance across all metrics, in static and
comparative applications. Conversely, DIA-DOMs achieve the same
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depth asDDA-DOMs in a small fraction of theMS runtime. Importantly,
the instrumentation required for DIA-MS is the same as for DDA-MS,
which facilitates easy adoption of the technique.

Based on our extensive optimization, we now recommend the
following formats for DIA organellar mapping: (1) Deep mapping with
12 h ofMS time per map, either using single runs on a 100min nanoLC
gradient or fractionation/triple runs with 44min Evosep gradients,
recommended for biological exploration; (2) High-throughput maps
with ~2.5 h MS time per map, using Evosep 21min gradients, recom-
mended for pilot experiments ormore complex experimental designs.
Suitable peptide libraries generated by additional DDAmeasurements
further boost the depth of either format, but are optional, due to the
power of in silico predicted DIA libraries/discovery DIA. While our
original DDA-SILAC DOMs13,20 still provide the highest quantification
precision (lowest intra-complex-scatter) due to the accuracy of SILAC-
based quantification, DIA-DOMs are just as reproducible and offer
three times greater proteomic depth in the equivalent MS runtime
(Supplementary Fig. 6D–F). For themajority of applications DIA-DOMs
will thus outperform even SILAC-based DDA-DOMs. However, where
there is a need to detect very small protein translocations in systems
that allow metabolic labelling, DDA-SILAC DOMs may still offer an
advantage. Future studies should investigate if DIA-SILAC48 can be
applied to DOMs to further enhance the performance.

We created DOM-ABC (https://domabc.bornerlab.org), an open-
sourceweb app for the analysis of profiling data. DOM-ABCwas crucial
for our detailed and objective comparisons of different DOMs work-
flows. Importantly, with the introduction of DOM-ABC, we now pro-
vide a complete and seamless workflow for spatial proteomics from
bench to data visualization, which can be carried out by labs without
specialist proteomics expertise. DOM-ABChas several unique features,
including the ability to perform comparative translocation analyses,
using our MRmethod, at the click of a button. To our knowledge, it is
the only tool that provides a comprehensive end-to-end analysis
pipeline for spatial proteomics data that is completely accessible
through a graphical user interface. Unlike the only other published
proteomic profiling analysis package, pRoloc49, DOM-ABC requires no
programming skills or software downloads. Furthermore, DOM-ABC
offers interactive visualization of all quality metrics and results, which
canbe exportedaspublication-readyfigures (Figs. 2, 3 and4aremainly
based on plots provided by DOM-ABC). Importantly, all metrics and
visualizations are generated automatically, and do not require expert
user input. Previously published quality assessment tools for spatial
proteomics data focus on single aspects, such as compartment pre-
diction performance (MetaMass50) or organellar resolution (Qsep51). In
contrast, DOM-ABC covers a broad range of metrics, including novel
metrics for the assessment of profiling precision and reproducibility
(SupplementaryNote 1), and also allows the integration ofMetaMass50,
Perseus52, and other external classification data. DOM-ABC thus
enabled us to perform unbiased DIA method development and
objective method comparisons. Importantly, DOM-ABC accepts

custom input data not restricted to a particular software or profiling
method, and will thus greatly facilitate streamlined and standardized
analysis of spatial proteomics experiments. Since the code is publicly
available and provides usage examples and interfaces beyond the
graphical user interface, any python-versed user can also expand and
customize the generated figures and the tool itself.

By achieving highly reproducible organellar profiles, the original
DOMsapproach enabledMS-based comparative spatial proteomics for
the first time13. Today, several global organellar profiling approaches
are firmly established, including LOPIT, PCP, SubCellBarCode, and
DOMs3,4,9–12,31,53. All provide high-quality organellar maps and have
unique features and individual advantages, which are reviewed in
detail elsewhere3,4. Of these methods, our label-free DOMs have the
simplest workflow (fractionation by centrifugation) and require
the leastMS runtime.Wewouldhence argue that DOMs currently offer
the easiest option for labs venturing into spatial proteomics. Our
extensive protocols44, in conjunction with our DOM-ABC tool, further
facilitate rapid method establishment. Of note, the Olsen/Lund-
Johansen labs recently introduced a fast spatial proteomics method
based on chemical fractionation31. While our fastest DIA-DOMs format
shares some operational similarities (6 fractions, 21-min Evosep gra-
dients, DIA), the two methods are conceptually different, as DOMs
investigate intact organelles, whereas chemical fractionation necessi-
tates organellar lysis. As a result, chemical fractionation achieves high
resolution of sub-nuclear compartments, but at the cost ofmuch lower
resolutionofmembrane-boundorganelles; the twomethods thus offer
partially complementary insights. Nevertheless, a detailed side-by-side
comparison shows that our fastest DIA-DOMs format provides super-
ior proteomic depth, precision and compartment prediction perfor-
mance, when the same standardized DOM-ABC analysis workflow is
applied (Supplementary Fig. 8).

To test DIA-DOMs for phenotype discovery, we assessed protein
localization changes upon nutrient starvation in the presence of Bafi-
lomycin A1. This treatment is routinely used to investigate autophagy,
but also blocks protein exit from endosomes, which causes a poorly
characterized and often disregarded traffic jam in the endomembrane
system. Our analysis mapped over 160 protein localization changes
associated with starvation and metabolic reprogramming, as well as
extensive endosomal trapping of secretory pathway proteins, which
can be explored through our interactive Supplementary Data 3. Intri-
guingly, many of the endosomally trapped proteins normally reside in
the Golgi. To further dissect how Golgi homeostasis is affected, we
performed a targeted profile shift analysis of all Golgi proteins cap-
tured by our maps. This revealed two populations: proteins that
undergo endosomal trapping and proteins with persistent Golgi
localization. This observation is consistent with amodel in which some
Golgi proteins undergo anterograde cycling via endosomes, and oth-
ers do not, as previously proposed41. Our data now substantially
expand this model. First, we provide a systematically derived com-
pendium of 15 cycling Golgi proteins. Furthermore, we observe

Fig. 7 | Quantitative microscopy of an 8-hour time-course of Bafilomycin A1
(BafA) treatment demonstrates differing cycling behaviour of Golgi proteins.
HeLa cells were left untreated in full growth medium (0h) or were cultured in the
presence of 100 nM BafA for 0.5, 1, 2, 4, 6 or 8 h, before fixation, immuno-
fluorescence labelling and semi-automatedwidefield imaging. Brightness levels for
display of representative images were set uniformly across conditions for each
channel. a Representative images of cells labelled with anti-GALNT2 (red). In the
merged image, phalloidin-488 labelling of actin (green) and DAPI labelling of the
nucleus (blue) are also shown. Scale bar: 10 µm. GALNT2 localization at the Golgi
does not changeover the8 h time-course.Note, theseare the samecells as shown in
panel (c). b Schematic detailing our automated image analysis pipeline for deter-
mining the distribution of target proteins between the Golgi (GALNT2 region) and
the rest of the cell (phalloidin region). A decrease in the corresponding ratio indi-
cates that a target protein is moving out of the Golgi into other parts of the cell.

c, e, g, i, k Representative images of cells labelled with c anti-GLG1, e anti-TM9SF2,
g anti-TGOLN2, i anti-GOLIM4, or k anti-SDF4 (all green). In themerged image, anti-
GALNT2 labelling of the Golgi (red) andDAPI labelling of the nucleus (blue) are also
shown. Scale bars: 10 µm. Note, the target proteins predominantly appear in the
Golgi at 0 h, demonstrated by overlap with GALNT2, but their signal in the Golgi
decreases as the time-course progresses. d, f, h, j, l Quantification of the ratio of
d GLG1, f TM9SF2, h TGOLN2, j GOLIM4, or l SDF4 labelling intensity between the
Golgi and the restof the cell, over the 8 h time-course. Sourcedata are provided as a
Source Data file. Each datapoint indicates the normalized log2 ratio for an indivi-
dual cell (bar indicates median; n ≥ 125 cells per condition examined over two
independent experiments). A Kruskal–Wallis test with Dunn’s post-test was per-
formed for comparisons to the 0 h timepoint: ***p ≤0.001; **p ≤0.01; *p ≤0.05; ns
p >0.05. See statistics and reproducibility section and Supplementary Table 1 for
further details.
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pronounced differences in the degree of endosomal trapping within
the experimental timeframe. Phenotypic strength varied from com-
plete transitions (e.g., GLG1), to partial (e.g., TGOLN2/TGN46) and very
subtle shifts (e.g., GOLIM4). To further characterize cycling pheno-
types, we performed a quantitative imaging analysis over an 8 h time-
course of BafA treatment. This revealed highly individual cycling pat-
terns, with different kinetics forGolgi depletion ranging from the rapid
loss of GLG1 and TM9SF2, to the much slower departure of SDF4 and
GOLIM4. In the case of TGOLN2, our image analysis also provides
evidence for an apparently immobile Golgi pool, in addition to the
cycling pool. Remarkably, our DOMs analysis correctly predicted
phenotypic strength and, in the case of SDF4, even surpassed the
sensitivity of quantitative microscopy. While our data support the
existence of a subset of static Golgi proteins, it is possible that these
may also cycle, either with very slow kinetics not detectable in the 8 h
time-course, or under different physiological conditions; alternatively,
the cycling route may bypass the endosome and thus be insensitive to
BafA treatment. While we currently cannot distinguish between these
scenarios, our identification of large sets of apparently static and
cycling proteins, and the prediction of their relative cycling speeds,
will facilitate future investigations into this fundamental property of
Golgi proteins.

In conclusion, DIA-DOMs enable label-free organellar profiling
with high depth, speed and precision, and provide a powerful tool for
systematic phenotype discovery.

Methods
Experimental protocols
Antibodies. The following antibodies were used in this study: mouse
(IgG2b) anti-GALNT2 1:200 for IF (BioLegend Cat# 682302, RRI-
D:AB_2566611), rabbit anti-GLG1 1:200 for IF (Sigma Aldrich Cat#
SAB1303679), mouse (IgG1) anti-GOLIM4 1:1000 for IF (Enzo Life Sci-
ences Cat# ALX-804-603-C100, RRID:AB_2051552), mouse anti-LC3B
1:400 for IF (MBL International Cat# M152-3, RRID:AB_1279144), rabbit
anti-SDF4 1:400 for IF (Sigma Aldrich Cat# HPA011249, RRI-
D:AB_2668468), sheep anti-TGN46 (TGOLN2) 1:200 for IF (Bio-Rad
Cat# AHP500, RRID:AB_324049) and rabbit anti-TM9SF2 1:200 for IF
(Abcam Cat# ab271123). Fluorescently labelled secondary antibodies
were purchased fromThermoFisher Scientific and used at 1:500 for IF:
Alexa Fluor 488-labelled donkey anti-mouse IgG (Cat# A-21202, RRID:
AB_141607), Alexa Fluor 555-labelled goat anti-rabbit IgG (Cat#A32732,
RRID:AB_2633281), Alexa Fluor 568-labelled donkey anti-rabbit IgG
(Cat# A10042, RRID:AB_2534017), Alexa Fluor 555-labelled donkey
anti-sheep IgG (Cat# A-21436, RRID:AB_2535857) and Alexa Fluor 680-
labelled donkey anti-sheep IgG (Cat# A-21102, RRID:AB_2535755). For
co-labelling of GALNT2 and GOLIM4, isotype-specific anti-mouse sec-
ondaries were used: Alexa Fluor 555-labelled Goat anti-Mouse IgG1
1:500 for IF (Cat# A-21127, RRID:AB_2535769) and Alexa Fluor 647-
labelled Alpaca anti-Mouse IgG2b Nano (VHH) Recombinant Second-
ary Antibody 1:1000 for IF (Cat# SA5-10339, RRID:AB_2868386).

Cell culture. HeLa cells (type HeLa M) used in this study were a gift
from Paul Lehner (University of Cambridge), and were originally
published in ref. 54. This is the cell linewehaveused in severalprevious
DOMs publications13,15–17,20. HeLa cells were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM; Gibco Cat# 31966-021), supple-
mented with 10% (v/v) foetal bovine serum (FBS; Gibco Cat#
10270106) and 1% (v/v) penicillin-streptomycin solution (Gibco Cat#
15140122). Cells were maintained at 37 °C in a humidified atmosphere
of 5% CO2.

Starvation and BafA treatment. For starvation, HeLa cells were
washed three times with Dulbecco’s Phosphate Buffered Saline (PBS)
(Gibco Cat# 14190-094) and then incubated for 1 h in Earle’s Balanced
Salt Solution (EBSS; Sigma-Aldrich Cat# E2888). Where indicated, cells

were incubated in 100 nM Bafilomycin A1 (BafA, Merck, Cat# 19-148)
for the stated duration, in full medium (DMEM+ 10% FBS) or EBSS
(starve + BafA).

Immunofluorescence microscopy. For widefield microscopy, HeLa
cells were grown onto 13mm coverslips and fixed in 3% (v/v) for-
maldehyde in PBS for 20min at room temperature. Residual aldehyde
groups were quenched with 20mM glycine in PBS for 5min. For-
maldehyde fixed cells were permeabilized with 0.1% (w/v) saponin in
PBS for 10min and blocked in 1% (w/v) BSA/0.01% (w/v) saponin in PBS
for 10min. For labelling of GOLIM4 and TM9SF2, coverslips were
instead fixed in 100% ice-cold methanol for 5min on ice. Methanol
fixed cells were washed three times in PBS and blocked in 1% (w/v) BSA
in PBS for 10min. Primary antibody (diluted in BSA block) was added
for 1 h at room temperature. Coverslips were washed three times in
BSA block and then fluorophore-conjugated secondary antibody
(diluted in BSA block) was added for 30min at room temperature.
Coverslips were then washed three times in PBS. Nuclei were stained
with DAPI (300nM in PBS; Thermo Scientific Cat# 62248) for 5min.
Where indicated, coverslips were co-stainedwith DAPI and Alexa Fluor
488-labelled Phalloidin (330 nM in PBS, Cell Signalling Technology
Cat# 8878) for 15min. Coverslips were washed in PBS, followed by a
final wash in ddH2O, before being mounted in ProLong™ Glass Anti-
fade Mountant (Invitrogen Cat# P36980).

Microscopy was performed at the Imaging Facility of the Max
Planck Institute of Biochemistry, Martinsried, using a Leica DMi8
invertedmicroscope (Leica Thunder) equipped with a Leica DFC9000
GTC Camera, a 63x/1.47 oil objective (HC PL APO 63x/1.47 OIL) and an
iTK LMT200 motorized stage, and controlled by Leica Application
Software X (LAS X) version 3.5.5.19976. Cells were selected for imaging
using the DAPI channel only in the Navigator software module of LAS
X. For the BafA time-course, 10 images were captured for each target
protein, per condition and per replicate, using autofocus on the DAPI
channel. Images were acquired at a resolution of 2048 × 2048 pixels,
16 bit. For representative images displayed in figures, global linear
brightness and contrast changes were performed in ImageJ55 version
2.1.0 to enhance visualization. However, all quantification of data was
performedon the rawunaltered images. For quantification, the dataset
was first filtered to remove out-of-focus images.

Quantification of Golgi protein localization. Golgi protein localiza-
tion was quantified by comparing the fluorescence mean intensity of
protein targets in the Golgi region (marked byGALNT2) with themean
intensity in the rest of the cell (marked by Phalloidin), from widefield
images. The analysis was performed with a workflow implemented in
the software CellProfiler, version 4.2.5, complemented with the plugin
RunCellpose to allow the use of the Cellpose segmentation algorithm56

(ver. 2.2) in the pipeline. The pipeline file is available at https://doi.org/
10.5281/zenodo.8203066. Theposition andextensionof eachcell were
determined using a generalist model of Cellpose, providing the Phal-
loidin and DAPI channels as cytoplasm and nuclear signals, respec-
tively. The region occupied in each cell by the Golgi was determined
from the GALNT2 channel, after background subtraction, byminimum
cross-entropy thresholding. After illumination correction, the mean
fluorescent intensity of the protein of interest was measured for each
compartment region, and the ratio of protein intensity between the
Golgi and the rest of the cell was calculated for each individual cell.
Cells that were not fully included in the field of view were excluded
from the analysis. Data were filtered to remove cells where either the
nucleus or Golgi was not identified (removing 183 out of 8061 entries).
Statistical analyses were performed as described in the statistics and
reproducibility section below.

Generationof label-freedynamicorganellarmaps. To avoid sample-
related variation during method optimization, we generated three
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large-scale replicate maps from HeLa cells, each from 3 × 15 cm dishes
at 70–90% confluency, on a single day. Protein samples were digested
with LysC and Trypsin (see below). All subsequent peptide clean-ups
and peptide fractionations were performed from the same set of
digests. For the comparative experiment (Figs. 4 and 5), organellar
maps were prepared from control HeLa cells (untreated) and HeLa
cells that had been starved for 1 h in the presence of Bafilomycin A1
(100nM), in triplicate, each from 1 × 15 cmdish at 70–90% confluency.
All six maps were generated on the same day.

Cell lysis and subcellular fractionation were performed as repor-
tedpreviously13,44. All stepswere performed at4 °Cwith pre-chilled ice-
cold buffers.HeLa cells werewashed inPBS (without CaCl2 andMgCl2),
incubated in PBS for 5min, rinsed with hypotonic buffer (25mM Tris
HCl, pH 7.5, 50mM sucrose, 0.5mM MgCl2, 0.2mM EGTA), and
immediately incubated in hypotonic buffer for 5min. Cells were
drained, scraped into a total volume of 4mL of fresh hypotonic lysis
buffer and mechanically lysed with 15 strokes of a pre-chilled Dounce
homogenizer (7mL, tight pestle, Kontes Glass Co.). Sucrose was
restored to 250mM with hypertonic sucrose buffer (25mM Tris HCl,
pH 7.5, 2.5M sucrose, 0.5mM MgCl2, 0.2mM EGTA).

All centrifugation steps were performed at 4 °C with the fastest
acceleration and deceleration settings. Cell lysates were centrifuged at
1000 × g for 10min (Multifuge 1 L, Heraeus) to pellet nuclear material
and unbroken cells (1 K fraction). Post-nuclear supernatants were
transferred to fresh tubes and centrifuged at 3000 × g for 10min (3 K
fraction). Post-3000× g supernatants were transferred to ultra-
centrifuge tubes and further sub-fractionated using the Optima™MAX
Ultracentrifuge (Beckman Coulter) with a pre-chilled TLA 110 rotor
(Beckman Coulter) by sequential centrifugation steps, each time col-
lecting a protein pellet and transferring the supernatant to a fresh
ultracentrifuge tube: 5400× g for 15min (6K fraction), 12,200 × g for
20min (12 K fraction), 24,000× g for 20min (24 K fraction), and
78,400 × g for 30min (80K fraction). All pellets were resuspended in
1×SDS buffer (2.5% SDS, 50mM Tris HCl, pH 8.1). The supernatant
obtained after the final centrifugation step (cytosolic fraction) was
mixed at a 4:1 ratio with 5×SDS buffer (12.5% SDS, 50mM Tris HCl, pH
8.1). Samples were heated at 72 °C for 5min and sonicated using a
Bioruptor (Diagenode Inc) with fifteen 30 s on/off cycles at maximum
intensity. Fully solubilized samples were stored at −80 °C. Protein
concentrationsweredeterminedusing theThermoScientific™Pierce™
BCA (bicinchoninic acid) Protein Assay Kit (Thermo Scientific™ Cat#
23225). Following concentration determination, DTT (Sigma-Aldrich
Cat# D0632-25G) was added to a final concentration of 1mM before
preparing the samples for mass spectrometry.

Sample preparation for mass spectrometry. For in-solution diges-
tion, protein was precipitated by the addition of five volumes of ice-
cold acetone, incubated at −20 °C overnight and pelleted by cen-
trifugation at 10,000× g (Centrifuge 5418 R, Eppendorf) for 5min at
4 °C. All subsequent steps were performed at room temperature.
Precipitated protein pellets were drained, air-dried for 5min, resus-
pended thoroughly in urea buffer (8M urea, 50mM Tris HCl, pH 8.1,
freshly added 1mMDTT), and incubated for 15min. Sulfhydryl groups
were alkylated by the addition of 5mM iodoacetamide for 1 h in the
dark. Proteins were enzymatically predigested by the addition of LysC
(1 µg per 50 µg of protein; Wako Cat# 129-02541) for overnight incu-
bation. Predigests were then diluted four-fold with 50mM Tris, pH 8.1
(final urea concentration = 2M) before addition of trypsin (1 µg per
50 µg of protein; Sigma-Aldrich Cat# T6567) for a 3 h incubation. The
reaction was stopped by the addition of 1% trifluoroacetic acid (TFA,
final pH <3). Samples were incubated on ice for 10min and spun at
10,000× g for 5min at 4 °C. Supernatants were transferred to fresh
tubes for peptide storage at −20 °C.

Peptides were purified either by solid-phase extraction with
poly(styrenedivinylbenzene) reverse-phase sulfonate (SDB-RPS), as

previously described27, or by LC trapping using commercially available
C18 StageTips (EvoTips Cat# EV2001) of the Evosep System, according
to the manufacturer’s instructions. In brief, EvoTips were activated by
wetting the C18 material in 1-propanol, washed with Evosep buffer B
(0.1% [v/v] formic acid in acetonitrile), and wetted in 1-propanol again
for 5min. Soaked tips were washed with Evosep buffer A (0.1% [v/v]
formic acid), then with 0.2 % formic acid and then loaded with 200ng
acidified peptide sample. EvoTips were washed with Evosep buffer A,
and finally loadedwith Evosep buffer A and stored at 4 °Cuntil analysis
by mass spectrometry. Peptides purified via the SDB-RPS approach
were dried at 45 °C in a centrifugal vacuum concentrator (Con-
centrator 5301, Eppendorf), resuspended in buffer A* (0.1 % [v/v] TFA,
2% [v/v] acetonitrile), and stored at −20 °C until analysis by mass
spectrometry.

For deep measurements and the DDA library for the 100min
gradient, peptides were triple-fractionated on SDB-RPS StageTips27.
StageTips were washed with 100% acetonitrile, equilibrated with
StageTip equilibration buffer (30% [v/v] methanol, 1% [v/v] TFA), and
washed with 0.2% (v/v) TFA. 20μg of peptides in 1% TFA were loaded
onto activated stage-tips, washed with isopropanol, and then twice
with 0.2% (v/v) TFA. Peptides were eluted in three consecutive frac-
tions by applying a step gradient of increasing acetonitrile con-
centrations: 20μL SDB-RPS-1 (100mM ammonium formate, 40% [v/v]
acetonitrile, 0.5% [v/v] formic acid), then 20μL SDB-RPS-2 (150mM
ammonium formate, 60% [v/v] acetonitrile, 0.5% [v/v] formic acid),
then 30μL SDB-RPS-3 (5% [v/v] NH4OH, 80% [v/v] acetonitrile). For the
DDA libraries for the 21 and 44min gradients, peptides were fractio-
nated into a final eight fractions using a Pierce High pH reversed-Phase
Peptide Fractionation Kit (Thermo Fisher Scientific, 84868), according
to the manufacturer’s instructions.

Mass spectrometric analysis. All measurements were performed on a
Thermo Exploris 480 mass spectrometer, with minimal chromato-
graphy column changes. SeveralMS setups and strategies were tested,
most importantly data independent vs data-dependent acquisition.
The effect of gradient length on map quality was evaluated for 21, 44
and 100min gradients, for both triply SDB-RPS fractionated27 and
unfractionated samples.

Nanoflow reversed-phase chromatography was performed using
either the Evosep One (Evosep Biosystems) or the EASY-nLC 1200
ultra-high-pressure system coupled online to an Orbitrap Exploris 480
instrument via a nano-electrospray ion source (all Thermo Fisher Sci-
entific). On the EASY-nLC 1200 system a binary buffer system with the
mobile phases A (0.1% [v/v] formic acid) and B (80% acetonitrile, 0.1%
[v/v] formic acid)wasemployed. Peptideswere separated in 100min at
a constant flow rate of 300 nL/min on a 50 cm× 75 µm (i.d.) column
with a laser-pulled emitter tip, packed in-house with ReproSil-Pur C18-
AQ 1.9 µmsilicabeads (Dr.MaischGmbH). The columnwasoperated at
60 °C using an in-house manufactured oven. In total, 300ng of pur-
ified peptides in Buffer A* were loaded onto the column in Buffer A and
eluted using a linear 84min gradient of Buffer B from 5 to 30%, fol-
lowed by an increase to 60% B in 8min, a further increase to 95% B in
4min, a constant phase at 95% B for 4min, followed by washout—a
decrease to 5% B in 5min and a constant phase at 5% B for 5min—
before re-equilibration. On the Evosep One LC system a binary buffer
systemwith themobile phases A (0.1% [v/v] formic acid) andB (0.1% [v/
v] formic acid in acetonitrile) was used. Peptides were separated in
21min at a flow rate of 1.0 µL/min on an 8 cm column (with a
throughput of 60 samples per day [SPD]) or 44min at a flow rate of
0.5 µL/min on a 15 cm column (with a throughput of 30 SPD), using in-
house packed columns and standard pre-programmed gradients. The
15 cm in-housepacked columnwasoperated at60 °Cusing an in-house
manufactured oven.

For DDA, the Orbitrap Exploris 480 mass spectrometer run by
Xcalibur (v.4.4, Thermo Fisher) was operated in top 15 scan mode
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(DDA) with a full scan range of 300– 1650 Th when coupled to the
EASY-nLC 1200 system (100min gradient). Survey scanswere acquired
at 60,000 resolution with an automatic gain control (AGC) target of
3 × 106 charges and a maximum ion injection time of 25ms. The
selected precursor ions were isolated in a window of 1.4 Th, frag-
mented by higher-energy collisional dissociation (HCD) with normal-
ized collision energies of 30. Fragment scans were performed at
15,000 resolution, with a maximum injection time of 28ms, an AGC
target of 1 × 105 charges, and a precursor dynamic exclusion for 30 s.
Acquisition schemes for the data-independent acquisition (DIA) scan
mode used here were described previously57,58, but were optimized
and tailored for the Dynamic Organellar Maps approach. In brief, the
DIAmethod for the 100min gradient consisted of one survey scan that
was followed by 33 variably sized MS2 windows (17–161 Th) in one
cycle, resulting in a cycle time of 2.5 s. Survey scans were acquired at
120,000 resolution with an AGC target of 3 × 106 charges and a max-
imum injection time of 60ms covering a m/z range of 350–1400.
MS2 scans were acquired at 30,000 resolution with an Xcalibur-
automated maximum injection time, covering a m/z range of 332
(lower boundary of the first window) to 1570 (upper boundary of the
33rd window). The DIA method for the 44min and 21min gradient
consisted of one survey scan that was followedby 35 equally sizedMS2
windows (19.2 Th with 1 Th overlap) in one cycle, resulting in a cycle
time of 1.5 s. Survey scans were acquired at 120,000 resolution with an
AGC target of 3 × 106 charges and a maximum injection time of 45ms,
covering am/z range of 350–1400. MS2 scans were acquired at 15,000
resolution with a maximum injection time of 22ms, covering a m/z
range of 361–1033.

Raw data analysis
For peptide andprotein identification,MS rawdatawere imported into
MaxQuant version 2.1.334. Unless otherwise stated, default parameters
were used for all settings. The MS2 spectra were searched against the
SwissProt entries contained in the UniProt human reference proteome
FASTA database (UP000005640_9606, 42,418 entries). Spectral
libraries were constructed using DDA raw data of fractionated sub-
cellular samples of the same organellar maps that were used for the
data acquired in DIA mode.

Spectral library generation and DDA analysis. For spectral libraries
and the DDA analyses, DDA raw files were processed inMaxQuant32,59

employing the Andromeda search engine60. For accurate label-free
quantification, the ‘MaxLFQ algorithm’22 was enabled with LFQ
minimum ratio count of 1 and the match-between-runs feature was
enabled to match between equivalent subcellular fractions of repli-
cates. Each spectral library was assembled from 21 samples or
56 samples (six subcellular fractions as used for mapping, plus
cytosol, each fractionated at the peptide level threefold or eightfold
as described above). A dedicated library was generated for each LC
gradient length (100min, 156.7 K peptides; 44min, 88.5 K peptides;
21min, 58.7 K peptides).

DIA analysis. DIA raw files were processed via MaxDIA34, which is
embedded into the MaxQuant software environment, using default
settings except for using a minimum LFQ ratio count of 1 and dis-
abling large ratio stabilization. For both the discovery and library DIA
approaches, spectral libraries of peptides were provided in the form
of ‘peptides’, ‘evidence’, and ‘msms’ files. Whereas for the library
approach these files were obtained from MaxQuant DDA searches,
for the discovery approach an in silico predicted library for all human
peptides with up to 1 missed cleavage was used. The prediction had
previously been generated using the DeepMass:Prism tool35. The
provided library was filtered to contain only Swiss-Prot entries, using
a python script (github.com/cox-labs/DIAtools/tree/main/Misc/
FilterAdditional).

Data analysis using the DOM-ABC web app
The intra- and inter-experimental quality of the dynamic organellar
maps were evaluated to assess the performance of different combi-
nations of MS methods, LC-MS setups, and processing strategies. To
enable the visual exploration, quality assessment and analysis of spa-
tial proteomics data, we developed DOM-ABC, a web-based app
(https://domabc.bornerlab.org). The workflow is entirely based on the
Python scripting language and uses several external libraries as
documented on github (https://github.com/JuliaS92/Spatial
ProteomicsQC). DOM-ABC performs customizable data filtering, nor-
malization, and graphical representation. Various analysis tools allow
detailed exploration of data, map quality, reproducibility, and resolu-
tion, as well as performance of localization prediction and transloca-
tion analyses. All results can be downloaded as support vector
graphics, formatted tables and as comprehensive.json files for custom
analysis. Importantly, several maps can be compared in parallel. Set-
tings defining the downstream analysis can be downloaded to ensure
reproducible analysis. All map analyses shown in the paper were per-
formed using six-point profiles, i.e., protein abundance across 1 K, 3 K,
6 K, 12 K, 24 K and 80K fractions.

Data filtering. The primary output fromMaxQuant or Spectronaut, or
any tabular data with profiling-based protein quantifications, can be
loaded into DOM-ABC. Per default settings for the MaxQuant output,
reverse hits, contaminants and proteins only identified by sites are
removed. Further filtering is then performed at the level of individual
maps and tailored to each quantification strategy, to obtain datasets
with high-quality measurements. All of these steps are defined with
default settings, but can be parameterized differently or individually
disenabled through the graphical user interface.

For SILAC maps, SILAC ratios are retained if they are based on
more than two quantification events, or on two quantification events
where the ratio variability was below 30%. For each fraction, SILAC
ratios are normalized by dividing by the median ratio for the fraction.
Only proteins with complete profiles are retained, i.e., a valid SILAC
ratio in each subcellular fraction. SILAC ratios are inverted (assuming
that the reference fraction is SILAC heavy13) and profiles for each
protein are 0-1 normalized, as follows. For each protein, the ratios are
summed across the six fractions. Each ratio is then divided by the
summed total for the protein. For LFQ maps, intensities are already
globally normalized, hence no further normalization is required. Two
stringency filters are applied: First, only profiles with LFQ intensities in
at least four consecutive fractions are considered. Second, profiles are
rejected if theirmeanMS/MS count per subcellular fraction is less than
two. Then, (0-1) normalization of each profile is performed by sum-
ming the intensities across all fractions and dividing each intensity by
the summed total for the profile. Filtered datasets are annotated based
on a predefined set of 1076 organellar marker proteins covering
12 subcellular localizations/organelles13. These default settings were
used for all datasets in this study.

Protein group alignment. To compare quantifications from different
raw data processing runs, protein groups need to be aligned. We
implemented a strategy in whichwe prioritizematching of single-gene
locus protein groups with complete coverage across experiments,
over matching of (rare) multi-gene locus groups and groups with
incomplete coverage. First, single-gene locus protein groups are
temporarily reduced to the canonical id (if present), and otherwise to
the first listed isoform id. Protein groups that can be found in all
compared runs are then re-labelled to the reduced protein group id
and flagged as ‘primary id’ matches. Typically, this is the case for the
majority of proteins. Second, we maximize overlap for the remaining
multi-gene locus groups, and single-gene locus groups with incom-
plete coverage, at the cost of making less exact matches. Starting with
the largest multi-gene locus group across all experiments, we match
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this with its largest remaining subset in each other experiment,
removing them from the pool of available groups. This is repeated
until nomulti-gene locus groups remain. Thesematches are re-labelled
with all protein ids contained within the group, and either flagged as
‘multiple genes’, if all matched protein groups cover identical loci
across experiments, or as ‘gene level conflict‘, if different loci were
covered in different experiments. At the end of this procedure only
single-gene locus groups with incomplete coverage remain to be
aligned. Theseare reduced in the samewayas the single-gene locus full
coverage groups and are also flagged as ‘primary id‘ matches. To
ensure full traceability of the original protein grouping in each of the
compared search engine runs, an id mapping table is stored and
available for download.

Assessment of proteomic depth. Proteomic depth is assessed by
counting protein groups that are either identified in one or all repli-
cates, and by counting proteins that are fully profiled (i.e., passing all
quality filters) in one or all replicates. Venn diagrams and upset plots
are provided to evaluate overlap of proteins.

Principal component analysis. For graphical map representation, fil-
tered and 0-1 normalized data from all experiments compared were
centered and scaled to unit variance in each fraction. To do this, mean
intensities were calculated for each fraction and subtracted from each
individual intensity of the corresponding fraction (centering). Subse-
quently, each intensity was divided by the intensity standard deviation
of this fraction (scaling to unit variance). Maps were then jointly sub-
jected to principal component analysis (PCA) to achieve dimension-
ality reduction. For each map, the first three principal components
were calculated via Python’s scikit-learn library61. For HeLa cells scores
plots of PCs 1 and 3 usually provide the best visual resolution of post-
nuclear clusters, as PC 2 is dominated by the nuclear 1 K fraction. The
tool also provides the option to calculate further principal compo-
nents, and shows elbow and loading plots together with the 2D or 3D
PC projections. When interpreting distances in PCA space as done in
Fig. 5, the axes should be scaled according to variance, which can be
toggled in DOM-ABC.

Profile scatter within stable complexes (intra-map scatter). The
subunits of a stable protein complex have identical subcellular dis-
tributions, and should therefore have very similar abundance profiles.
Observeddeviations aremostly causedbyMSmeasurement noise, and
intra-complex protein scatter thus reflects within-map quantification
precision. We curated a dataset of around 30 well-characterized pro-
tein complexes with at least five subunits (e.g., 20S core proteasome,
CCT, COPI). Within DOM-ABC, starting with the filtered and 0-1 nor-
malized data, profiles that belong to a specified protein cluster are
extracted andfiltered to leaveonlyproteins thatweremeasured across
all compared maps and experiments. By default, only complexes with
full coverage data for at least five proteins are analyzed. Subsequently,
the absolute distance (Manhattan Distance) of each subunit profile to
the complex median profile is calculated. Smaller distances suggest
more precise quantification. We observed that the baseline scatter
varies somewhat between complexes, and therefore normalize the
acquired distances for comparison of experiments. To this end, for
eachprotein all distances are divided by themedian distance across all
experiments. These values follow a lognormal distribution and are
aggregated per complex by median calculation. In DOM-ABC it is
possible to also normalize to a specific experiment if that is preferred.
We recommend that theoverall assessment shouldbebasedon at least
ten different complexes.

Inter-maps profile reproducibility (inter-maps scatter). To evaluate
the reproducibility of 0-1 normalized profiles, the inter-profile scatter
across replicates is calculated. For each protein, the absolute distance

(ManhattanDistance) of each replicate profile to themean profile from
all replicates is calculated; these distances are averaged to obtain this
protein’s profile scatter. Global profile scatter is then plotted as a
density function for proteins common to all compared maps. As an
additional output, the distribution for all profiled proteins can be
displayed, regardless of overlap with the other examined maps. The
greater the proportion of proteins with low scatter, the better the
between-maps reproducibility. As a numeric readout, the scatter at a
specified quantile of each distribution can be displayed.

Support vector machine analysis. To further evaluate the perfor-
mance of organellar maps, their power to predict protein localization
was assessed using quality-filtered, (0-1) normalized data with full
replicate coverage. For supervised classification a set of marker pro-
teins covering 11 subcellular localizationswas usedas ameans to assign
all other proteins to organellar clusters by SVMs; the previously
defined ER_high_curvature cluster13 was removed in this study due to
the low number ofmarker proteins in the depth-limited short-gradient
datasets. As far as practicable (see figure legends), only markers pre-
sent in all compared datasets were included, and identical SVM para-
meters were used. Machine learning was done using the SVM module
of DOM-ABC, which is based on functionality provided in scikit-learn61.
The SVM module enables selection of marker classes, definition of a
hold-out test set, automated hyper parameter optimization and finally
SVM training and prediction. During training the parameters C and
gamma of the radial basis function are optimized via an iterative grid-
search, employing fivefold cross-validation. At each grid point SVMs
are run on each loaded dataset and the optimum for the summed
accuracy across datasets is found. For prediction the SVM is fit using
the training set and fivefold cross-validation is used for converting the
raw SVM scores into probabilities. Proteins are then assigned to the
best fitting organellemodel and divided into confidence classes, based
on the probability: >0.95 very high confidence; >0.8, high confidence;
>0.65, medium confidence; >0.4, low confidence; <0.4, best guess
assignment. For the hold-out test set a misclassification matrix (Sup-
plementary Data 4) is derived to calculate the globalmarker prediction
recall (proportion of correctly predicted to the total number of mar-
kers), the organelle specific recall (proportion of markers correctly
assigned to the cluster), and the organelle specific precision (ratio of
markers correctly assigned to the number of all markers assigned to
the cluster). The harmonic mean of recall and precision, the F1 score,
was used as the primary readout for SVM performance. To assess the
variability of these scores, the test set is sub-sampled 20 times (class
stratified 75%) and the mean scores ± standard deviation are reported.
For scores averaged across organelles, the errorbar also represents the
deviation across these samples and not the deviation across orga-
nelles. DOM-ABC is also able to accept misclassification matrices from
external tools like Perseus52 and MetaMass50 as input.

Protein subcellular localization shift analysis. We compared orga-
nellar maps from untreated HeLa cells and from HeLa cells that had
been starved in the presence of BafA for 1 h. DOM-ABC contains a
module that implements our previously established MR analysis13,44 to
identify proteins with significant subcellular localization shifts. Repli-
cates were numbered 1–3. Using the default settings of the DOM-ABC,
5672 normalized high-quality profiles were obtained across all six
maps. To ensure that the next analysis steps are not affected by mis-
quantified profiles, we further removed proteins where the smallest
cosine correlation between any replicates within one condition was
<0.9. This left 4475 proteins in the set for DIA data. Next, delta profiles
were calculated within each cognate pair of untreated and treated
maps, by subtracting the 0-1 normalized profiles from a treated map
from the profiles of its matching control map. For each of the three
obtained sets of delta profiles, amultidimensional outlier test basedon
the robust Mahalanobis distance was performed62, using functions
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from scikit-learn61 (proportion of data used = 0.75, median of 31
iterations with different random states). These distances follow a chi2
distribution and obtained p-values reflect the probability of observing
a given profile shift (or a greater shift) by chance. For each protein, the
three p-values from the three replicates where then combined using
the Fisher method. The combined p-values where corrected for mul-
tiple testing using the Benjamini-Hochberg false-discovery-rate (FDR)
approach, and −log(10) transformed to obtain a Movement score (M
score). We chose an FDR of 0.05 as our initial stringent cut-off, cor-
responding to anM-score of 1.3.We also included the requirement that
at least two of the replicate p-values need to be <0.1, to filter out
proteins with single very small p-values in only one replicate. As a
further stringency filter, we also calculated a reproducibility score (R
score). For each protein, the Pearson correlation of all pairs of delta
profiles was calculated (Rep 1 vs 2, 1 vs 3, 2 vs 3) and the median
correlationwasdesignated as theR score. Profile shiftswithM > 1.3 and
R > 0.75 were considered significant and reproducible.

DOM-ABC 1-min quick start guide
This guidewill allowyou to test theDOM-ABC tool with data generated
in this study.
1. Go to webpage https://domabc.bornerlab.org.
2. Click on the big green button ‘Benchmark multiple experiments’.
3. From the ‘Add reference set’ drop-downmenu (top right corner),

select ‘HeLa 1×100min libraryDIA’. Click the ‘Load’ button.
4. Repeat Step 3., to load the ‘HeLa 1×100min DDA’ file.

You have now loaded two different sets of maps.
5. Click the big green button ‘Align and analyse selected datasets’.

This may take a moment—the program will update on progress
and tell you when it’s finished (bottom right corner).

6. Scroll down, and select the ‘Overview’, ‘PCA maps’, ‘Depth and
coverage’,… tabs to view the different analyses.

The sample ‘reference sets’.json files are already integrated into
the DOM-ABC tool. To analyse the complete datasets generated in this
study, upload the .json files provided as Supplementary Data 5. To do
so, in step 3, click the ‘Browse’ button, select a .json file, and upload.

To configure your own analysis of profiling data, go to the start
page and follow the instructions.

Downstream analysis of translocating proteins
Clustering and enrichment analysis of moving proteins. To group
and label the detected moving proteins, hierarchical clustering and
annotation enrichment were used, applying previously published
python code63, that largely relies on functions from the widely used
scipy library. For all 164 outliers, delta profiles were first subjected to
hierarchical clustering. Variable parameters are the distance metric,
linkagemethod and distance threshold. Complete linkage was chosen,
because it yielded highly similar dendrograms independent of the
distance metric. Pearson correlation as distance metric yielded the
clearest and visuallymost easily comprehensible clustering. The cutoff
was chosen such that all visually apparent groups of shifts were com-
plete and well separated at the same time, which yielded the 7 clusters
reported in Fig. 4 andSupplementaryData 2. All 164proteinswere then
annotated with GO terms for cellular compartment, biological func-
tion andmolecular function, aswell as protein families, all downloaded
from Uniprot (30.9.2021). A fisher’s exact test was applied for each
annotation term, for each cluster against the full list of transitioning
proteins. Resulting p-values were corrected for multiple hypotheses
using Benjamini-Hochberg correction and a cutoff of 10% FDR was
applied. Two clusters did not yield any enriched terms at this cutoff
and thus remained unlabelled.

Sensitive detection of cycling proteins by clustering. To find other
moving proteins that have a similar direction, but lower shift

magnitudes than the proteins detected by the M-R analysis, we again
used hierarchical clustering. As we were looking specifically for Golgi
localizedproteins following a similar trajectory as the 10Golgi proteins
among our 164 hits, we first curated a list of Golgi proteins. This
included the 10 hits, Golgi marker proteins, proteins classified as Golgi
proteins by SVM predictions based on the non-treated data set, and
proteins classified asGolgi proteins in13. From this list we only included
lumenal and transmembrane proteins. The full pairwise correlation
matrix between these proteins was calculated and used as input for
hierarchical clustering, as described above, but with Euclidean dis-
tance as the metric for clustering. Using the correlationmatrix instead
of the delta profiles as input retains the information from all pairwise
comparisons and clusters proteins by their phenotype similarity to all
other proteins in the set, rather than the raw profiles, which is more
robust.

To categorize endosomal shift magnitudes, we calculated endo-
somal shifts, i.e., the difference between the correlations with the
mean endosomal marker profiles before and after treatment, for all
5672 proteins. These differences follow a fairly symmetrical and in the
central part roughly normal distribution around zero (Supplementary
Fig. 6B). We robustly z-scored shifts using the median of −0.007 and a
robustly estimated standard deviation of 0.141 (based on the median
absolute deviation from the median). z-scores where then used to
classify shift magnitudes as follows: z < 0.5, no relevant shift;
z = (0.5–1), very small; z = (1–2), small; z = (2–3), medium; z = (3–4),
large; z > 4, very large. Further manual inspection of profile shifts
(Fig. 4d; interactive Supplementary Data 3) allowed us to label very
large shifts as complete endosome transitions, and smaller shifts as
partial endosome transitions.

Statistics and reproducibility
All dynamic organellar maps were prepared in biological triplicates
and reproducibly showed similar results as outlined in the “Results”
section.

Images show in Fig. 6 are representative of at least 9 images per
condition from two biological replicates (independent starvation/BafA
treatments performed on separate days), with immunofluorescence
labelling andmicroscopy performed independently for each replicate.
Images shown in Fig. 7 are representative of at least 16 images per
condition from two biological replicates (independent BafA treat-
ments performed on separate days), with immunofluorescence label-
ling and microscopy performed independently for each replicate.
Images shown in Supplementary Fig. 6C are representative of 3 images
per condition from one biological replicate.

Statistical analyses of imaging data were performed in GraphPad
Prism version 9.4.1 for Windows. The Golgi protein localization data
shown in Fig. 7 were analyzed using a Kruskal–Wallis test with Dunn’s
Multiple Comparisons post-test for comparisons to the 0 h timepoint.
The number of cells analyzed varied between samples; n = a minimum
of 125 cells per condition examined over two independent experi-
ments, except for the 6 h timepoint for TM9SF2 for which n = 125 cells
examined over one independent experiment. All individual n values
and resultingp values are reported in SupplementaryTable 1. Replicate
data were combined for plotting and statistical analyses, but separate
analyses of each individual replicate delivered consistent results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data generated in this study have
been deposited to the ProteomeXchange Consortium [http://
proteomecentral.proteomexchange.org] via the PRIDE partner repo-
sitory under the accession numbers PXD034962 (DDA data),
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PXD034971 (DIA data acquired with the optimized MS methods), and
PXD034969 (raw data for the comparative experiment). The imaging
data generated in this study have been deposited on Zenodo and are
available at https://doi.org/10.5281/zenodo.8197844. All DOM-ABC
benchmarks in this study can be replicated by upload of the .json
files, provided in Supplementary Data 5, to https://domabc.bornerlab.
org. See DOM-ABC 1-min Quick Start Guide above. Source data are
provided with this paper.

Code availability
The web app DOM-ABC introduced in this study is available at https://
domabc.bornerlab.org, and the source code at https://github.com/
JuliaS92/SpatialProteomicsQC and version 1.0.0 was deposited at
https://doi.org/10.5281/zenodo.8219481. The image analysis script
used in this study is available at https://doi.org/10.5281/zenodo.
8203066.
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