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Guadecitabine plus ipilimumab in
unresectable melanoma: five-year follow-up
and integrated multi-omic analysis in the
phase 1b NIBIT-M4 trial
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Association with hypomethylating agents is a promising strategy to improve
the efficacy of immune checkpoint inhibitors-based therapy. The NIBIT-M4
was aphase Ib, dose-escalation trial in patientswith advancedmelanomaof the
hypomethylating agent guadecitabine combined with the anti-CTLA-4 anti-
body ipilimumab that followed a traditional 3 + 3 design (NCT02608437).
Patients received guadecitabine 30, 45 or 60mg/m2/day subcutaneously on
days 1 to 5 every 3 weeks starting on week 0 for a total of four cycles, and
ipilimumab 3mg/kg intravenously starting on day 1 of week 1 every 3weeks for
a total of four cycles. Primary outcomes of safety, tolerability, and maximum
tolerated dose of treatment were previously reported. Here we report the
5-year clinical outcome for the secondary endpoints of overall survival, pro-
gression free survival, and duration of response, and an exploratory integrated
multi-omics analysis on pre- and on-treatment tumor biopsies. With a mini-
mum follow-up of 45months, the 5-year overall survival ratewas 28.9% and the
median duration of response was 20.6 months. Re-expression of immuno-
modulatory endogenous retroviruses and of other repetitive elements, and a
mechanistic signature of guadecitabine are associated with response. Inte-
grationof a genetic immunoediting indexwith an adaptive immunity signature
stratifies patients/lesions into four distinct subsets and discriminates 5-year
overall survival and progression free survival. These results suggest that cou-
pling genetic immunoeditingwith activationof adaptive immunity is a relevant
requisite for achieving long term clinical benefit by epigenetic immunomo-
dulation in advanced melanoma patients.

Immune checkpoint inhibitors (ICI) are drugs targeting regulatory
pathways in T cells to enhance antitumor immune responses1.
Treatment with ICI has dramatically improved the clinical outcome
of patients with tumors of different histotypes2, including
melanoma3, and lung cancer4. However, the percentage of subjects
who benefit from ICI therapy is still low, and novel therapeutic

strategies are eagerly awaited to fully exploit their clinical poten-
tial. Indeed, even in the most responsive tumor types, both
intrinsic5 and acquired resistance6,7 limit the efficacy of ICI therapy.
The cellular and molecular characterization of human tumor
samples by high-throughput and deep phenotyping approaches
define the role of the immune microenvironment in driving the
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prognosis of cancer patients and their responsiveness to ICI
therapies8,9.

In this scenario, an active area of biomedical research aims to
identify combinatorial approaches that could improve even the early
phases of developing the antitumor response. Mechanistically, these
new immunotherapy regimens aim at achieving one or more of three
main effects thought to be crucial for overcoming resistance to
immune intervention: (i) fostering the cross-talk between innate and
adaptive armsof the immune system, (ii) promoting the recruitment of
functional T cells at the tumor site, and (iii) counteracting recruitment/
function of immunosuppressive cells.

Among promising agents that may play a role in ICI combinations
there are the hypomethylating agent (HMA) due to their immunomo-
dulatory activity on tumor cells10, the ability to activate innate immu-
nity pathways11,12 and the pre-clinical evidence for enhanced antitumor
effects when combined with ICI13. In this scenario, our Italian Network
for Tumor Biotherapy (NIBIT) Foundation Phase Ib NIBIT-M4 trial,
based on the association of ipilimumabwith theHMA guadecitabine in
advanced melanoma patients, showed significant tumor immunomo-
dulatory effects and preliminary evidence of promising clinical
activity11. More recently, by comparing transcriptional programs eli-
cited by different classes of epigenetic drugs in melanoma cells, we
found that the main biological activity of guadecitabine is the pro-
motion of gene expression and activation of master factors belonging
to innate immunity pathways, including Type I–III interferon (IFN), NF-
kB, and TLR10. These results corroborated the notion that the rescue of
adaptive immunity by ICI may cooperate with the promotion of innate
immunity by the HMA guadecitabine, thus potentially explaining the
clinical activity of the combination. Two additional recent trials,
combining guadecitabinewith pembrolizumab in solid tumors14,15 have
indeed confirmed the significant antitumor activity of this combina-
tion in terms of clinical benefit rate (31.4%) or of progression-free
survival (PFS) rate >24 weeks (37%). Crucially, in both studies, relevant
immune effects were described regarding the upregulation of innate
and adaptive immunity pathways in post-treatment samples.

Despite these initial promising clinical applications of the HMA
guadecitabine combined with ICI, the further development of these
combinatorial approaches requires the understanding of the biologi-
calmechanisms underlying the response and resistance to this specific
type of epigenetic immunomodulation. The NIBIT-M4 study was a
single-arm trial, therefore, in principle, such design prevents the pos-
sibility to achieve a sound disentanglement of the contribution of
ipilimumab vs. the contribution of guadecitabine to the overall clinical
activity.

Here we show that an advanced integrative systems biology
approach, focusing on genomic, transcriptional, and methylation
landscape analysis of baseline and on-treatment tumor tissues can
shed light on the mechanisms of action of the two agents and on the
resistance mechanisms likely impacting the ICI vs. the demethylating
agent. In fact, first, we asked whether responder patients show dif-
ferential enrichment of genomic features vs. non-responder patients.
In particular, we analyze the effects of guadecitabine in the cases
harboring mutations in its target genes. We also explored the pro-
motion of expression of retroviral sequences and of repetitive ele-
ments that represent themechanistic signature of immunomodulation
by guadecitabine.We tested a combinatorial index for predicting long-
term clinical benefit by integrating transcriptional information on the
development of adaptive immunity, the Immunological Constant of
Rejection (ICR)16–18 with a measure of genetic immunoediting (GIE).
The ICR signature incorporates IFN-stimulated genes driven by tran-
scription factors IRF1 and STAT1, with CCR5 and CXCR3 ligands,
immune effectormolecules, and counter-activated immune regulatory
genes. A high expression of ICR genes typifies ‘hot’/immune active
tumors characterized by the presence of a T helper 1 (Th1)/cytotoxic
immune response andpredicts survival and response to ICI in different

tumors including colon cancer17, breast19, bladder, stomach, head and
neck16, sarcoma20, and melanoma8. The GIE index quantifies the
amount of genetic immunoediting as the ratio between observed and
expected tumor neoantigens. Here we show that stratification of
NIBIT-M4 patients based on the ICR/GIE classification predicts Overall
Survival (OS) and PFS, a finding thatwas validated in external larger ICI
datasets. Collectively, our results contribute to improve the under-
standing of response and resistance to epigenetic immunomodula-
tion, and provide a valuable multi-omics-related tool that may be used
for patient stratification and clinical outcome prediction in immu-
notherapy cohorts.

Results
Long-term outcomes in the NIBIT-M4 trial
At data cutoff, July 1st 2022, with aminimum follow-up of 45months, 6
(31%) of the 19 patients enrolled in the NIBIT-M4 study were alive. The
median OS was 25.6 months (95% CI, 0.0-52.9), while the median PFS
was 5.2 months (95% CI, 4.0–6.4); the 5-year OS rate was 28.9% with a
5-year PFS rate of 5.3%; median Duration of Response (DoR) was
20.6 months (95% CI, 12.4–28.8). Eighteen patients (95%) were
treatment-naive at study entry and 1 (5%) had received PD-1 mAb as
first-line therapy. Three patients were in Complete Response (CR) and
off-study therapy, while 13/19 (68%) had received subsequent line(s) of
therapy, including immunotherapy, target therapy, and/or che-
motherapy; among those, 5 patients who had achieved a disease
control (DC) had a median time to the subsequent treatment of
18.9 months (range 10.3–39.0) (Fig. 1).

Genomic landscape: mutational profile differences in baseline
and on-treatment lesions in responder (R) vs. non-responder
(NR) patients
Longitudinal multi-omics profiling, including whole exome sequen-
cing (WES), RNA Sequencing (RNASeq), and Reduced representation
bisulfite sequencing (RRBS), were performed on tumor biopsies col-
lected at baseline (week 0) and week 4 andweek 12 on therapy from 14
patients (Supplementary Fig 1). Matched normal tissue collected at
baseline was available for 8 patients. The exome sequencing profiling
of our cohort, performed using stringent filtering, showed a high
consistency of the somatic calls/mutations during treatment (Fig. 2,
Supplementary Data 1). Although tumormutational burden (TMB) was
not significantly different in R vs. NR patients (16.9 vs. 15.3, p value =
0.6, Student’s t test), several significant differences were found at the
single gene level. BRAFwas slightly enriched in NR (p value = 0.02, Chi-
squared test). In contrast, NRAS mutation was significantly more fre-
quent in R vs. NR (50% vs. 0%, p value = 5.4e−5, Chi-squared test).
ADAMDEC1, encoding a disintegrin metalloproteinase associated with
dendritic cell (DC) function,was alteredonly in lesions fromRpatients.
Mutations in genes belonging to the epithelial to mesenchymal tran-
sition (EMT) pathway were enriched in NR (p value = 0.01, Chi-squared
test). The CDKN2A gene, frequently mutated in melanoma (35% of
patients in TCGA cohort), was more frequently altered in NR patients.
CDKN2A has been demonstrated to inhibit EMT and promote cancer
immunity and CDKN2A deletions have been associated with ETM in
different cancer types21. Three neuronal-related genes (PCLO, PLXNA4,
and EPHA7), and the gene encoding the leptin receptor (LEPR), all
reported as mutated in melanoma at a variable frequency (37%, 11%,
16% and 8% of samples in TCGA cohort, respectively), were altered
more frequently in R compared to NR patients. The male germline-
specific gene PLCZ1 was mutated only in lesions from R patients.
Interestingly, several of the mutated genes (BRAF, NRAS, CDKN2A,
EPHA7, PLXNA4) have been previously associated with response or
resistance to ICI in monotherapy22–26 although for some of them (e.g.
BRAF) evidence is not conclusive27. The DNMT1 gene, encoding one of
the guadecitabine targets, was mutated in two NR patients, and one of
themutations was a truncating event suggesting loss of function of the

Article https://doi.org/10.1038/s41467-023-40994-4

Nature Communications |         (2023) 14:5914 2



DNMT1 gene product. An additional mutation of SETD2, involved in
chromatin organization, was observed in another NR patient. We
analyzed the effect of somatic mutations in DNMT1 or SETD2 on the
methylation during therapy. The increasing or decreasing trend was
evaluated based on the slope of the robust linear regression line
between the three time points. We analyzed all genomic regions,
specifically the coding, intergenic, intronic regions (Supplementary
Fig 2a), and then regulatory regions (Supplementary Fig 2b) inDNMT1-
and SETD2-mutant vs. wild-type lesions. Interestingly, DNMT1- or
SETD2-mutant samples did not show the decreasing pattern over time
that we observed in the wild-type lesions. This was also confirmed in
long terminal repeat (LTR) including endogenous retroviral elements
(ERVs) (Supplementary Fig 2c). ERVs are particularly important for the
immune response to tumors, even in the context of ICI28. Previous
studies have shown that by inducing the re-expression of ERV
sequences, demethylating agents can activate the viral mimicry
response secondary to intracellular recognitionof viraldsRNA29,30. This
response explains the promotion of type I IFN and innate immunity
pathways that characterize the guadecitabine-specific gene signature
recently defined by us in melanoma cells10. We confirmed that the
expression of LTR elements was inversely correlated with the expres-
sion after treatment with demethylating agent in wild-type, but not in
mutant tumors (Supplementary Fig 2d).

Solar ultraviolet (UV) radiation is one the main etiological factor
for skin cancer, including melanoma as it causes a characteristic
genomic mutational pattern associated with elevated TMB via the
formation of pyrimidine-pyrimidine photodimers (COSMIC signature
7)31,32. We performedmutational signature deconvolution on the cases
for which the matched normal was available (n = 8). Two (SBS7a and
SBS7b) of the four UV-associatedmutational signatures were themost
frequently observed (Supplementary Fig 3). However, the limited
number of cases did not allow for detecting any significant association
between UV mutational signature rate and response (p value = 0.064,

Chi-squared test), mutation load (p value = 0.435, Chi-squared test)
and neoantigen load (p value = 0.122, Chi-squared test), respectively.

Overall, our longitudinal analysis confirmed several genomic
features previously associated with response to ICI, such as defects in
the EMT, mutations of BRAF and NRAS and in other immune-related
genes, and was useful to discover, even for a limited number of cases,
that loss-of-function mutations in chromatin organization and gua-
decitabine targetsmay contribute to limit the efficacy of the combined
therapy and the epigenetic immune-modulatory effect of the HMA.

Transcriptional landscape of baseline and on-treatment tumor
lesions: distinct and evolving transcriptional programs distin-
guish R from NR patients
RNA-sequencing data from the NIBIT-M4 were used to carry out dif-
ferential gene expression analysis between R and NR patients at dif-
ferent time points of treatment (Supplementary Data 2). This analysis
showed a progressive enrichment from baseline to week 12 in Gene
Ontology Biological Processes (GO: BP) categories related to immune
processes in R compared to NR patients (Fig. 3a and Supplementary
Data 3). In contrast, in lesions fromNR patients, a progressive increase
from baseline to week 12 was found for GO terms related to adhesion,
cell cycle, metabolism, and skin developmental processes. We tested
several state-of-the-art predictive signatures of response to ICI,
including MIRACLE score8, ICR19 IMPRES33, TIDE34, and MPS35. None of
these five scores discriminated against R from NR patients when con-
sidering either baseline and on-treatment samples or at various time
points (Supplementary Fig 4a and Supplementary Data 4) neither
using standard tests for comparing the difference between multiple
subjects and repeated measures.

We have recently performed a comparative profiling of gene sig-
natures induced by different classes of epigenetic drugs in melanoma
cell lines10 and found that guadecitabine activates several innate
immunity pathways by induction of a signature of 166 genes. To better

Fig. 1 | Swimmer plot analysis of NIBIT-M4 patients. Swimmer plot showing by
study armpatientswho at the timeof data cutoffwere alive and either still on study
treatment or off-study therapy, without having received subsequent therapy, and
all patients who have received subsequent treatment at the time of data cutoff,

regardless of whether alive or dead. Subsequent treatments include immu-
notherapy (i.e., anti-PD-1 monotherapy or combinations, ICOS agonist or vaccine),
BRAFi +MEKi, and chemotherapy.
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disentangle the effect of the HMA in our cohort, we performed gene
set enrichment analysis of the guadecitabine-specific signature on the
list of differentially expressed genes between R and NR (Fig. 3b). We
found that this signature was significantly activated in R at week 4 (p
value = 4.172e−05, GSEA permutation test) and week 12 (p
value = 1.055e−04, GSEA permutation test). To further validate this
finding, we used the data from another trial in which patients with
ovarian cancer were treated with a combination of ICI and epigenetic
drug14. We observed a significant activation of the guadecitabine sig-
nature after treatment in R patients (Fig. 3c). Our results confirm the
main immune-modulatory effect of HMA and that this effect is

associated with response. By a custom-designed NanoString assay we
then explored differential expression in R vs. NR lesions of 20 pub-
lished immune-related signatures (Supplementary Fig 4b) providing
informationonB-cell content anddifferentiation34,36, tertiary lymphoid
structures (TLS) formation37,38, follicular T helper (TFH) cells34,36, T-cell
exhaustion (TEX) subsets39, tumor-associated endothelial cells40,
immune checkpoint blockade (ICB) response41,42, and the recently
identified guadecitabine-specific signature genes induced by this
demethylating agent in melanoma cell lines10. The large majority of
these signatures was selectively enriched, considering all time points,
in tumor biopsies fromR compared to NR patients. These results were
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consistent with preferential development in R lesions of a coordinated
T- and B-cell mediated immune response involving TLS and TFH cells,
with enhanced expression of IFN-ɣ-induced genes crucial for ICB
response and with increased presence of CD8+ T cells at different
stages of exhaustion.

We also used Ingenuity Pathway Analysis (IPA) to identify cano-
nical pathways differentially regulated in R vs. NR patients during
treatment. Indeed, IPA database accounts for positive and negative
associations of genes and pathways. This analysis predicted significant
activation in R patients of several immune-related pathways including
the “Pathogen induced cytokine storm”, the “TH1” and “TH2”, the
“phagosome formation” and the “cross-talk between DC and Natural
Killer (NK) cells” pathways (Supplementary Fig 4c). In contrast, path-
ways predicted to be inhibited in R vs. NR patients included the “PD-1,
PD-L1 cancer immunotherapy”, the “MSP-RON signaling in macro-
phages” and the “GP6 signaling”pathways.These results confirm thatR
patients experience the activation of immune pathways crucial for
developing innate and adaptive immunity.

Finally, we analyzed the differential expression between R and NR
patients in selected gene sets (Supplementary Fig 5). Lesions from R
patients showed a progressive increase of expression, frombaseline to
week 12, of genes encoding for molecules controlling T-cell activation,
inhibitory receptors and ligands, chemokines, and components of the
immunoproteasome. In line with our previous reports where we have

shown that DNA methyltransferase inhibitors can upregulate the
expression of major histocompatibility complexes (MHC) proteins43,
we observed that HLA class I and class II were significantly upregulated
in R patients.

By contrast, lesions fromNRpatients showedhigher expressionof
cell cycle-, EMT- and skin development-related genes with a consistent
pattern across the weeks. Several of the EMT-related genes with higher
expression in NR patients encoded formolecules controlling adhesion
(ITGB3, VCAM1, collagens, and others), interaction with extracellular
matrix (VEGFA,MMP14,WNT5A, LAMA1, andothers), andmelanomade-
differentiation (KRT9, KRT10, EGFR, and others). In particular, WNT5A
is a well-defined feature of a poor melanoma phenotype and has been
associated with a negative modulation of the tumor
microenvironment44. Lesions from NR patients also showed sig-
nificantly higher expression, compared to R patients, in several key
genes controlling cell proliferation including cyclin-dependent kinases
1 and 4, cyclins B1 and B2, mitotic checkpoint serine/threonine kinase
B, and other transcription factors controlling cell cycle such as E2F1
and E2F2.

The composition of the tumor microenvironment of our cohort
was deconvolved from transcriptome profiling data using eight
immune- and two stromal-cell signatures with MCP-counter45 (Fig. 4a).
We found a significantly higher abundance inR vs.NRof CD8+ T cells (p
value = 0.042, Wilcoxon test) at week 4 (Fig. 4a), other comparisons
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Fig. 3 | Transcriptional landscape of the NIBIT-M4 trial. a Gene Set Enrichment
Analysis (GSEA, as implemented in clusterProfiler84) from supervised differential
analysis between R (n = 6) and NR (n = 8) patients (negative binomial generalized
linear model with likelihood ratio test (glmLRT), as implemented in EdgeR82)
before treatment (week 0) and after four (week 4) and twelve (week 12) weeks. x
axis reports the aggregated p value of significant enriched GO:BP terms (false
discovery rate method from empirical permutation test, FDR<0.1), computed
using Fisher method and classified into seven main categories. Size of the dot
represents the number of GO:BP terms grouped into a category; color of the dots
represents the mean Normalized Enrichment Score (NES) of the terms. b Volcano

plot (left) of differentially expressed genes (p value < 0.05 from glmLRT, as
implemented in EdgeR82) between R (n = 6) and NR (n = 8) patients, labeled genes
belong to the guadecitabine-specific gene signature10. x axis reports the effect size
(in log scale), y axis reports the −log(p value) from glmLRT, as implemented in
EdgeR82. GSEA enrichment (right) of the guadecitabine-specific signature on the
ranked list of differentially expressed gene at week 4 and week 12. c Same as in
b using the dataset from a trial of combined therapy ICI plus HMA from Chen et al.
202214 (C2D8 post-treatment, n = 4R and n = 5 NR). Source data are provided as a
Source Data file.
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Fig. 4 | Immunemicroenvironment. a Immunemicroenvironment deconvolution
of immune cell fractions stratified by time point and response (n = 6R and n = 8
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estimated from RNASeq (y axis) (Spearman correlation coefficients rho (r) and
associated p values from two-tailed correlation test are provided for R and NR
groups, samples from n = 15 R and n = 16 NR). c Density of CD8 T cells by location
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(samples from n = 9R and n = 13 NR) (p value from two-sided Student’s t test
between R and NR groups). d Scatterplot between the T-cell receptor clonality

(B locus) and CD8+ T-cell (left) and NK cell abundances (right) (Pearson’s correla-
tion coefficient (r)) and associated p values from two-tailed correlation test are
provided for R (n = 6) and NR (n = 8) groups). a, c Box plots show the median as
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considered potential outliers and represented with dots. b, d Bands represent
confidence intervals (±0.95) around a linear model fitted by robust regression
using an M estimator. Source data are provided as a Source Data file.
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did not produce significant differences also due to the low number of
cases. The estimated increased abundance of CD8+ T cells in R lesions
was in agreement with available quantitative immunohistochemistry
(IHC) data (r = 0.79, p value = 1e−07, N = 11, Spearman correlation test)
for this immune subset (Fig. 4b) and with enhanced CD8+ intratumoral
T cells in R lesions (p value = 0.002, Student’s t-Test) (Fig. 4c).

We then used the clonality of V(D)J rearrangements within the
TCR Beta locus (TRB) as a proxy for estimating T-cell expansion during
therapy. TRB clonality was significantly correlated with the estimated
abundances of CD8+ T cells (r =0.83, p value < 0.0001, Spearman
correlation test) and NK (r = 0.78, p value < 0.001, Spearman correla-
tion test) cells in R rather than NR patients (Fig. 4d).

Taken together, the gene expression landscape of NIBIT-M4
lesions indicated that distinct and evolving transcriptional profiles
characterized baseline and on-treatment tumor biopsies from R
compared to NR patients. Lesions fromR patients showed progressive
enrichment for signatures and gene sets revealing activation of adap-
tive immunity and effective immunomodulation by guadecitabinewith
a preferential and clonal activation of T-cell subpopulation and NK cell
in the tumor microenvironment. Lesions from NR patients revealed
lack of promotion of immunity in a tumor transcriptional background
dominated by proliferation and EMT processes.

Integrative analysis of methylation and transcriptomic profiles
during treatment
The availability of the longitudinal sampling of tumor biopsies gave us
the opportunity to evaluate the immune-modulatory effect of the
HMA during therapy. Although NIBIT-M4 trial was not designed to
compare the effect of the combination HMA plus ICI vs. ICI alone, we
could evaluate the changes of themethylation pattern induced by the
treatmentwith theHMA.Whenwe considered the overallmethylation
level across the genome, a trend towards global demethylation was
observed for both R andNRpatients (Supplementary Fig 6a) aswell as
in specific genomic regions, the effect of the HMA in the coding part
of the genome (exons and intergenic regions) had a decreasing trend
in R and NR patients. Similarly, for promoters, UTRs regions, and
other regulatory regions such as enhancers and super-enhancers
(Supplementary Fig 6a) NR had a lower decreasing trend than R
patients. We evaluated the specific methylation pattern during ther-
apy in Long interspersed nuclear elements (LINEs), Short interspersed
nuclear elements (SINEs), and LTR. The effect of HMA was a general
decreasing trend of methylation for both R and NR patients (Fig. 5a).
The relationship of this demethylation process with the changes in
expression of these repeated element of the genome was also con-
sidered. We correlated the expression and methylation of different

0.5

0.6

0.7

0.8

0.9

r = 0.7

p = 0.001

r = 0.0099

p = 0.964

r = 0.67

p = 0.002

r = 0.14

p = 0.52

r = 0.55

p = 0.018

r = 0.16

p = 0.478

r = 0.72

p < 0.001

r = 0.027

p = 0.904

r = 0.67

p = 0.002

r = 0.23

p = 0.286

r = 0.23

p = 0.367

r = 0.2

p = 0.351

r = 0.67

p = 0.003

r = 0.063

p = 0.775

r = 0.68

p = 0.002

r = 0.042

p = 0.849

LINE SINE LTR

L1 L2 Alu MIR ERV1 ERVK ERVL ERVL MaLR

R NR R NR R NR R NR R NR R NR R NR R NR

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

0.
5

0.
6

0.
7

0.
8

0.
9

12.5

15.0

17.5

20.0

22.5

Methylation

E
xp

re
ss

io
n

y = 0.7705
0.0087x

y = 0.7412
0.0172x

y = 0.6957
0.0119x

y = 0.6779
0.0231x

y = 0.7952
0.0096x

y = 0.7799
0.015x

y = 0.6075
0.0198x

y = 0.5949
0.0157x

y = 0.7721
0.0093x

y = 0.7515
0.0119x

y = 0.8141
0.0179x

y = 0.7649
0.0119x

y = 0.8008
0.0102x

y = 0.7752
0.0126x

y = 0.7795
0.0254x

y = 0.7476
0.0135x

LINE SINE LTR

L1 L2 Alu MIR ERV1 ERVK ERVL ERVL MaLR

R NR R NR R NR R NR R NR R NR R NR R NR

W
0

W
4

W
12 W
0

W
4

W
12 W

0

W
4

W
12 W
0

W
4

W
12 W
0

W
4

W
12 W

0

W
4

W
12 W
0

W
4

W
12 W

0

W
4

W
12 W
0

W
4

W
12 W

0

W
4

W
12 W
0

W
4

W
12 W
0

W
4

W
12 W

0

W
4

W
12 W
0

W
4

W
12 W

0

W
4

W
12 W
0

W
4

W
12

0.5

0.6

0.7

0.8

0.9

a

b

Fig. 5 | Evolutionof theoverallmethylationpattern in variousgenomic regions
and regulatory regions as function of time between R and NR patients.
a Variation of the overall methylation pattern in Long interspersed nuclear ele-
ments (LINEs), Short interspersed nuclear elements (SINEs) and Long terminal
repeat (LTR) endogenous retroviral elements (ERV). The increasing or decreasing
trend was evaluated based on the inclination of the robust linear regression line
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that stray more than 1.5*IQR upwards or downwards from the whiskers are con-
sidered potential outliers and represented with dots. b Scatterplot between
methylation and expression in R and NR patients in SINE, LINE and LTR elements
(Pearson’s correlation coefficient (r)) and associated p values from two-tailed
correlation test are provided for R (n = 6) and NR (n = 8) groups). a, b Bands
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regression using an M estimator. Source data are provided as a Source Data file.
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LINE, SINE, and LTR elements including ERVs. The number of reads
that mapped on these elements was used as a proxy of their expres-
sion (seeMethods). This analysis showed a significant anti-correlation
between methylation and expression only for R patients, whereas for
NR patients a similar inverse trend was not observed (Fig. 5b).

Finally, weperformeddifferential promotermethylation andgene
expression analysis between R and NR patients (Supplementary
Fig 6b).We used SMITE46 to rank the upregulated and hypomethylated
genes as well as the downregulated and hypermethylated genes
between R and NR patients at different time points. Consistently with
the previous observations, functional enrichment of hypomethylated
and upregulated genes between R and NR patients resulted in biolo-
gical processes associated with immune functions at week 12. Genes
enriching immune response included granzymes (GZMM), interleukins
and interleukin receptors (IL12, IL32, IL15, IL12RB1), cytokines and
cytokine receptors (TNF, CXCR4, TNFRSF1B) and HLA genes and trans-
activators (CIITA, HLA-DOA, HLA-DMB, HLA-E).

We also interrogated the effect of the epigenetic agent in the set
of lesions from NR patients where we did not find evidence of pro-
motion of immunity as in the lesions from R patients. To answer this
question, we jointly compared the expression andmethylationprofiles
of NR patients at different time points. We applied SMITE to the dif-
ferential expression andmethylation analysis betweenweek 12 and the
baseline in NR patients. This analysis aimed at uncovering the path-
ways that were activated on-treatment in NR patients. The top 100
genes of the ranked list were used for functional enrichment. Some of
these genes were significantly associated with fate determination
(WNT5A), cell migration (PRKD2), epithelial differentiation (KRT15),
while most frequent GO:BP terms included pathways related to
“development”, “differentiation” and “migration/motility” (Supple-
mentary Fig 7a). On the contrary, after treatment, the same long-
itudinal analysis of lesions from R patients resulted in the activation of
immune response functions such as regulation of T and NK cell acti-
vation and proliferation (IL15), Th1 polarized T cells (TBX21), and other
functional categories associated with lymphocyte activation (Supple-
mentary Fig 7b).

Overall, our results showed that treatment with HMA induces the
demethylation of genomic regions, in particular transposable ele-
ments, and ERVs. The effect of these epigenetic changes was asso-
ciated with their higher expression in R patients. Moreover,
intersection of differentially expressed and methylated genes showed
specific epigenetic activation of immune functions in R patients.

The ICR/GIE classification contributes to explain response,
resistance through immune escape and long-term clinical
outcome
TMB and neoantigen loads were highly correlated (r =0.77, p value
5e−09, Spearman correlation test) in the lesions of the NIBIT-M4 trial,
however none of these two parameters discriminated against R from
NR patients.

According to the immunoediting theory, tumor clones can be
eliminated by CD8+ T cells, resulting into a depletion of tumor-
associated antigens, including neoantigens47. Immune-edited lesions
are therefore expected to have less neoantigens then expected, while
tumors that are not able to elicitate an antitumor immune response
will not display sign of immunoediting.

We then tested the hypothesis that the genetic immunoediting
(GIE) score48,49, an index that integrates both TMBand neoantigen load
information in a singlemeasure of the extent of immunoediting, could
show an association with clinical response.

TheGIE valuewas calculated as the ratio between the observed vs.
expected number of neoantigens in each tumor sample (Supplemen-
tary Data 5). The expected number of neoantigens was estimated by
training a linear model having TMB as the independent variable and
neoantigen load as the outcome variable. Tumors with a number of

neoantigens lower than expected (i.e., lower GIE values) are thought to
display evidence of immunoediting, whereas a higher frequency of
neoantigens than expected indicates a lack of immunoediting (Non-
GIE). However, the difference was not significant at the baseline, pos-
sibly due to the low number of cases (Supplementary Fig 8a). We then
implemented a more precise metric capturing the extent of immu-
noediting, by combing both information of GIE and the presence of a
robust intratumoral cytotoxic immune response (ICR)17. We then
speculated that the combined presence of an adaptive cytotoxic
immune response (high ICR) and the evidenceof neoantigen depletion
(GIE), wouldmore precisely capture “truly” immune-edited lesions.We
then stratified tumor lesions from patients enrolled in the NIBIT-M4
studybasedonGIE score greater or lower thanone (coded respectively
as “Non-GIE” and “GIE”) and ICR score greater or lower than zero,
yielding four groups: High-ICR/GIE, High-ICR/Non-GIE, Low-ICR/GIE,
Low-ICR/Non-GIE (Fig. 6a). The tumor samples belonging to R patients
were highly enriched in the High-ICR/GIE group (61%, p value = 4.2e−04,
Chi-squared test). The ICR/GIE classification was significant even when
limiting the analysis on baseline lesions (67%, p value = 2.1e−02, Chi-
squared test) with four of the five lesions in the High-ICR/GIE group
(Supplementary Fig 8b). To shed light on the mechanism that differ-
entiates GIE in the presence of adaptive immunity captured by ICR, we
then performed a supervised transcriptome analysis comparing the
High-ICR/GIE vs. the High-ICR/Non-GIE groups (Fig. 6b). This analysis
showed that the High-ICR/GIE group (i.e., the group in the upper left
quadrant, Fig. 6a) was characterized by enhanced representation of
several Biological Processes related to immune response including
antigen processing and differentiation (Fig. 6b). This also suggested
that the “High-ICR/Non-GIE” group (upper right quadrant in Fig. 6a)
could be defective for expression of antigen processing and pre-
sentation genes in a way that could explain the lack of immunoediting.
In agreement, lesions from theHigh-ICR/Non-GIEgroup showed lossof
expression of HLA class I antigens on tumor cells despite the presence
of CD8+ T cells infiltrating the tumor core (Fig. 7 and Supplemen-
tary Fig 9a).

We then asked whether the patient groups defined by the ICR/GIE
classification also experienced different long-term clinical outcomes.
By stratifying patients according to the ICR/GIE classification of week
12 biopsies we found a slightly significant difference (p value = 0.035,
log-rank test) in OS and in PFS (p value = 0.022, log-rank test) between
the High-ICR/GIE and the High-ICR/Non-GIE group (Fig. 6c and Sup-
plementary Fig 9b). The ICR/GIE stratification remained significant for
OS and PFS even when taking into consideration all four subsets
(Supplementary Fig 9b). In contrast, patients’ classification by
response groups was not associated with OS (Fig. 6c), although it was
associated with PFS (Supplementary Fig 9b).

Comprehensive assessment of the ICR, GIE, CD8+ T cell and HLA
Class I scores, available from lesions of 11 patients (Supplementary
Fig 10a), indicated that the overall profile for these four parameters
was consistent with the observed clinical response in all but one
patient (#11). Patient #11 had a Low-ICR/Non-GIE score, but was clas-
sified as R patient due to stable disease (SD) in target lesions. Even-
tually, the patient underwent disease progression in target lesions and
developed several new lesions (Supplementary Fig 10b).

Collectively, these findings provided a mechanistic explanation
for the genesis of the High-ICR/Non-GIE subset.

Validation of the ICR/GIE classifier in other response datasets
To validate the ICR/GIE stratification, we assembled a cohort of 83
melanoma cases treated with ICI, either anti-CTLA4 or -PD-1, from
previous published studies5,50,51 for which TMB, neoantigen load and
gene expressionwere available. The stratification of patients into the 4
ICR/GIE subsets confirmed the enrichment of R patients in the High-
ICR/GIE group (Fig. 8a). Significant differences in OS between patients
characterized as High-ICR/GIE vs. those coded as High-ICR/Non-GIE
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were observed even in this validation cohort (Fig. 8b). Interestingly,
differential pathway analysis in the High-ICR/GIE vs. High-ICR/Non-GIE
subsets identified the Biological Process “antigen processing and dif-
ferentiation” as selectively enriched in the High-ICR/GIE subsets as we
found in the NIBIT-M4 cohort (Fig. 8c). These results suggest that the
samemechanism uncovered in the NIBIT-M4 cohort could explain the
High-ICR/Non-GIE subset even in the validation cohort: a defective
antigen processing and presentation pathway may contribute to sup-
press genetic immunoediting even when lesions have a high ICR pro-
file, and this may be a general phenomenon irrespective of the type of
immunotherapy that is being used.

Collectively, these results suggested that effective coupling of
tumor immunoediting with activation of adaptive immunity can pro-
mote response and improved clinical outcome in the NIBIT-M4 epi-
genetic immunomodulation trial. In contrast, defective development
of adaptive immunity or lack of genetic immunoediting, associated
with immune escape mechanisms, may favor resistance and less
favorable long-term clinical outcome.

Discussion
The NIBIT-M4 trial has been the first Phase Ib epigenetic immunomo-
dulation study testing the association of the HMA guadecitabine with
ICI in solid malignancies. Treatment of metastatic melanoma patients
with guadecitabine combined with ipilimumab was found to be safe,
feasible, and tolerable, with initial signs of clinical and immunologic
activity11. The 5-year survival rate, duration of response, and time to
subsequent treatment in patients who achieved a DC we report here
are intriguing and clinically meaningful. These findings compare
favorably with the efficacy of anti-CTLA-4 monotherapy in metastatic
melanoma patients52, though with the limitations of interstudy com-
parisons that need to be interpreted with caution and to be placed in
context. Nevertheless, the long-term follow-up of the NIBIT-M4 trial
seems to support the clinical potential of guadecitabine combined
with anti-CTLA-4 therapy, though the relative contribution of each
agent and the potential of guadecitabine maintenance therapy in the
clinical results we observed could not be fully dissected in this trial. In
this scenario, our ongoing randomized phase II NIBIT-ML1 study
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Fig. 6 | Biomarkers of immunoediting (1). a Scatterplot of ICR score by Genetic
Immunoediting (GIE) score for R (n = 18) and NR (n = 23) samples (left) and their
proportion (right) after classification as ICR/GIE classes (p value from two-sided
Pearson’s chi-squared test statistic). b Barplot of most significantly (FDR<0.01)
enriched GO:BP terms from GSEA analysis of High-ICR/GIE (n = 15) vs. High-ICR/

Non-GIE (n = 9) samples’ comparison. c Kaplan–Meier for OS by patients classified
asHigh-ICR/GIE (n = 5) or High-ICR/Non-GIE (n = 4) at week 12 (top) and R (n = 6) or
NR (n = 8) (bottom). Time is indicated inmonths and censor points are indicatedby
vertical lines. p values are calculated by log-rank test. Source data are provided as a
Source Data file.
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Fig. 7 | Biomarkers of immunoediting (2). Microphotographs of HLA class I and
CD8 immunohistochemistry for representative patients in each ICR/GIE class (left).
The plots represent the ICR and GIE sample scores, percentages of HLA-positive

cells, and density of CD8 T cells. The presented data was derived from one
experimental run independently reviewed by three different trained scientists.
Source data are provided as a Source Data file.
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(NCT04250246) in PD-1/-L1-resistant melanoma and non-small cell
lung cancer patients will help to address the clinical and immunobio-
logic contribution of the addition of the HMAdecitabine/cedazuridine
(ASTX727) to ICI therapy. However, further support for the notion that
guadecitabine is a promisingway forward to improve the efficacyof ICI
therapy in solid tumors derives fromtwomost recently published trials
in platinum-resistant ovarian cancer14, and in different tumor types15.
Indeed, the combination of guadecitabine with the anti-PD-1 pem-
brolizumab led to encouraging response rates, immunomodulation in
the tumor tissue and/or inperiphery, and evidenceof demethylation in
on-treatment lesions, with manageable toxicity18.

Our aim herewas to exploit the longitudinalmulti-omics profiling
of the NIBIT-M4 cohort in conjunction with the 5 years follow-up to
shed light on the effect of the combination during treatment and to
identify early biomarkers of response. To this end, we have first indi-
vidually interrogated the available omics platforms taking advantage
of the accurate longitudinal sampling. Then we developed computa-
tional multi-omics integration approaches to evaluate the effect of the

adopted demethylation agent on boosting the adaptive and innate
immune-mediated cancer rejection. The five-year follow-up showed
that our multi-omics classification based on the ICR/GIE index is a
better prognostic factor than best overall response (BOR). Therefore,
the analysis reported here can serve as a guide for improved patient
stratification and selection strategies in combination therapies invol-
ving ICI and immunomodulatory agents, including HMA.

Longitudinal WES and transcriptomic analysis contributed to
shed light on molecular factors impacting clinical response and on
long-term outcome after guadecitabine plus ipilimumab. At the
mutational profile level, strong consistency across biopsies obtained
at three-time points in a 12-week time frame allowed us to identify
significant associations of somatic mutations with response/resis-
tance even with the small number of patients enrolled in the NIBIT-
M4 trial.

Even if the impact of the genomic landscape is difficult to be
linked to the HMA rather than to ipilimumab, our results confirm and
extend evidence of resistance obtained in ICB-only trials. First, we

2.5

0.0

2.5

0.0 0.5 1.0 1.5 2.0

GIE

IC
R

p = 1.5e 02 p = 3.2e 03

0.0

0.2

0.4

0.6

0.8

1.0

R NR

ICR/GIE Class

High ICR/GIE

High ICR/Non GIE

Low ICR/GIE

Low ICR/Non GIE

+ +
+++++

++++++ +
+

++++

p = 0.042

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80

Time

O
ve

ra
ll 

S
ur

vi
va

l 
 p

ro
ba

bi
lit

y

GO:BP KERATINIZATION

GO:BP WOUND HEALING

GO:BP CELL CYCLE CHECKPOINT

GO:BP ANTIGEN PROCESSING AND PRESENTATION

GO:BP REGULATION OF INNATE IMMUNE RESPONSE

GO:BP SKIN DEVELOPMENT

GO:BP POSITIVE REGULATION OF CELL CYCLE PROCESS

GO:BP NEUTROPHIL MEDIATED IMMUNITY

GO:BP NEUTROPHIL ACTIVATION IN IMMUNE RESPONSE

GO:BP GLIOGENESIS

GO:BP B CELL MEDIATED IMMUNITY

GO:BP ADAPTIVE IMMUNE RESPONSE

GO:BP NUCLEAR TRANSCRIBED MRNA 
CATABOLIC PROCESS

GO:BP PROTEIN TARGETING TO ER

2.5 1.5 0.5 0.5 1.5 2.5

a

b
GO:BP REGULATION OF CHROMOSOME SEGREGATION

+ High ICR/GIE + High ICR/Non GIE

NES

Enriched in High ICR/GIE Enriched in High ICR/Non GIE

c

R NR

Fig. 8 | Validation of the ICR/GIE score in patients from other cohorts.
a Scatterplot of ICR score by Genetic Immunoediting (GIE) score for R (n = 34) and
NR (n = 49) samples (left) and their proportion (right) after classification as ICR/GIE
classes (p value from two-sided Pearson’s chi-squared test statistic).
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(FDR<0.01) enriched GO:BP terms fromGSEA analysis of High-ICR/GIE (n = 24) vs.
HighICR/Non-GIE (n = 14) comparison. Source data are provided as a Source
Data file.
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found that BRAF mutations are more frequent in NR compared to R
patients and the opposite was true for NRAS mutations. Patients with
NRASmutation-positive melanomas have improved PFS after ICB with
anti-CTLA-4 and -PD-1 antibodies22 and improvedOSwhen treatedwith
ipilimumab23. Concerning BRAF mutations, there are conflicting
reports in the literature27. Some meta-analyses did not evidence dif-
ferences in response studies between BRAF wild-type and mutation
patients53. Other studies reported a negative association betweenBRAF
status and OS after ipilimumab in melanoma54. Thus, the associations
that we found with BRAF and NRAS mutational status, with the caveat
of the limited sample size in our trial, appear consistent with evidence
obtained in clinical trials of ICB-only. These data thus suggest that the
associations of BRAF/NRAS mutations with clinical response may
reflect their impact on the ICI, rather than their relevance for the
mechanism of action of the demethylating agent. We found the
CDKN2A mutations to be more frequent in NR patients. CDKN2A
alterations have been previously found associated with reduced ben-
efit from ICB in urothelial carcinoma, but not in melanoma24. Immu-
notherapy resistance of CDNKA deficient tumors has also been
reported in pan-cancer studies55. EPHA7 mutations, which we found
more frequently in R patients, have been associatedwith better clinical
outcomes in ICB-treated patients across multiple cancer types25.
PLXNA4 mutations, more frequent in R patients, have been shown to
promote Cytotoxic T-lymphocyte infiltration in pre-clinical tumor
models, as PLXNA4 behaves as a negative checkpoint regulating T-cell
migration and proliferation26.

Mutations in genes belonging to the EMT were enriched in NR
patients. EMT is associated with a less favorable outcome in patients
with cancer56; it stimulates angiogenesis and is a tumor-intrinsic
mechanism enhancing immunosuppression57,58. Recent studies
reporting the genomic and transcriptomic features associated with ICI
in melanoma have shown higher expression of several EMT genes in
NR subjects59. Our analysis indicates that genomic alterations can drive
these differences. We also observed that two NR patients harbored
mutations in the gene DNMT1, which is the direct target of guadeci-
tabine. We described the reduced immune-modulatory effect of the
demethylating agent in patients harboring defects. In summary,
available evidence indicates that most differentially enriched muta-
tions between R and NR groups have also been associated with
response or resistance to ICB-only regimens. In other words, the
genomic landscape of the lesions may contribute to explaining the
efficacy or lack of efficacy of the ipilimumab arm of the trial.

Interrogating the longitudinal gene expression data was also
useful in evaluating how the immune context evolves during therapy.
The differential activity of these pathways tends to increase during
therapy, suggesting that immune surveillance promoted by ICI
represses cell cycle genes together with differentiation pathways. We
have shown an increased expression of the guadecitabine-specific
signature that we had previously defined10 in on-treatment lesions
from R compared to NR patients. This result suggests that clinical
benefit requires susceptibility to the immunomodulatory action of this
DNMT inhibitor. A consequence of this hypothesis is that NR patients
must have some resistance mechanism to guadecitabine, and the
DNMT1 mutations found in two NR patients may be part of this resis-
tance mechanism.

The transcriptional effects that could be ascribed to guadecita-
bine and could contribute to explain clinical benefit in this combina-
torial trial, were assessed by considering tumor-specific antigens
derived from transposable elements60 and ERV sequences28 for the
immune response to tumors. Both these classes of sequences are
known to be regulated bymethylation and susceptible to re-activation
by demethylating agents. We confirmed that clinical benefit in the
NIBIT-M4 trial could depend on the ability of guadecitabine to re-
activate these sequences, by promoting their demethylation, leading
to enhanced expression in R compared to NR patients.

We evaluated several transcription-based signatures for response
prediction to ICI. No difference was observed at the baseline. This
suggests that additional factors contribute to clinical response,
beyond the process of development of adaptive immunity, captured
by these signatures. We reasoned that an immune-based stratification
approach taking into account: a) the evidence of expression of genes
associated with ICR and b) the amount of immunoeditingmeasured as
the ratio of observed versus expected neoantigens (GIE) could
improve our ability to understand response and resistance to treat-
ment. The presence of an adaptive immune response within tumors is
accounted by the ICR16,18, a signature that predicts survival and
response to ICI therapy in different tumors such as breast61, bladder,
stomach, head and neck16, sarcoma20, andmelanoma8. The importance
of immunoediting, and its association with survival and resistance has
been extensively demonstrated in human primary tumors17,49 and in
immune selection pressure on metastatic evolution62. The GIE score is
a measure of the extent of genetic immunoediting occurring in a
tumor and it is obtained through comparison of expected number of
neoantigens (through a linear model relating mutational load and
neoantigen load)with the observed number of neoantigens (i.e., actual
number of neonatigens observed in a specific patient). Patients whose
tumors have a GIE score <1 indicate previous immunoediting. The
observation that the GIE score and the ICR were uncorrelated sug-
gested that they are capturing complementary, yet distinct, attributes
of anti-tumoral immunity. For instance, an antitumor immune
response can occur against non-mutated antigens63. Therefore, their
combination could be an effective means to achieve a more accurate
quantificationof effective cancer immune surveillance andof response
to immunotherapy. Indeed, the ICR/GIE classification could stratify
NIBIT-M4 patients into four subsets, and those with high (>0) ICR
scores and a low (<1) GIE score (truly immunoedited lesions) showed
the longestOS. In otherwords, the coupling of adaptive immunitywith
effective immunoediting is a relevant requisite for achieving long-term
clinical benefit from treatment. The prognostic significance of the ICR/
GIE index was confirmed by the analysis of independent datasets from
ICI-treated patients, suggesting that this is a robust classifier that
captures crucial immunological processes acting in the context of
different immunotherapy regimens. Moreover, its prognostic value
has been recently validated also in a large cohort of colon cancer17. The
activation of T-cell-mediated immunity is dependent upon the recog-
nition of tumor antigens on MHC of antigen-presenting cells64. Tumor
antigen presentation by MHC class I is mediated by the coordinated
expression of multiple genes. The differences between the High-ICR/
GIE and High-ICR/Non-GIE, observed in our cohort and other inde-
pendent cohorts, confirm that even in the presence of an adaptive
immune response, tumor cells that develop defects in antigen pro-
cessing or presentation can escape immune surveillance48,65. In fact,
lesions with defective expression of HLA class I molecules may retain
evidence for the development of adaptive immunity (High-ICR) and
also for CD8+ T-cell infiltration, but down-modulation of MHC class I
molecules on tumor cells prevents recognition of HLA/neoantigen
complexes by T cells, thus suppressing the possibility of genetic
immunoediting (therefore, the lesions are identified as Non-GIE). We
have previously shown that DNA methyltransferase inhibitors can
upregulate the expression of MHC proteins43. We hypothesize that the
HMA treatment might improve the response to ICI, specifically in
melanomapatientswithhigh ICR scoresbut lower evidenceof immune
editing. Moreover, serial monitoring of these relative scores might
show increased expression of MHC class I in the DNMTi-treated
samples.

The inference of changes in gene expression programs needs to
account for the cellular composition at different time points. The
actual profiling platform, with half of the cases lacking the normal
reference, is not ideal for an accurate estimation of the purity. Single-
cell profiling will be performed on this cohort in future studies to
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address this point. Moreover, the low number of analyzed cases, even
with longitudinal multi-omics profiling, represents a limitation in our
study, though its results help to guide further development ofHMA/ICI
combinations in solid tumors. Additionally, the application of the ICR/
GIE to multiple contexts at a pan-cancer level is needed to further
validate the clinical relevance of our approach and findings. Collec-
tively, though limited by the still scarce number of completed trials
and enrolled patients, the available clinical results suggest and support
further development of combinatorial approaches of HMA with ICI in
cancer therapy in randomized clinical trials with extensive transla-
tional endpoints.

Methods
Study design, patient population, procedures, and outcomes
The phase Ib NIBIT-M4 study (NCT02608437) was conducted in
accordance with the ethical principles of the Declaration of Helsinki
and the International Conference on Harmonization of Good Clinical
Practice. The protocol was approved by the independent ethics com-
mittee of theUniversityHospital of Siena (Siena, Italy). All participating
patients (or their legal representatives) provided signed informed
consent before enrollment.

We conducted a milestone, 5-year follow-up analysis of patients
enrolled in the NIBIT-M4 study; the study design, patient eligibility
criteria, and treatment regimen have already been described11. Briefly,
the phase Ib, dose-escalation, single-center NIBIT-M4 study, enrolled
pre-treated or untreated patients with unresectable Stage III or IV
melanoma, to receive guadecitabine 30, 45, or 60mg/m2/day s.c. on
days 1–5 at week 0, 3, 6, 9, and ipilimumab3mg/kg i.v. on day 1 at week
1, 4, 7, 10, for 4 cycles. For this follow-up analysis, median OS, PFS,
5-year OS PFS rate, and median DoR were assessed. Patients were
classified asR if they experienced aDC [defined asCR, Partial Response
(PR), or SD]. Patients who experienced a progressive disease (PD) were
classified as NR. Tumor biopsies for correlative analyses were per-
formed at baseline and at week 4 and week 12 on-treatment.

Data collection, library preparation, and sequencing
Isolation of total DNA/RNA and library preparation for RNA Sequen-
cing and RRBS were performed as previously described11 at different
timepoints of treatments (week 0, week 4, week 12) forN = 14 patients,
including eight additional patients not available in the previous study.
For WES, Nextera Flex for Enrichment solution (Illumina, San Diego,
CA) in combination with SureSelect Human All Exon V7 probes (Agi-
lent, Santa Clara, CA) was used for library preparation and generated
libraries were sequenced on NovaSeq 6000 (Illumina, San Diego, CA)
in 150 pair-endmode for biopsies of patients from 1 to 8; TruSeq Rapid
Exome (Illumina, San Diego, CA, USA) was used for library preparation
and generated libraries were sequenced on HiSeq 3000/4000 (Illu-
mina, San Diego, CA) in 150 pair-end mode for biopsies of patients
from 9 to 14.

Data processing
Whole exome sequencing. Quality control of WES was performed on
raw data using fastQC (v. 0.11.8) (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/).

Sequencing reads were aligned to the Human reference genome
(UCSC genome assembly GRCh37/hg19) using Burrows-Wheeler
Aligner66, and then processed by GATK67 for discarding low mapping
quality reads and performing indel realignment.

Somatic single-nucleotide variants (SNVs) and indels calling were
performed using Sentieon Genomic Tool v. 20191168. A virtual normal
panel from 1000 Genomes Project69 was used to call SNVs and indels
for tumor samples without a matched normal sample.

Putative false positive calls have been removed considering as
filters: (i) the variant-supporting read count greater than 2; (ii) variant
allele frequency greater than 0.05; (iii) average variant position in

variant-supporting reads (relative to read length) >0.1 and lower than
0.9; (iv) average distance to effective 3′ end of variant position in
variant-supporting reads (relative to read length) greater than 0.2; (v)
fraction of variant-supporting reads from each strand >0.01; (vi)
average mismatch quality difference (variant—reference) lower than
50; vii) average mapping quality difference (reference—variant) lower
than 50. Annotation of SNVs and indels was performed using
AnnoVar70 and SnpEff71. The functional effect of missense SNVs and in-
frame indels was computed using Polyphen272, SIFT73, and PROVEAN74

algorithms and variants predicted as damaging at least two of them
were classified as pathogenic mutations. Somatic copy number was
estimated from WES reads by CNVkit75 and GISTIC76 was applied for
identifying genomic regions recurrently amplified or deleted. The
nonsynonymous tumor mutational burden (TMB) was computed as
the number of nonsynonymous somatic mutations (single-nucleotide
variants and small insertions/deletions) per megabase in coding
regions. COSMIC mutational signature v3.277 frequencies were com-
puted using deconstructSigsR package (v. 1.8.0)78 for each tumor
sample derived from a patient where a matched normal sample was
available (n = 8).

RNA sequencing. Fastq quality was assessed using fastQC (v. 0.11.8)
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and
low-quality reads were discarded. Sequence reads were aligned to
Human reference genome (UCSC genome assembly GRCh38/hg38)
using STAR (v. 2.7.0b)79, and the expression was quantified at gene
level using featureCounts (v. 1.6.3), a count-based estimation
algorithm80. Downstream analysis was performed in the R statistical
environment as described below. Rawdatawere normalized according
to sample-specific GC-content differences as described in EDAseq R
package (v. 2.22.0)81. Differential expression analysis was performed
using EdgeR R package (v. 3.30.3)82. Genes sorted according to log2
fold-change (log2FC) were used for performing Gene Set Enrichment
Analysis (GSEA) of Gene Ontology (GO) Biological Processes (BP)83, as
implemented in the clusterProfiler R package (v. 3.3.6)84. For the
expression quantification of genomic repetitive DNA features, fea-
tureCounts function of the Rsubread R package (v. 2.10.5) was applied
by enabling the parameters of useMetaFeatures and countMulti-
MappingReads and using a GTF file built on repetitive DNA feature
localizations as described below. Any genomic repetitive DNA features
that overlapped with GRCh38 exonic regions were excluded from the
analysis. For each feature type, the resulted multi-mapping reads
weighted by the number ofmapping sites were first averaged and then
log2 transformed.

RRB sequencing. RRBS raw reads were trimmed for adaptor sequen-
ces using trim galore (v. 0.6.5) (http://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/) and filtered for low-quality sequences
using fastQC (v. 0.11.8) (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). High quality trimmed reads were mapped to the
Human reference genome (UCSC genome assembly GRCh38/hg38)
using Bismark (v. 0.22.3)85 with default parameters. Methylation data
as β values for CpG sites, promoters, and genes were retrieved from
bismark coverage outputs using R package RnBeads 2.0 (v. 2.6.0)86

with default parameters. Then, human GRCh38 annotated genes and
promoters exhibiting differential DNA methylation between pre-
defined groups of patient samples were identified using R package
limma (v. 3.44.3)87.

The methylation of the considered genomic feature was com-
puted by first overlapping the CpG positions with GRCh38 genomic
feature localizations using GenomicRanges R package (v. 1.48.0)88 and
then averaging methylation β values of single CpGs in each feature.
Only CpG sites outside regions annotated as “Open Sea” and with a
minimum average of 10× coverage depth across all samples were
selected for the analysis. Genomic feature localizations (exon,
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intergenic regions, intron, promoter, and UTRs) were retrieved from
UCSC (genome assembly GRCh38/hg38) using AnnotationHub R
package (v. 3.4.0). Regulatory feature localizations were retrieved
from the following public resources: enhancer features from Gene-
Hancer Version 4.489 within the GeneCards® Suite (https://www.
genecards.org/), super-enhancer features from H3K27Ac ChIP-seq
data of GEO Dataset GSE9983590 and CTCF binding site features from
CTCFChIP-seq data of GeoDataset GSE12834691. The original GRCh37/
hg19 enhancer and super-enhancer feature localizations were lifted
over GRCh38/hg38 genomic positions using liftOver R package
(v. 1.20.0).

Repetitive DNA feature localizations (Long interspersed nuclear
elements, LINE; Short interspersed nuclear elements, SINE; and Long
terminal repeat elements, LTR) were retrieved from UCSC Repeat-
Masker annotation (genome assembly GRCh38/hg38) using Annota-
tionHub R package.

To investigate associations between CpG site-specific DNA
methylation of genomic features and clinical response, robust linear
regression models were fitted at each treatment time point for con-
sidered patients’ groups using the MASS R package (v. 7.3–58.3).

Human GRCh38 annotated genes and promoters exhibiting dif-
ferential DNA methylation between predefined groups of patient
samples were identified using R package limma (v. 3.44.3)87.

Prediction of immune response and tumor microenvironment
deconvolution
ICR scoreswere computed for each sample using a single-sampleGSEA
(ssGSEA) based on the Mann–Whitney–Wilcoxon Gene Set Test
(MWW-GST)92 and the ICR signature (IFNG, IRF1, STAT1, IL12B, TBX21,
CD8A, CD8B, CXCL9, CXCL10, CCL5, GZMB, GNLY, PRF1, GZMH, GZMA,
CD274/PD-L1, PDCD1, CTLA4, FOXP3, and IDO1)19.

MIRACLE scores were computed using theMIRACLE R package as
described in Turan et al.8. TIDE score was computed using TIDE
command-line interface (https://github.com/jingxinfu/TIDEpy)93,94.
IMPRES score was computed using calc_impres R function (https://
github.com/Benjamin-Vincent-Lab/binfotron/)95.

Melanocytic plasticity signature (MPS) score was computed as
described in Pérez-Guijarro et al.35.

Estimation of immune and stromal subpopulation abundances
was computed using MCP-counter45.

TCR repertoire analysis from RNA-sequencing data
The docker implementation of MiXCR software (v. 3.0.13)96 was used
to retrieve the VDJ repertoire fromRNA-sequencing data. For the T cell
receptor Beta locus (TRB), the clonality was calculated as

ClonalityTRB = 1 � 1
log2N

HðxÞ ð1Þ

where HðxÞ is the Entropy computed as standard Shannon entropy as
follow:

HðxÞ= �
XN

i = 1
PðxiÞlog2PðxiÞ ð2Þ

For a productive (in-frame) sequence xi,PðxiÞ, is the ratio between
the sequence count and total productive count andN is the number of
productive unique in-frame sequences.

Integrative analysis of RNASeq and RRBS data
Integrationof gene expression andmethylation datawas performed as
follows. R package SMITE (v. 1.16.0)46 was applied to identify func-
tionally related genes with altered DNA methylation on promoters.
Briefly, each differentially expressed gene (R vs. NR patients at each
treatment time point week 0, week 4, and week 12) previously com-
puted using the EdgeR R package (v. 3.30.3)82 was associated with a

promoter region [TSS − 1 kb, TSS + 500bp] using UCSC GRCh38/hg38
refSeq transcripts coordinates. Each promoter was then associated
with a set of overlapping regions from the differential methylation
analysis previously computed on the same comparison using R pack-
age limma (v. 3.44.3)87. To identify genes whose expression is inversely
correlated with promoter methylation, a score based on a weighted
significance value (0.5 for expression and 0.3 for promoter methyla-
tion) was computed. Hypomethylated/upregulated and hypermethy-
lated/down-regulated genes for each comparison were then visualized
as scatterplot using R package ggplot2 (v. 3.3.6). These modules of
expression/methylation concordant genes were functionally analyzed
through a GO BP pathway enrichment analysis within the R package
SMITE. Significant categories (p value < 0.05) were visualized as bar-
plot using R package ggplot2.

HLA typing and neoantigen prediction
HLA typing was performed from WES data using the docker imple-
mentation of Polysolver (v. 4)97. The neoantigen prediction tool
pVACseq from pVACtools98 was run using the following predictors:
MHCnuggetsI, NNalign, NetMHC, SMM, SMMPMBEC, and SMMalign.

Mutant-specific binders, relevant to the restricted HLA-I allele, are
referred to as neoantigens, as previously described99. To infer neoan-
tigens with high confidence, we considered only themutated epitopes
with a median IC50 binding affinity across all prediction algorithms
used <500 nM, with a corresponding wild-type epitope with a median
IC50 binding affinity >500 nM, and with at least one supporting read
on the RNASeq data.

Genetic ImmunoEditing (GIE) score
The Genetic ImmunoEditing (GIE) score was computed by taking the
ratio between the number of observed neoantigens (O) in a patient
versus the number of expected neoantigens (E) for that patient:

GIE =
O
E

ð3Þ

The observed number of neoantigens O was obtained from the
output of pVACtools98, filtered according to the criteria
described above.

The expected number of neoantigens E was computed as a
function of the number of nonsynonymous mutations by fitting a lin-
ear regressionmodel using the lm functionof R package stats (v. 4.0.2)
trained with the data of our cohort, using the number of neoantigens
as dependent variable. Due to the presence of hypermutated samples,
first we classified patients’ samples into two groups, hyper- or hypo-
mutated, according to a TMB cutoff of 12 mutations/mb, and then we
fitted for each group a linear regression model.

We assumed that samples that show a frequency of neoantigens
lower than expected (i.e., lower GIE values) have evidence of
immunoediting.

Since the GIE is a ratio between observed and expected neoanti-
gens, we used “GIE” or “Non-GIE” definitions to nominate samples with
GIE < 1 or GIE > 1, respectively. Analogously, we adopted the normal-
ized enrichment score (NES) to evaluate the activation of the ICR sig-
nature at the single-sample level using the yaGST tool92. A value of
NES >0 means positive activation, whereas a value of NES <0 means a
significant negative activation. Accordingly, these two conditions were
used to nominate “High-ICR” versus “Low-ICR”, respectively.

Survival analysis
Survival curves were estimated using the survival R package (v. 3.2–10)
and plotted using the Kaplan–Meier method, implemented in the
survminer (v. 0.4.9) R package. Log-rank tests were used to compare
curves between groups.

Article https://doi.org/10.1038/s41467-023-40994-4

Nature Communications |         (2023) 14:5914 14

https://www.genecards.org/
https://www.genecards.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99835
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128346
https://github.com/jingxinfu/TIDEpy
https://github.com/Benjamin-Vincent-Lab/binfotron/
https://github.com/Benjamin-Vincent-Lab/binfotron/


IHC analysis
Serial 3 µm formalin-fixed paraffin-embedded tissue sections were
stained using an AutostainerPlus (Dako). Antigen retrieval and
deparaffinization were carried out on a PT-Link (Dako) using the
EnVision FLEX Target Retrieval Solutions (Dako). Endogenous per-
oxidase and non-specific staining were blocked with H202 3%
(Gifrer, 10603051) and Protein Block (Dako, X0909) respectively.
The antibodies used are: anti-CD8 clone C8/144B (M7103, Dako) at a
final concentration of 3.14 µg/mL and anti-HLA Class I, clone EMR8-5
(ab70328, abcam) at a final concentration of 0.3 µg/mL. The HRP-
labeled polymer conjugated EnVision+ Single Reagent (Dako,
K4001) was used as a secondary antibody. Peroxidase activity was
detected using 3-amino-9-ethylcarbazole substrate (Vector Labora-
tories, SK-4200). All stained slides were digitalized with a Nano-
Zoomer scanner (Hamamatsu).

NanoString
Expression of genes belonging to several immune-related signatures
was assessed by a custom-designed NanoString nCounter multiplex
CodeSet enabling the determination of 364 genes. The gene sig-
natures were selected for providing information on B-cell content
and differentiation, TLS formation, follicular T helper cells, TEX
subsets, tumor-associated endothelial cells, ICB response, and
guadecitabine-specific gene upregulation. For NanoString experi-
ments, panel probes (capture and report) and 200 ng of RNA were
hybridized overnight at 65 °C for 16 h. Samples were scanned at
maximum scan resolution capabilities (555 FOV) using the nCounter
Digital Analyzer. Quality control of samples, data normalization, and
data analysis were performed using nSolver software 4.0 (Nano-
String Technologies).

ICR/GIE validation in external cohorts
Molecular and clinical data for three independent immunogenomic
datasets of melanoma patients treated with ICI5,50,51 were obtained
from cBioportal100. A total of 83 patients for which all required data
were available (gene expression, mutation/neoantigen loads, treat-
ment response, and overall survival) were selected and grouped into
responder (CR, PR, SD, LB: long-termbenefits) and non-responder (PD,
NB: minimal or no-benefits) according to the treatment outcome as
described in the corresponding original studies. The integrated gene
expression matrix was batch-corrected using the removeBatchEffect
function implemented in R package limma (v. 3.44.3)87. ICR and GIE
scoreswere computed as previously described. Differential expression
analysis was performed between “High-ICR/GIE” and “High-ICR/Non-
GIE” classes using aWilcoxon test. Genes sorted according to log2 fold-
change (log2FC) were used for performing Gene Set Enrichment
Analysis (GSEA) of Gene Ontology (GO) Biological Processes (BP)83, as
implemented in the clusterProfiler R package (v. 3.3.6)84. Selected
enriched GO:BP terms (FDR <0.01) were visualized as a barplot. Sur-
vival analysis was performed as previously described.

Power analysis
To confirm the statistical power to detect a significant difference
between R and NR patients, we conducted a post hoc power analysis
using sample size and a hypothesis of effect size to detect. We used in
all our comparisons a significance level of 0.05 and assumed a two-
tailed test. The reported comparison includes the differential analyses
at each time point between R and NR patients using both gene
expression and methylation profiling. With an estimated guess of
effect size (Cohen’s d) of 1.5 and a sample size of 14 (8 in NR and 6 in R
patients), the post hoc power analysis revealed that our study had a
statistical power of 72% to detect a significant difference between the
two groups. The low number of cases of course is a major limit of the
detectable effect size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed NanoString data generated in this study has been
deposited in theGEOunder accession number: GSE211645. Rawdata of
WES, RNA-sequencing, and RRBS are available under restricted access,
for privacy of the patients, on the EuropeanGenome-phenomeArchive
under accession number EGAS00001006736. Access for research
purposes canbeobtainedby applying to thedata access committee via
EGA (see: EGAC00001002947). It is expected that datawill be available
within 3 months of the request and there are no restrictions on the
duration of access. The complete de-identified clinical data are
available under restricted access. Data access can be obtained by
request from segreteria@fondazionenibit.org. The data that will be
shared include individual participant data that underlie the results
reported in this paper after de-identification (text, table, figures, and
appendices). The time frame for response to requests will be within
four weeks. Data will be shared for non-commercial purposes after
approval of a proposal by theBoardof theNIBIT Foundation andwith a
signed data access agreement. The availability of such data will begin
3 months and end 24 months after article publication. The study
protocol is available as a Supplementary Note in the Supplementary
Information file. Previously published genomic data of independent
cohorts used to support the findings of this study were obtained from
the CBioPortal for Cancer Genomic (https://www.cbioportal.
org/study/summary?id=mel_ucla_2016, https://www.cbioportal.org/
study/summary?id=mel_dfci_2019, https://www.cbioportal.org/study/
summary?id=skcm_mskcc_2014) and fromGEO under Series accession
number: GSE188250. The remaining data are available within the
Article, Supplementary Information, or Source Data file. Source data
are provided with this paper.
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