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In-memory mechanical computing

Tie Mei1 & Chang Qing Chen 1

Mechanical computing requires matter to adapt behavior according to
retained knowledge, often through integrated sensing, actuation, and control
of deformation. However, inefficient access to mechanical memory and signal
propagation limit mechanical computing modules. To overcome this, we
developed an in-memory mechanical computing architecture where com-
puting occurs within the interaction network of mechanical memory units.
Interactions embedded within data read-write interfaces provided function-
complete and neuromorphic computing while reducing data traffic and sim-
plifying data exchange. A reprogrammable mechanical binary neural network
and a mechanical self-learning perceptron were demonstrated experimentally
in 3D printed mechanical computers, as were all 16 logic gates and truth-table
entries that are possible with two inputs and one output. The in-memory
mechanical computing architecture enables the design and fabrication of
intelligent mechanical systems.

Mechanical computing is an unconventional information processing
method where information is stored as deformation states and com-
putation is conducted via mechanism motion or deformation
evolution1,2. Such mechanical computing is desirable for intelligent
mechanical systems2–5, including applications such as soft devices6,
micro-electro-mechanical systems7, and robotic materials8,9. Here,
intelligence represents an ability to adapt behavior according to
retained knowledge10,11, and intelligent matter thus requires a memory
module to store data, a computing module to process data and adapt
the matter, and a data exchange strategy for communication between
the memory and computing modules. The feasibility of such a
mechanical systemwas established by Babbage in the 19th century and
has been demonstrated many times since2–5,12–22. Although mechanical
computing offers unique potential associated with data security and
resistance to electromagnetic interference21–23, it is limited in perfor-
mance compared to silicon-based electronic computing, with the data
exchange strategy being a key limiting factor. Our goal was therefore
to design a mechanical computing architecture that circumvents this
limitation.

The fundamental units of computing modules, logic gates, have
been explored in mechanical computing in the form of origami12,13,
buckled beams14, and linkages22. Signal propagation can occur through
these logic gates via mechanical3,22, mechano-electronic4,5, or
mechanical-fluidic15,16 interfaces, and a reprogrammable, von
Neumann-like mechanical computing architecture has been
demonstrated17. With advances in fabrication techniques and

materials18, mechanical computing systems can be constructed on
different scales and can process environmental information such as
pressure19 and chemical cues20.

Similarly, non-volatile mechanicalmemorymodules exist for data
storage24,25, based on bi-stable elements26–29. However, the reading and
writing of data in these modules requires either the use of complex
peripheral equipment27 (e.g., movable electromagnetic coils) or the
evolution of the whole system across intricate state transition
paths26,28. These are effective, but require the design of elaborate
energy landscapes to control energy flow through the mechanical
system30–32, and are the source of a critical bottleneck that limits the
bandwidth ofmechanical signal propagation between thememory and
computing modules.

To address this bottleneck, in-memory computing has been
explored33–35, an information processing frameworkwherein, similar to
the human brain36, computation occurs in the places where data are
stored. Integrating computing and memory modules within a system
framework provides for widely distributed interfaces between data
and computing. This has been effective in semiconductor non-volatile
memory devices37, with in-memory computing especially efficient for
data-centric and intelligent tasks38. Our rationale for exploring this in
the context of mechanical computing is that in-memory computing
reduces the “distance” between computing and data, and potentially
the associated data traffic bottleneck as well.

Here, we propose an in-memory mechanical computing archi-
tecture, aiming at satisfying the requirement of being framed by
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distributed, non-volatile, robust, readable, initializable, and repro-
grammable mechanical memory units, similar to its electronic
counterpart35. Additionally, the interactions between memory units
should form function-complete logic sets to ensure the realization of a
variety of algorithms, and these interactions should be compatible
with the basic neuromorphic computing models to facilitate artificial
intelligence. To meet the three requirements, our architecture uses a
network of non-volatile binary mechanical memory units (buckled
beams) that can be reprogrammed and initialized by an external force.
Computing in this architecture is driven by a time-varying signal (a
periodic external force) and determined by the network topology with
three basic interactions: a shift register, an XNOR gate, and a percep-
tron operation. Experimental demonstrations of this architecture to
develop reprogrammable mechanical binary neural networks and a
self-learning mechanical perceptron indicate that the proposed
architecture satisfies all three requirements.

Results
General concept of in-memory mechanical computing
The proposed in-memorymechanical computing architecture consists
of interconnected square blocks, each representing a binary (i.e., x = 0
or 1) mechanical memory unit (Fig. 1a). The blocks have three basic
interaction operations: a shift register (black arrows), an XNOR gate
(curved arrows and plus the “�” operator), and perceptron operations
(arrows with weight parameters αj). The state of the system at clock
phase t is described by all memory units (i.e., xðtÞi , where the subscript i
refers to the i-th unit). Driven by a time signal (Fig. 1b), the system
evolves to another state ðxðt + 1Þ

1 ,xðt + 1Þ2 ,:::,xðt + 1Þn Þ as simultaneous data
writing, data reading, and computation occur in the mechanical
memory unit array according to the organization of interaction
networks.

The system evolutions give rise to computing processes for the
three basic interaction operations that were our focus (Fig. 1c–e). The
first was the shift register, a sequential logic device in electronic
computers39 that can store binary numerical code, perform serial-to-

parallel data conversion, andprovide a strategy for reading andwriting
serial data. In the proposedmechanical shift register (Fig. 1c), the state
of an upstream memory unit (i.e., xðtÞ

i�1) is transferred to the memory
unit that is immediately downstream (i.e., xðt + 1Þ

i ) after these units
receive a time signal. With this operation, data with different clock
phases can be written into the mechanical memory units in a tandem
array to participate in computation together. Thus, the historical data
influence subsequent decision-making in the mechanical system,
which is a foundation of learning10,11.

For the XNOR operation (Fig. 1d), the state of the output unit
(xðt + 1Þ

i+ 2 ) is updated upon receipt of a time signal, in accordance with the
logic of the XNOR gate (right inset, Fig. 1d) and the two input units xðtÞi
and xðtÞ

i+ 1. If the two inputs are the same, the output will be 1, and if they
aredifferent, it will be0. TheXNORoperationdifferentiates twobinary
data, which is beneficial for error analyses and for adaptation of the
mechanical computing system.

For the perceptron operation (Fig. 1e), computation upon receipt
of a time signal begins with a weighted summation of the binary inputs
(xðtÞ

1 to xðtÞ
n ),

Pn
i = 1αix

ðtÞ
i whereαi areweights. The output (x

ðt + 1Þ
n+ 1 ) follows

a nonlinear step function activation, with xðt + 1Þ
n+ 1 = 1 if

Pn
i = 1αix

ðtÞ
i ≥ 1, and

0 otherwise. The proposed mechanical perceptron is a variant version
of theMcCulloch-Pitts artificial neuronmodel40, enabling amechanical
system with embedded neuromorphic arithmetic.

Note that this comprises a function-complete set of logic gates
because the required three logic gates (AND, OR, and XNOR) can be
achieved with these units. The AND logic gate is obtained from the
mechanical perceptron when only two input units are included and αi

are set to 1/2. TheORgate is similarly obtained for two inputs andαi set
to 1. This function-complete set provides a vast functional design space
with the proposed architecture.

The mechanical memory unit selected was a simple and well-
studied bi-stable mechanical component, i.e., the buckled beam41

whose state is distinguished by its arching direction (0 for arching to
the left, and 1 for aching to the right), to benefit the experimental
realization of the computing system. The design of mechanical
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Fig. 1 | Schematic of an in-memory mechanical computing system. a An in-
memory mechanical computing system consisting of binary mechanical memory
units and their interactions (i.e., shifter register, XNOR, and perceptron

operations). b Its computing process as the state evolution of the memory units.
c Interaction serving as a shifter register. d Interaction serving as an XNOR gate,
together with its truth table. e Interaction serving as a perceptron operation.
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structures for the basic operations is given in the next section as a
proof-of-concept for in-memory mechanical computing. And their
underlying mechanism is discussed in the Method. These structures
were fabricated by 3D printing, and the time signal (the external force
F) was realized by a series of magnets in the experiments.

Design of basic interactions
First, we introduce amechanical structure for the shift register (Fig. 2).
It adopts anup-down symmetrical design scheme and consists of links,
springs, and a buckled beam, with their boundary conditions provided
by the gray support alsomarked (Fig. 2a(i)). Note that the white blocks
denote hollow space introduced to reduce the cost of 3D printing. The
links arehinged together. Spring 1 is placed between the buckled beam
and link 3, while two spring 2 are connected to the support and the
common vertex of link 1. All springs can only provide a compressive
interaction. The top and bottom ends of the buckled beam are fixed,
and the midpoint of the beam can only translate horizontally. More
details of assembling these components are given in the Supplemen-
tary Note. Figure 2b shows the theoretical compressive force-
displacement curve (f � u) of the buckled beam where a bi-stable
mechanism can be found and uM represents the unstable equilibrium
state of the beam (details of the corresponding Euler buckling based
mechanics are given in theMethod).When the buckled beamarches to

the left (right), it is in state 0 (1). The bi-stable buckled beam can be
used to store binary data and serves as a mechanical memory unit.
When the beam is compressed to state 1, the links can move right
almost unimpededly by considering spring 2 is much softer than
spring 1, Fig. 2a(ii).

Operation of the shift register is driven by a time signal, i.e., the
external force F applied to the links shown in Fig. 2c. If the initial state
of the mechanical memory unit is 0 before receiving F, the motion of
link 1 will be blocked by the support, and thus all components cannot
move, Fig. 2c(i). In addition, if the initial state of the mechanical
memory unit is 1, the rhombus link 3 will be opened and push the left-
buckled beam to state 0 via spring 1. Besides, all link 1 are not blocked
until compressing the downstream unit for a distance of Δ, Fig. 2c(ii).
Then, as Fig. 2e shows, the buckled beamwith a received displacement
load Δ will arch to the right, regardless of its initial state of being 0
(Fig. 2e(i)) or 1 (Fig. 2e(ii)). The theoretical force-displacement curve of
a buckled beamwith the time signal will becomemono-stable (Fig. 2d)
because the right ends of spring 1 are fixed by the links blocked by the
external force F. Figure 2d also shows the force condition of the
buckled beams shown in Fig. 2c, e.

After the time signal is received and released by the memory
units, one operation of the mechanical shifter register is com-
pleted, with the corresponding state evolution of thememory units
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Fig. 2 | Mechanical shift register. a Structural design for mechanical shift register
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marked. The memory unit in (i) and (ii) is in state 0 and 1, respectively. b The
theoretical compressive force-displacement response of the buckled beam in a.
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tively. d The theoretical compressive force-displacement response of the buckled
beam in c and e. e Mechanical register structure receiving the time signal and the
displacement loadΔ. For (i) and (ii), thememory unit is at state 0 and 1 beforebeing
excited, respectively. f State transformation map of the mechanical register unit.
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given in Fig. 2f. Specifically, if the memory unit x is in state 0, unit y
that receives a time signal does not get the displacement load Δ. At
this time, the buckled beam of unit y will arch to the left, inde-
pendent of its initial state (see Fig. 2c) because the beam is mono-
stable (Fig. 2d). Then, after the time signal is released, the state of
unit y is 0. If thememory unit x is in state 1, the buckled beamof unit
ywith the time signal will be compressed to a distance of Δ and arch
to the right (Fig. 2e). Then, unit y becomes state 1 after releasing the
time signal because Δ>uM . The state transmission of unit x to unit y
showcases the shifter register operation.

Construction of the rest two mechanical operations, i.e., XNOR
and perceptron is presented in Fig. 3. The mechanical structure of the
XNORoperationhas anup-down symmetry and consists ofmechanical
memory units, springs, balance bars, links, slider bar, slider block and
support (Fig. 3a). The boundary conditions of these components are
also marked. Details of the assembly of these components can be
found in the Supplementary Note.

For XNOR, two memory units serve as the input ports and one
serves as the output port. If the two inputs are 0 (Fig. 3a), there is no
compressive stress in spring 1. The slider bars do not move. All
balanced bars remain vertical, and the links stay at their initial position
shown in Fig. 3a. Note that all link 1 point to the right under the con-
dition. When imposed upon by a time signal (external force F), the
output buckled beam is pushed for a distance of Δ (Fig. 3b). Thus, the
output buckledbeamarches to the right and its state switches to 1 after
the force F is released, i.e., the structure outputs 1 for the input (0, 0).
On the other hand, if the input is (1, 0) (Fig. 3c), the buckled beam in
state 1 compresses spring 1, thus pushing the slider bar, and the bal-
ance bars rotate. Then, driven by link 2 and link 3, the common vertex
of link 1 moves left. After receiving the time signal, the vertex of link 1
furthermoves left for a distanceofΔ (Fig. 3d). The slider block touches
the slider bars, thus pushing spring 1 and initializing the input buckled
beams to state 0. In this procedure, the output buckled beam is not
loaded and always arches to the left. Thus, after releasing the time
signal, the output is 0. Similarly, the structure can also output 0 when
the input is (0, 1), and output 1 when the input is (1, 1). As such, the
input-output relationship of the mechanical structure indeed matches
the truth table of the XNOR gate in Fig. 1d. More details of the corre-
sponding computing process of the structure are shown in the Sup-
plementary Note.

For the structural design of the mechanical perceptron operation
(Fig. 3e, f), two parallel mechanical shift register structures are con-
nected to one output buckled beam via connecting bars and springs.
The stiffness of the springs are k1 and k2, respectively. A critical stiff-
ness of the spring, denoted as k*, is defined in Fig. 3g. k* determines
whether a buckled beam with the displacement load Δ will be com-
pressed to state 1 and is used to evaluate the stiffness of springs in
Fig. 3e, f, i.e., ki =αik

*, i = 1 or 2. Note that the input buckled beam 1 (2)
is in state 1 (0) before receiving the time signal in Fig. 3e. Thus, the
connecting spring 1 (2) will (not) compress the output buckled beam
driven by force F. Considering 1/2 < α1 < 1, the output buckled beam
still arches to the left in Fig. 3e and will be state 0 after releasing the
time signal. However, in Fig. 3f, the two input buckled beams are all in
state 1 before receiving the time signal. All the parallel connecting
springs compress the output buckled beam. This is equivalent to the
condition thereby only one connecting spring of stiffness ðα1 +α2Þk*

(α1 +α2>1) compresses the output beam. As a result, the beam arches
to the right, giving rise to state 1. Accordingly, the input-output rela-
tionship can be expressed as:

xðt + 1Þn+ 1 = ε
Xn
i = 1

αix
ðtÞ
i � 1

 !
ð1Þ

with n = 2. In Eq. (1), xðtÞi represents the state of the input buckled
beams before receiving the time signal, xðt + 1Þ

n+ 1 is the state of the output

buckled beam after the time signal is released, αi is the dimensionless
stiffness of the connecting spring, the summation originates from the
parallel arrangement of the connecting springs, and the nonlinear
activation stems from the binary state transformation of the output
buckled beam. Moreover,

Pn
i= 1αix

ðtÞ
i represents the interaction

strength on the output buckled beam xðt + 1Þ
n+ 1 . Note that the idea given in

Fig. 3e, f can be applied to Eq. (1) with different n by simply adopting
more parallel springs. Thus, the mechanical perceptron operation in
Fig. 1e is realized.

Two applications of the proposed in-memory computing archi-
tecture to intelligent mechanical systems are discussed in the follow-
ing: amechanical binary neural network and amechanical self-learning
perceptron.

Mechanical binary neural network
Binary neural networks (BNN)42,43 can reduce memory usage by train-
ing deep neural networks (DNN) with binary weights and activations
and by replacing most multiplications with 1-bit XNOR operations.
They are especially promising for deploying deepmodels on resource-
limited devices such as mechanical computing systems. Here, a
mechanical binary neural network (MBNN) is experimentally demon-
strated with the help of the proposed in-memory computing archi-
tecture (Fig. 4).

In the binary neuron model of ref. 43 (Fig. 4a), the forward pro-
pagation procedure is based on the assumption of bipolar binary
parameters, i.e., �xl + 1j = signðPn

i =0 �w
l
ij
���xl

iÞ, where �xl
i and �xl + 1

j are the
input and output of the binary neuron, �wl

ij is the weight, super-
scriptlrepresents a layer rather than a clock phase to describe the
networks more clearly, �xl

i ,�x
l + 1
j ,�wl

ij 2 �B, with �B the set of bipolar bin-
aries, i.e., ±1, and �� is the XNOR operation that outputs 1 (−1) when the
two inputs are the same (different).

In the mechanical counterpart of the binary neuron model
(Fig. 4b) the input-output procedure driven by the time signal can be
written as xl + 1j = εðαPn

i =0w
l
ij � xli � 1Þwhere xli ,xl + 1

j ,wl
ij 2 B (B is a set of

binaries, i.e., 0 and 1),� is theXNORoperation shown inFig. 1d, εðxÞ=0
for x <0, and εðxÞ= 1 for x ≥0. All connecting springs have the same
stiffness, denoted by α. This neuron model first computes the
mechanical XNOR results of the input-weight pairs ðxli ,wl

ijÞ and then
outputs xl + 1j by performing a mechanical perceptron operation of
these XNOR results.

It should be pointed out that, by properly setting α, these two
neuronmodels are equivalent (seeMethod). Bywayof example, if the
parameter’s value in themechanical model (1 or 0) refers to the same
information as that in the non-mechanical model (1 or −1), these two
models have exactly the same function. Figure 4c shows a BNN
model. By replacing the binary neuron with the corresponding
mechanical one, an equivalent MBNN can be obtained (Fig. 4d),
where bl

j and
�b
l
j are the bias of the jth neuron in the lth layer for the

mechanical and non-mechanical neural networks, respectively. As
explained in Methods, the dimensionless stiffness of the connecting
springs (α) for the first and second layers are set to be 1/3 and 1/2,
respectively.

The MBNN can be made to execute the same function as the
trained BNN. This is done by ensuring that theweightswl

ij and biases bl
j

of the MBNN are chosen so that mechanical memory units yield 0 or 1
when the corresponding trained BNN would yield −1 or 1. We have
trained a BNN that can judge the parity of input Morse code numbers
0–9 (the training arithmetic is discussed in the Supplementary Note).
The corresponding MBNN in the experiment is given in Fig. 4e, where
the values of the weight and bias are marked. The functions of several
typical parts are also marked. The computing process of the MBNN
(see SupplementaryMovie 1) works in an asynchronousmode (Fig. 4f).
First, a Morse code number enters the memory units of the first layer.
Then, the state of the memory units in the second and third layers is
computed, driven by two successive time signals. If the input number
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is odd (even), the output state of thememoryunit in the third layerwill
be 0 (1). As an example, Fig. 4f gives themathematical process to judge
the parity of the input Morse code number 1.

It should be emphasized that the proposed MBNN is repro-
grammable and the physical layout does not limit its function. Differ-
ent working requirements can be fulfilled by simply changing the state
of the memory units that store the weight and bias. We demonstrated
that the MBNN in Fig. 4e is capable of other functions, for example
determining whether an input Morse code number belongs to the
section [4, 8] (Supplementary Movie 1).

To further illustrate the versatility of the idea underlying the
MBNN, we mimicked another BNN with 2 nodes in the input layer, 2
nodes in the hidden layer, and 1 node in the output layer. Note that, in
total, there are 16 types of truth table entries possible with two inputs
and one output. To show the fitting ability of the corresponding
MBNN, we demonstrated the realization of all these truth table entries

by reprograming the weights and biases, as shown in the Supplemen-
tary Note and Movie 2.

An MBNN with more memory units could be used for more
advanced functions. In Fig. 4g, we show the training process of a BNN
to distinguish between labeled images of handwritten digits (from the
MNIST database44). The error of the training and testing sets gradually
reduces and becomes 1 after about 170 training steps. Considering the
equivalence of the BNN and MBNN, this result shows that the
mechanical in-memory computing architecture can provide a strategy
to design intelligent deformation input-output relationships that can
even adapt to unseen conditions. More details of the training process
are given in the Supplementary Note.

Mechanical self-learning perceptron
The aforementioned MBNN was realized via external computing
devices, but the proposed in-memory mechanical computing
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architecture can enable systems that learn by themselves can also be
developed. The Rosenblatt perceptron45, which can be trained to solve
linearly separable classification problems, is a classical model for
supervised learning. We constructed a mechanical, self-learning per-
ceptron inspired by Rosenblatt’s strategy.

In a Rosenblatt perceptron model with one input and bias
(Fig. 5a), the forward propagation procedure can be written as:
y= εð~wx + ~b� 1Þ with the weight and bias of backward propagation
being updated by ~w= ~w+ signðyt � yÞxd ~w and ~b= ~b+ signðyt � yÞd~b,
where x, y, and yt are the input, output, and the target output
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(x,y,yt 2 B), ~w and ~b are theweight andbias (~w and ~b are real numbers),
and d ~w and d~b are the updating increments (d ~w and d~b are greater
than zero and couldbedifferent in different updating steps). Assuming
that the input sets identified by different target output values are lin-
early separable, yðxÞ will finally converge to ytðxÞ in the backward
procedure46.

The corresponding mechanical, self-learning, perceptron model
has a forward propagation procedure represented in Fig. 5b (black
interaction symbols). By considering the weight ~w (bias ~b) as the
interaction strength applied to the output unit y by the connecting
springs related to the memory units marked with x11, x12, x13 and 1 (x21,
x22, and x23), so that ~w= γ +α

P3
i= 1x1i and

~b =β
P3

i= 1x2i, the forward
procedure of the mechanical self-learning perceptron matches that of
the Rosenblatt perceptron (see proof in Methods).

Furthermore, the backward propagation procedure of the
mechanical self-learning perceptron is represented by the interaction
symbols in brown in Fig. 5b. Once the corresponding mechanical
memory units receive the time signal, they evolve according to the
result c of XNOR (i.e., c= y� yt) under the control of the data selector.
The evolution process is as follows:

xi1 = xi3,xi2 = xi1,xi3 = xi2,c= 1

xi1 = yt ,xi2 = xi1,xi3 = xi2,c=0

�
ð2Þ

During the evolution process, the weights and biases in the
mechanical self-leaning perceptron update following a variant of the
process used in the Rosenblatt perceptron (demonstrated in Meth-
ods), which ensures their convergence during computation and pro-
vides a theoretical basis for mechanical self-learning.

A fully functional mechanical self-learning perceptron was 3D
printed and demonstrated, with α = 1/2, β = 1/2, and γ =�1/3 (Fig. 5c,
see Supplementary Note for details). The functions of some typical
components are marked. All memory units were in state 0 initially in
the experiment, except c = 1. The system learned target input-output
relationships by repeatedly conducting four steps for one time period
(see Fig. 5d). Note that these four steps were conducted successively
by imposing the time signalondifferent parts of the systematdifferent
times (see Supplementary Movie S3 for the learning procedures for all
possible target input-output relationships). In the first step, the input x
and the corresponding target output yt were entered; cwas set to 1. In
the second step, the output y was computed. Noting that c was preset
to 1, the memory units (x11, x12, x13) and (x21, x22, x23) formed two end-
to-end shift register loops (Eq. (2)). Thus, the weight ~w and bias ~b
remained unchanged, while the related memory units evolved. In the
third step, an XNOR operation between the computed y in the second
step and the target output yt was conducted; i.e., c= y� yt . Finally, in
the fourth step, the memory units related to the weight and bias
evolved following Eq. (2) and the weight and bias were updated. For
the case in which the target input-output relationship was to output 1
when the input was 0 or 1, the learning process and state evolution of
allmemory units are listed in Fig. 5e. The weight and bias converged to
1/6 and 1, respectively, and the system achieved the desired input-
output relationship.

The proposed mechanical self-learning perceptron can also be
extended to caseswithmore inputs (see the SupplementaryNote). The
learning processes for three caseswith 10, 20, and 30 inputs are shown
in Fig. 5f and g in terms of the evolution of the error and weight ~w0,
respectively. After about 3500 training steps, the weight converges
and the three mechanical self-learning perceptron reach their target.
These examples further show the generality of the mechanical self-
learning perceptron.

Biomimetic, “intelligent” functions requiring retrieval and sto-
rage, such as implementing neural networks and self-learning

behavior, have to date been realized only with electronic control and
computing devices47,48. The proposed in-memory mechanical com-
puting architecture enables these data-centric functions on a
mechanical platform and may serve as a foundation for embedding
microelectronic devices that realize even more advanced functions.
The explicit mathematical model for input-output relationships in in-
memory computing mechanical systems may simplify the design of
such systems.

Discussion
The in-memory mechanical computing platform enabled the integra-
tion of binary mechanical memory units and computing units, driven
by time signals (external forces) and determined by interactions
amongst memory units. These interactions provide a neuromorphic
and function-complete method to compute mechanically within the
network of memory units, analogous to in-memory computation
within the human brain. The platform was demonstrated with 3D
printed, in-memory computing devices, including a reprogrammable,
mechanical binary neural network, and a mechanical, self-learning
perceptron.

The coordination between distributed data read-write interfaces
and the computing process may be beneficial for adaptive and intel-
ligent deformation control. The absence of long-range data transfer is
promising neuromorphic decision-making and biomimetic self-
learning mechanical systems. Although the systems 3D printed for
the demonstrations in this paper are on a scale of centimeter, the
underlying physical mechanisms and strategy are scale-free. Advances
in multi-material 3D printing techniques18,49 may enable further min-
iaturization of such mechanical systems.

Applications of the proposed mechanical in-memory computing
architecture could include robotics with neuromorphic operations in
extreme environments where many electronics may not be suitable.
The distributed memory units in the computing architecture coordi-
nate with the distributed sensors and actuators of a robotic, simpli-
fying the design of mechanical signal transmission networks and
reducing the maximal data traffic in a signal path compared with
centralized computing architectures17. The memory units themselves
can also serve as sensors capable of in-situ data storage. For example,
the bulked beam can be used for tactile sensing and determining
whether the contacting force exceeds a certain threshold. The time
signal driving the computing can be provided by the distributed
actuators (corresponding to the electromagnets in this paper). The
stored data is processed with the motion of the robotic. In turn, the
memory units can also serve as a switch (like the one marked by x in
Fig. 5b, c) to control the actuators. By doing so, a storage, computing
device, and movement-generating hardware interaction network is
established. Considering the system works in an asynchronous mode,
the results of the shallow memory layers (indicating whether an event
has been triggered) can be used to control the actuators related to
deeper memory layers. Thus, such robotics can be event-driven and
suitable for resource-constrained scenarios. In general, the in-memory
mechanical computing architecture can serve as an intelligent
mechanical skeleton for embedding microelectronic devices, benefit-
ting the construction of intelligent robotics and metamaterials48,50–52.

Methods
Mechanics of the buckled beam without and with a spring
The buckled beam serving as a binary mechanical memory unit is
obtained by pre-compressing a straight beam (Supplementary Fig. 2a).
Its geometry parameters are listed, with L, t, b, d denoting the length,
thickness, width, and pre-compressing distance of the beam, respec-
tively. The deflection as a function of position x is given by w(x). The
ends of the beam are fixed. Its midpoint is subject to a transverse
displacement load while rotation of the midpoint is prohibited. Under
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this condition, the force-deflection response of the buckled beam is
given by41

f ðηÞ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2I2η5ðd � dpðηÞÞ

L5ð2η� 12 tanðη4Þ+ηsec2ðη4ÞÞ

vuut ð3Þ

wmðηÞ= � L3

EIη2

1
4
� 1

η
tan

η
4

� �� �
f ðηÞ ð4Þ

where η is a parameter larger than 2π,wmðηÞ is themidpoint deflection
of the beam, f ðηÞ is the reaction force, E is the elasticity modulus,
I =bt3=12, and dpðηÞ=η2I=Lbt. When η reaches 4π, the compression
responsewill lie between that predicted by the parametric Eq. (3) and a
lower reaction force given below.

f ðwmÞ= � 64π2EIwm

L3
ð5Þ

The buckled beam ismade of elastic thermoplastic polyurethanes
(TPU) with a measured modulus E being 72.0MPa. The finite element
method (FEM) and theoretical predicted mechanical responses are
given in Supplementary Fig. 2b for the geometrical parameters given
by L = 30mm, b = 2.5mm, t = 2mm, and d= 1, 1.5, and 1.7mm, showing
excellent agreement. The initial deflection of the beam’s midpoint is
denoted as w0, while the maximal value of the reaction force is
represented as f s . Tomake the binary state of the buckled beammore
recognizable,w0 should be larger than L/10. Besides, f s cannot be too
large to hinder state changes of the beam. Thus, considering the
driving force provided by the electromagnet in the computing process
is f e (4.5N), f s should be smaller than f e. To reduce the design space of
the buckled beam, L and b are set to be 30mm and 2.5mm. The
contours of w0 and f s in the t-d space are given in Supplementary
Fig. 2c and Supplementary Fig. 2d, respectively, with the dashed lines
representing the corresponding w0=L/10 and f s=f e. With the help of
these two contours, a suitable set of geometric design parameters can
be selected. For the buckled beam used to construct the in-memory
mechanical computing system, the set of parameters of t = 2mm and
d = 1.5mmare adopted in the experiment, denotedby the star symbols
in Supplementary Fig. 2c, d.

To design the springs used in the mechanical interaction
structures, the mechanical response of the buckled beam with a
connected spring is of great importance. There are two typical
mechanical models. In the first model, the buckled beam is con-
nected to fixed support via the spring of stiffness k (Supplementary
Fig. 2e). The corresponding mechanical response with different k is
shown in Supplementary Fig. 2f. It is found that if k> (<) 529 N/mm,
the mechanical response is mono-stable (bi-stable). For the shift
register structure, the right end of spring 1 is fixed when receiving a
time signal and the buckled beam should be mono-stable at this
time (Fig. 2c–e). Thus, the stiffness of the spring here is selected as
588 N/mm (>529 N/mm). However, the input buckled beams of the
mechanical XNOR structure should be bi-stable to store binary
information though connected to a spring with a fixed end (Sup-
plementary Fig. 1a). Thus, the stiffness of spring 1 in the XNOR
structure is set as 370 N/mm (<529 N/mm).

In the secondmodel, the buckled beam is compressed via a spring
(Supplementary Fig. 2g), where u represents the displacement of the
left end of the spring. For several selected stiffness of the connected
spring k, the relationship of the compressive displacement u and the
deflection of the buckled beam’s midpoint wm is given in Supple-
mentary Fig. 2h, where Δ is the displacement load that drives the
deformation of buckled beams used for the in-memory mechanical
computing system (shown in Figs. 2 and 3) and is set to be about 7mm
(2w0). It can be found that if k> (<) 529N/mm, the state of the buckled

switches (does not switch) when subject to the displacement load Δ.
Thus, the critical stiffness k* defined in Fig. 3g is 529N/mm. Besides,
Δ0 is the displacement load that initializes the input buckled beams to
state 0 for the mechanical XNOR structure (Supplementary Fig. 2b).
Δ0 is set to be 4mm (slightly larger than w0). If k> (<) 303N/mm, the
state of thebuckled switches (does not switch) under the displacement
loadΔ+Δ0. Note that the stress condition of the input buckled beams in
Supplementary Fig. 1a is equivalent to that of the buckled beam in
Supplementary Fig. 2g imposed by the displacement loadΔ. To ensure
that the buckled beam can be initialized if furtherly loaded by
the displacement load Δ0, the stiffness of spring 1 in the XNOR struc-
ture should be larger than 303N/mm. Therefore, the stiffness of 370
N/mm in the design is a suitable choice.

Note that the stiffness of springs can be determined by their
radius R, wire radius r, and the number of coils N. We measured the
stiffness of springs with different geometrical parameters experi-
mentally. The fitted stiffness (N/mm) is obtained to be:

k = 1:0234× 108 r4

4NðR� rÞ3
ð6Þ

With the help of this equation, we can get the springs of desired
stiffness by changing the radius R, wire radius r, and the number of
coils N.

Estimation of the maximal clock frequency
Themaximumclock frequencyof the timesignal shown in Fig. 1 should
not be greater than the natural frequency of the buckled beam. It can
therefore be estimated as follows. For a clamped-clamped straight
beam, the natural frequency of the lowest order is 3:559

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ρAL4

p
where

E is Young’smodulus, I thebendingmomentof inertia,A the area of the
cross-section of the beam, L the beam length, and ρ the mass density
(Roark and Young, 2020. Roark’s Formulas for Stress and Strain). By
introducing a proportional factor, we can evaluate the natural fre-
quency of the buckled beam as f b = λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ρAL4

p
, where λ is related to the

dimensionless pre-compressing distance of the beam (d=L) and can be
obtained from FEM simulations as:

λ= � 5408
d
L

� �3

+ 537:8
d
L

� �2

+ 50:93
d
L
+3:528 ð7Þ

For the buckled beam in this paper, f b=1155 Hz is obtained. In the
experimental verification, the clock rate is set as 0.5 Hz, much smaller
than 1155 Hz, thus ensuring all the operations can be settled. This fre-
quency f b, though much less than that of conventional electronic
devices, can be substantially increased by reducing the dimensions of
the beam for practical applications of intelligent matter.

The equivalence between BNN and MBNN
To show the equivalence between BNN and MBNN, consider the
number of ð�xli ,�wl

ijÞ (ðxli ,wl
ijÞ) pairs in Fig. 4a (b) where �xli = �wl

ij (x
l
i =w

l
ij) is

�m (m). Their forward procedure can be rewritten as:

�xl + 1
j = signð2 �m� nÞ ð8Þ

xl + 1j = εðαm� 1Þ ð9Þ

When the mechanical model is equivalent to the non-mechanical
one, the critical value (denotedbym*) of �m andm for theoutput binary
state changing should be the same. Consequently, one has:

2m* � n =0

αm* � 1 =0

(
ð10Þ
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Thus, α can be obtained as:

α = 2
n+ 1 ,n=2k + 1

α = 2
n ,n=2k

,k = 1,2,3:::

(
ð11Þ

Wesetα (the dimensionless stiffness of the connecting springs) as
(11) in the construction of the mechanical binary neuron. Then, it can
be seen that when setting xl

i = ð�xli + 1Þ=2 and wl
ij = ð�wl

ij + 1Þ=2, the
mechanical version of the binary neuron outputs xl + 1j = ð�xl + 1j + 1Þ=2,
which shows that themechanical binary neuron canhave an equivalent
binary input-output function to the binary neuron model.

The equivalence between the Rosenblatt perceptron and the
mechanical self-learning perceptron
The weight and bias of the mechanical self-learning perceptron are
defined as the interaction strength applied to the output unit as
~w= γ +α

P3
i = 1x1i,

~b=β
P3

i= 1x2i. However, the input memory unit x
serves as a switch (Fig. 5b). Only when x = 1 can the time signal reach
the weight memory units (see the time signal influence scope as the
gray shadow), i.e., there is no interaction between the memory units
storing the weight and the output unit if x =0. Accordingly, the total
interaction strength on the outputmemory unit can be represented by
~wx + ~b. Thus, the forward procedure of the mechanical self-learning
perceptron fulfills that of the Rosenblatt perceptron.

Considering the number of the memory units storing the weights
(bias) and being in state 1 is nw (nb), the weight (bias) updates with the
changing of nw (nb) during the evolution process of Eq. (2) for the
backward procedure. When yðxÞ= ytðxÞ, i.e., c = 1, the memory units
storing the weight (x11, x12, x13) and bias (x21, x22, x23) form two end-to-
end shift register loops. Thus, nw and nb remain unchanged as also the
weight and bias. When yðxÞ≠ytðxÞ, i.e., c = 0, nw (nb) increases by yt �
x13 (yt � x23) and the weight (bias) increases by αjyt � x13jsignðyt � yÞ
(βjyt � x23jsignðyt � yÞ). Further considering that the memory unit x
controls the time signal, the updating rule of the weight and bias can
be written as:

~w= ~w+αjyt � x13jsignðyt � yÞx
~b= ~b+βjyt � x23jsignðyt � yÞ

(
ð12Þ

Considering d ~w=αjyt � x13j, d~b=βjyt � x23j, Eq. (12) is a variant
version of the updating process of the Rosenblatt perceptron, which
ensures the convergence of weight and bias during computation and
provides a theoretical basis for mechanical self-learning. More dis-
cussion about the mechanical self-learning perceptron, including the
convergence analysis of the updating procedure and extension of the
system to the condition with n+1 inputs, can be found in the Supple-
mentary Note.

Fabrication of the mechanical model
The mechanical memory units (buckled beams) and interaction
structures are all designed in the CAD software Solidworks (Dassault
Systèmes) and exported as STL files to be used in the subsequent 3D
printing. The buckled beam is made of thermoplastic polyurethanes
(TPU) and printed using the fused deposition modeling technique on
an Ultimaker S3 printer. The springs are made of spring steel. Other
components (the links, sliders, supports, and so on) are all made of
photosensitive resin (DSM IMAGE8000) and printed using a Stereo-
lithography Apparatus (SLA) UnionTech LT_450_409_G 3D printer.
Then, the mechanical computing systems are obtained by assembling
all the components. Below the support of eachbuckledbeam, there is a
connected electromagnet KK-1050B (Kakcom) that provides the time
signal (periodic external force) under the control of a microcontroller.
Besides, petroleum jelly is applied to the surface of all the components
to minimize friction.

Data availability
Source data are provided with the paper. Other findings of this study
are available from the corresponding author upon request.
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