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Propensity of selecting mutant parasites for
the antimalarial drug cabamiquine

Eva Stadler 1,11, Mohamed Maiga 2,11, Lukas Friedrich3,11, Vandana Thathy4,5,11,
Claudia Demarta-Gatsi 6, Antoine Dara 2, Fanta Sogore2,
Josefine Striepen 4,10, Claude Oeuvray6, Abdoulaye A. Djimdé 2,
Marcus C. S. Lee 7,8, Laurent Dembélé2 , David A. Fidock 4,5,9 ,
David S. Khoury 1 & Thomas Spangenberg 6

We report an analysis of the propensity of the antimalarial agent cabamiquine, a
Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for
resistant Plasmodium falciparum parasites. Through in vitro studies of labora-
tory strains and clinical isolates, a humanized mouse model, and volunteer
infection studies, we identified resistance-associatedmutations at 11 amino acid
positions. Of these, six (55%) were present in more than one infection model,
indicating translatability across models. Mathematical modelling suggested
that resistant mutants were likely pre-existent at the time of drug exposure
across studies. Here, we estimated a wide range of frequencies of resistant
mutants across the different infectionmodels, much of which can be attributed
to stochastic differences resulting fromexperimental design choices. Structural
modelling implicates binding of cabamiquine to a shallow mRNA binding site
adjacent to two of the most frequently identified resistance mutations.

Plasmodium falciparum drug resistance poses a constant threat to
effective malaria treatment. Consequently, resistance is a critical
parameter to monitor during anti-infective drug discovery and devel-
opment, as it can lead to the demise of first-line treatments1–3. To
mitigate the risk of resistance, new antimalarial drugs should be
developed as fixed-dose combinations. A better understanding of
resistance risks posed by a candidate compound under development,
in addition to how this will translate in a real-world setting, can inform
the selection of partner drugs and the optimal design of combination
therapies.

Over the last decade, the antimalarial drug research community
has developed robust tools to assess antimalarial drug candidates in
pre-clinical and early phase clinical studies. These include the follow-
ing: (i) in vitro selection of resistance by subjecting antimalarial drugs
to various inocula of P. falciparum parasites (105–109) to determine the
minimum inoculum for resistance (MIR), regularly complemented by
whole-genome sequencing of mutant parasites and fitness cost
studies4; (ii) in vivo assessment of parasite recrudescence and the
presence of resistant mutants following drug treatment in a chimeric
humanized mouse model (NOD/SCID/IL2rγnull [NSG]) engrafted with
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human red blood cells (RBCs) harbouring P. falciparum parasites (~1.4
× 108 parasites/mouse at the time of treatment); and (iii) malaria naive
human volunteer infection studies (VIS) with P. falciparum parasites
(parasite loads of ~107 parasites/volunteer at treatment) to assess drug
efficacy at an early stage of drug development5. Overall, these assays
can mimic some aspects of clinical settings wherein the number of
parasites can attain up to 1012 in an infected human host (Fig. 1)6.

How well these tools enable the prediction of treatment failure
due to resistance in clinical settings has been less understood. Here,
we analyze pre-clinical and Phase I clinical trial data to explore the
potential risks of resistance associated with cabamiquine (M5717,
DDD107498)7, an exquisitely potent inhibitor of P. falciparum
eukaryotic elongation factor 2 (PfeEF2)8. Mathematical modelling of
these data using both deterministic and stochastic models allowed
us to estimate the frequency of parasite resistance to this compound
across different in vitro and in vivo infectionmodels. This modelling
also predicted the likelihood that these mutants either emerged de
novo following drug treatment or alternatively were likely present at
the time of treatment (pre-existent). Finally, a homology model
of the target is constructed to account for the known mutant para-
sites and provide further insights into the binding mode of
cabamiquine.

Results
Overlap of mutant P. falciparum eEF2 amino acid positions
across models
To date, selection of mutant parasites with cabamiquine has been
assessed in vitro, in a humanized mouse model of P. falciparum
infection (NSG), and in human VIS7, 9, 10. However, to the best of our
knowledge, no comparison has been performed between these infec-
tion models, either for this compound or any other antimalarial.
Herein, we have identified resistance-associated mutations at 11 dif-
ferent PfeEF2 amino acid positions (Fig. 2a and Supplementary
Table 1): 8 in vitro, 6 in NSG mice, and 4 in human VIS, with 6/11 (55%)
overlapping in at least two infection models. Various mutations at
amino acid residues 183 and 754 were shared across all three settings
(in vitro selections, and in vivo using theNSGmousemodel and human
VIS). The high- andmedium-grade resistantmutants Y186N and P754S,
respectively, were selected in the in vitro MIR studies and the NSG
mouse model, whereas I183M, a low-grade resistant mutant, was only
selected in vivo, both in the mouse and human hosts (Fig. 2b). The
medium- and low-grade resistant mutants P754A and S474R, respec-
tively, were recovered both in vitro and in the VIS.

Within the same PfeEF2 amino acid position, different grades of
resistance could be observed. For example, position 134 yielded
mutant parasites in vitro with EC50 (the concentration that yields half
maximal parasite growth inhibition) values ranging from 6–191 nM

depending on the mutant residue. Conversely, position 754 yielded
medium-grade resistant mutants and position 186 yielded high-grade
resistant mutants (Fig. 2b).

To yield PfeEF2 mutant parasites, drug pressure was applied at
concentrations ranging from 5× EC50 up to 297× EC50. Typically, 5× to
15× EC50 was applied in vitro (Fig. 2b and Supplementary Tables 1 and
2), whereas in the NSG mice, an estimated 276× EC50 was obtained
when treating with cabamiquine at a single oral dose of 12mg/kg9

(Supplementary Table 3). In the human VIS, several doses (i.e. 150, 400
and 800mg) were administered to 22 subjects, translating to an esti-
mated 39× to 590× EC50 based on the protein binding-corrected
concentration averaged over 24h (Cav0─24h) (Supplementary Table 4).
A doseof 150mg (n = 6) corresponding to ameanCav0─24h of 53 nM led
to 50% (3/6) parasite recrudescence, with one recrudescent parasite
line being wild type (WT) for PfeEF2 and two others having mutations
in PfeEF2 (at positions 474 or 183) (Supplementary Table 4). The
400mg cohort (n = 8) yielded a mean Cav0─24h of 217 nM, with 25% (2/
8) of subjects having recrudescing mutant parasites (at positions 134
or 754) while the 800mg cohort (n = 8) had no recrudescing parasites,
with a mean Cav0─24h of 341 nM (Supplementary Table 4).

On comparing a similar Cav0─24h range between the NSG mouse
model and the VIS studies, we observed that out of 6 subjects
encompassed within a concentration range of 199─310 nM, only
1 subject (Cav0─24h = 268 nM) had recrudescent parasites. Considering
all four instances of recrudescent parasites, the mutant predicted to
carry the highest grade of resistance (P754A) had the highest Cav/WT
EC50 ratio (297-fold). Conversely, the subject that yielded the low-
grademutant S474R had a lowCav/WT EC50 ratio (40-fold), suggesting
that the higher selective pressure was associated with survival of a
more highly resistant parasite.

Translation of cabamiquine drug resistance from laboratory
parasites to clinical isolates
Ex vivo susceptibility to cabamiquinewas tested using culture-adapted
P. falciparum clinical isolates obtained from52differentMaliandonors
in parallel with the reference laboratory strain 3D7 (Fig. 3). Once 5–6%
parasitemia was reached, parasites were continuously exposed to
7.5 nM (15× EC50) cabamiquine for 6days. Parasitemia decreasedbelow
the limit of detection on day 4 post-drug exposure (Fig. 3a). No para-
site recrudescencewas observed until the end of culturing (day 50) for
50 out of 52 clinical isolates and 49 out of 52 control 3D7 cultures.
These results indicate no significant difference in the propensity of
field isolates to produce resistant parasites compared with 3D7 main-
tained in identical culture conditions (P value = 0.65). Parasite sus-
ceptibility to cabamiquine was assessed by determining the EC50 value
pre- and post-drug exposure (Fig. 3b), with dihydroartemisinin used as
a control (Supplementary Table 5). Comparison of cabamiquine EC50
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In vitro

In vivo NSG mice
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infected 

patient

Volunteer
Infection 
Study

Fig. 1 | Numbers of parasites across pre-clinical and clinical assays. (1) In vitro P.
falciparumminimum inoculum for resistance; (2) P. falciparum-infected human red
blood cells engrafted in NSG mice; (3) Volunteer infection study with humans

infected with blood-stage P. falciparum parasites; and (4) Field settings, i.e. ende-
mic regions. NSG, NOD/SCID/IL2rγnull.
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pre- andpost-drug exposure in the P. falciparum 3D7WT lines revealed
191- and 170-fold increases for 3D7_MM and 3D7_FS mutant parasites,
respectively. For the untreated and treated clinical field isolates, we
observed 6405- and 300-fold EC50 shifts for the EEF209 and EEF192
mutant parasite isolates, respectively. Thus, all recrudescent parasites
appeared to be less susceptible to cabamiquine. No significant differ-
ences in parasite susceptibility to dihydroartemisinin were observed
for all the recrudescent parasite lines compared with the untreated
parental strain (Supplementary Table 5). Based on these observations,
recrudescent parasites were sequenced to identify possible PfeEF2
mutations responsible for their reduced susceptibility to cabamiquine
(Fig. 3c). Sequencing of the clinical field isolate EEF209, which exhib-
ited the largest shift in EC50, revealed a Y186Cmutation in PfeEF2. This
amino acid change is similar to the previously reported Y186N muta-
tion in vitro7 and in vivo9 in NSG mice. The laboratory strain 3D7_FS
possessed a L755Fmutation previously associated withmedium-grade
resistance7. Sequencing of the PfeEF2 gene in the recrudescent
3D7_MM and EEF192 lines revealed an E134V mutation, which was
previously reported to confer medium-grade resistance to cabami-
quine. PfeEF2 mutations found at the nucleotide positions 401, 557,
and2265 aredisplayedon the electropherogramtraces for3D7 and the
field isolates EEF209 and EEF192 in Fig. 3c.

Variable frequencies of resistant mutants between infection
models
Wenext considered the frequency of resistantmutants present in each
infection model (in vitro with 3D7 or Dd2 parasites or field isolates,
NSG mouse, and human VIS), assuming that resistant mutants were
present at the time of treatment. We estimated the frequency of these
mutants at the time of treatment in vitro (with laboratory strains and
clinical isolates), and in vivo (in NSG mouse or human VIS infection
models) based on the number of parasites required to yield a resistant

mutant (see Supplementary Materials and Methods). We counted the
number of instances that resistant mutants emerged across cultures/
mice/individuals, given the total number of parasites at the time of
treatment (see SupplementaryMaterials andMethods; Supplementary
Tables 6 and 7). Considering the differences in infection models,
parasite lines, and host cells (i.e., in the in vitro regrowth assay, donor
RBCs obtained from an endemic setting were used), comparisons
between estimates from the systemsmust be interpretedwith caution.
However, some comparisons were possible, and based on the in vitro
MIR data, we estimated a frequency of 1 resistantmutant per 4.75 × 107

parasites (95% confidence interval [CI]: 1.64 × 107 to 1.38 × 108) for the
3D7 strain and per 7.54 × 106 parasites (95% CI: 4.42 × 106 to 1.28 × 107)
for the Dd2 strain. The estimated frequencies differed significantly
between the 3D7 and Dd2 MIR data (P value = 0.0007, Fig. 4a). The
estimated frequency of resistant mutants in the in vitro regrowth data
with 3D7 and field parasites was 1 resistant mutant per 2.42 × 109 (95%
CI: 7.80 × 108 to 7.50 × 109) and 3.80 × 109 (95% CI: 9.50 × 108 to 1.52 ×
1010) parasites, respectively, with no significant difference between
these estimates (P value = 0.62, Fig. 4a). In the in vivo NSG mouse and
VIS study, we estimated a frequency of 1 resistantmutant per 1.20 × 108

(95%CI: 5.74 × 107 to 2.50× 108) and 3.67 × 108 (95%CI: 1.36 × 108 to 9.86
× 108) parasites, respectively (Fig. 4a, Supplementary Table 6). Fur-
thermore, no significant difference was observed between the esti-
mates from theNSGmouse and the VIS data (P value = 0.065). Notably,
there was a tendency for higher frequencies of resistance to be
observed in the in vitro MIR studies compared with those estimated in
both the field-based in vitro regrowth and NSG mouse and VIS in vivo
systems. The lowest frequencieswereobserved in the in vitro regrowth
assay, wherein host RBCs were obtained from donors from a malaria-
endemic setting (Fig. 4a).

We then explored whether the differences in resistance mutant
frequencies across the different experimental systems (Fig. 4) could be
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Fig. 2 | PfeEF2 mutations mediating varying levels of cabamiquine resistance
across infectionmodels. aVenndiagramofPfeEF2 amino acids and their locations
subject tomutations under cabamiquine exposure in vitro, in NSGmouse, and in P.
falciparum VIS. b Table with biomarkers of mutants selected in vitro inMIR studies
(3D7, 7G8, and Dd2)7, in culture-adapted field isolates, in P. falciparum-infected
NSGmice (3D7)9, or inP. falciparumVIS (3D7)10.Wild-typeEC50 valueswere0.28 nM
(3D7), 0.47 nM (Pf3D70087/N9 in serum), 0.24 nM (7G8), 0.19 nM (Dd2), 0.57 nM
(3D7_MM), 0.46 nM (3D7_FS), 0.64 nM (EEF192), and 0.41 nM (EEF209). Low:

EC50 = 1–10 nM (blue); Medium: EC50 > 10–100nM (orange); High: EC50 > 100nM
(red). *EC50 not determined; ** field isolates (Mali, 2021); *** obtained from a free
concentration ratio of the human Cav0–24h (corrected for human plasma protein
binding of 83%) and P. falciparum 3D7 EC50 (corrected for Albumax binding of
45.3%); **** obtained froma free concentration ratio of the Cav0–24h (249 nM) inNSG
mice treated with a single dose of cabamiquine at 12mg/kg (p.o.) and P. falciparum
3D7 EC50.

§ Mixed population.MIRminimum inoculum for resistance, VIS volunteer
infection studies, NSG NOD/SCID/IL2rγnull, ND not defined, WT wild type.
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attributed to stochastic differences. For example, these differences
could emerge because parasites passed through more replicative
cycles in human VIS prior to treatment compared with MIR experi-
ments. To test this hypothesis, we created a model of stochastic ran-
dom mutations to determine whether the above-estimated
frequencies of pre-existent resistant mutants (Fig. 4b) were consistent
with the background mutation rate of P. falciparum. This model
assumed that (1) randommutations occurred at a rate of 1.05 × 10−9 per
base pair per generation (median of four studies, Supplementary
Table 10), (2) therewere 11 residues in PfeEF2 thatwhenmutated could
confer resistance to cabamiquine (Supplementary Table 1), and (3)
resistant mutants experienced a 7% fitness cost (Supplementary Fig. 2)
compared with sensitive parasites (consistent with a fitness cost per
generation of 3–11% for E134D, L755F, and Y186N; see the Methods for
details on the model). We used this stochastic model to simulate
100,000 in silico repeats for each experimental setting. In each
simulation, we estimated the fraction of resistant parasites for each
simulated experiment in the same way that we analyzed the above
experimental data (see Supplementary Materials and Methods). The
simulated estimates for the frequency of resistant parasites (Fig. 4a,
squares and dashed lines) were highly consistent with in vitro MIR,
NSG mouse, and VIS data. This suggests that the differences observed
in the frequency of resistant parasites between these different infec-
tion models (Fig. 4) can be attributed to differences in experimental
design rather than inherent biological characteristics that distinguish
these three infection models. The exception was the in vitro regrowth
studies, wherein the simulations overestimated the presence of

resistant parasites observed in vitro. This was also the only assay that
used RBCs obtained from donors from a malaria-endemic setting.
Thus, the overestimation by the model may be due to the simplicity of
the model that, for example, does not consider differences in fitness
costs across different host cell types or unmeasured fitness costs
associated with the presence of innate immunity (i.e. naive volunteers
versus patients from malaria-endemic countries). These factors may
explain why the model estimates agree better with the estimates of
in vitroMIR studies and an immunodeficient in vivo system such as the
NSG mouse model.

Resistant mutants were likely present at the time of treatment
Importantly, in the above data analysis, we assumed that a small sub-
population of resistant parasites was present at the time of treatment
(pre-existent), and that no resistance emerged de novo after treat-
ment. Here, we extended our modelling to test the validity of this
assumption. We used a deterministic formulation of the above sto-
chasticmodel (SupplementaryFig. 3) to considerwhether, with nopre-
existent resistantmutants, it was likely that resistantmutants emerged
de novo only after treatment had started to inhibit parasites. For this,
we assumed that when the drug was administered, viable parasite
numbers reduced by a certain fraction at each replication cycle (the
parasite reduction ratio, PRR) and that each generation of surviving
parasites had a probability of generating resistant mutants. To be
conservative, we did not limit the number of cycles of parasite repli-
cation post-treatment11.When adrug treatment is administered in vivo,
the number of parasites reaches its peak, leading to a higher chance of
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Fig. 3 | Characterization of P. falciparum culture-adapted field isolates under
cabamiquine drug pressure. a In vitro P. falciparum asexual blood-stage parasite
growth of two recently culture-adapted field isolates (EEF192 and EEF209) and two
laboratory lines of 3D7 parasites (3D7_FS and 3D7_MM). Parasites were cultured for
over 50 days with cabamiquine drug pressure (15× EC50) applied for three con-
secutive intra-erythrocytic developmental cycles starting on day 10. b Table

summarizing the EC50 values pre- and post cabamiquine drug pressure for 52 field
isolates, cultured in parallel with 52 sets of laboratory 3D7 parasites, along with
sequencing data. c Electropherograms of the recrudescent field isolates (EEF192
and EEF209) and 3D7 strains (3D7_FS and 3D7_MM). WT wild-type, AA amino acid.
Source data are provided as a Source Data file.
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resistant mutants emerging. However, parasite replication is also
rapidly suppressed by the drug. Indeed, with the assumption that the
mutation rate does not increase post-treatment, we found that pre-
existence of resistant mutants was more likely than the emergence of
resistant parasites only after treatment (Fig. 4b). Our findings suggest
that pre-existent resistant mutants were likely the cause of treatment
recrudescence of resistant parasites in the NSG mice and VIS hosts.

P. falciparum eEF2 homology model suggests that cabamiquine
binds to a mRNA binding site
Two homology models of PfeEF2 were constructed using distinct
methods (Supplementary Fig. 4). Through computational binding site
detection, shallow grooves as potential mRNA binding sites12 could be
identified on both models close to known mutant amino acid residues
(Fig. 5a, Supplementary Fig. 4E, F). Docking studies of cabamiquine
revealed that poses comprising of key contacts with mutant residues
could be obtained solely from the Rosetta model (Fig. 5b). The top-
ranked pose and its contacts were consistentwith resistance data aswell
as the structure–activity relationship of cabamiquine (Supplementary
Table 11). The mutant residue Y186 was predicted to interact through
π–π stacking with the quinolinemoiety and an H-bond, and ionic bonds
were predicted between the charged pyrrolidine ring and E134.

Discussion
A thorough understanding of the propensity for cabamiquine resistance
through the drug discovery and development process is key to

mitigating risks of resistance emergence in field clinical settings. For
example, in a Phase IIa clinical trial with the dihydroorotate dehy-
drogenase (DHODH) inhibitor DSM265, two P. falciparum-infected
individuals treated with a single dose experienced parasite recrudes-
cence at day 28 after treatment13. Genome sequencing of these parasites
revealed a series of DHODHmutations (C276Y, C276F, or G181S). These
mutations had been previously identified via in vitro resistance
selections14,15, and/or in vivo studies inwhichmutationswereobtained in
P. falciparum 3D7-infected NSG mice subjected to several rounds of
DSM265 treatment16. These data suggest a good translation across
experimental settings. Paramount to being able to spread and become
stable within natural parasite populations, the lack of fitness defects of
resistant parasite lines such as the C276Ymutant in competitive growth
assays may help explain why parasites harbouring this mutation
emerged readily in patients. In the VIS study, no point mutations in
PfDHODH could be identified, possible owing to low parasite numbers17.
With DSM265 as an example of a slow-clearing antimalarial agent, we
were curious to discover whether cabamiquine, another slow-clearing
antimalarial agent, had a similar resistance profile. These data help
inform thebest combinationpartner for upcomingPhase II clinical trials.

Overall, all mutant parasites selected under cabamiquine pressure
are consistent with its primary target, PfeEF2, a protein that mediates
the movement of the ribosome along the mRNA by promoting trans-
location of the transfer RNA from the A to the P site in the ribosome.
Our homology model enabled us to identify a binding groove that
could capture knownmutants. This suggested that cabamiquine could
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Fig. 4 | Mathematical modelling of resistant mutants. a Estimated frequency of
resistant mutants in different infection model systems and in the stochastic model
simulations of these different experimental settings. For each model system, the
dot represents the estimated frequency of resistant mutants, and the horizontal
line represents the 95% confidence interval. The frequencyof resistantmutants was
estimated using a limiting dilution assay (* for the 3D7 in vitro regrowth, we
assumed that the parasite number at the time of treatment for each culture is the
meanparasite number from the cultures forwhich theparasitemia at treatmentwas
known, see Supplementary Material andMethods). The data differ between in vivo
and in vitro experiments and between the parasite strain and RBCs used. The P-
values on the right-hand side indicate the comparison of the respective estimates
from the data using a likelihood ratio test. For the model estimates, we simulated
the stochastic model 100,000 times for each experiment-specific setting (i.e. using
the inoculation size, pre-treatment parasite multiplication rate (PMR), and time
from inoculation to treatment for each experiment; Supplementary Table 8). For
each simulated experiment, we then estimated the frequency of resistant parasites

in the same way as for the data. Supplementary Table 9 lists the median (square)
and the 2.5th and 97.5th percentiles (dashed line) of the estimated frequency of
resistant parasites from 100,000 simulated experiments.We assumed a fitness cost
of a 7% reduction in the PMR and a PMR of four per replicative cycle. We also
assumed that 11 different mutations are able to mediate resistance and that the
mutation rate is 1.05 × 10−9 per base pair per generation. For estimates with dif-
ferent fitness costs, resistance mutation numbers, mutation rate, and PMR, see
Supplementary Fig. 1.bThe probability of the emergence of resistantmutants after
treatment compared with the probability that resistant mutants were pre-existent
at treatment for different parasite reduction ratios. The model predicts that the
probability of resistant mutants already being present at the time of treatment is
larger than that of resistant mutants emerging only after treatment for a parasite
reduction ratio of ≥5. These quantities were computed using the deterministic
model (Supplementary Materials and Methods). Source data are provided as a
Source Data file.
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bind to a shallowmRNA binding site through key interactions with the
amino acid residues Y186 and E134. Y186 was predicted to interact
through π–π stacking with the quinoline, andmutation of the tyrosine
(Y) to the cysteine (C) or asparagine (N) is consistent with the high
degree of resistance as no more π–π stacking could be established.
Regarding E134, this residuewas predicted to interactwith the charged
pyrrolidine ring through an H-bond and ionic bonds. When the gluta-
mate (E) was replaced by an aspartate (D), a one-carbon shorter
homologous residue, it seems that a less optimal ion pair could still be
maintained with the charged pyrrolidine moiety explaining the weak
EC50 shift (~30 fold). Conversely, upon replacement by glycine (G), the
EC50 shift was greater (~200 fold), as no interactions could occur with
the charged pyrrolidine. Finally, upon replacement by a valine (V)
containing a more sterically hindered isopropyl moiety, an even
greater shift in EC50 (~50─300 fold) could be achieved.

Using laboratory strains (e.g. 3D7 and Dd2), upwards of 107 para-
sites could suffice to select for mutants resistant to cabamiquine
in vitro. In addition to WT, three mutant lines derived from in vitro
evolutionwere examined (E134D, L755F andY186N). Each of themutant
lines showed a fitness disadvantage relative to WT (Supplementary
Fig. 2A), with the fitness cost showing a trend towards correlating with
the degree of resistance (increase in EC50: Supplementary Fig. 2B). The
most studied mutation, Y186N, incurs a high fitness cost (11% reduced
rate of parasite proliferation per 48-h asexual blood-stage cycle), thus
rendering it susceptible to be outcompeted by more fit parasites in
mixed-infection settings in the absence of drug pressure. Additionally,
thismutation alongwith P754Soverlappedwith themutations obtained
from the NSG mouse model study for which the inoculum load at
treatment was 108 parasites. Conversely, the P754A and S474R muta-
tions overlappedwith themutations obtained in the VIS study forwhich
the inoculum load at treatment was 107 parasites. Therefore, unsur-
prisingly, mutants were selected and the rather high diversity of
mutants across the models would indicate a stochastic mutation of the
target.While the sample sizeswere small in the VIS, a trend of high dose
—high-grade mutant selection could be observed. Nevertheless, in a
manner dependent on drug pressure, the correlation of higher-level
resistance with an increased fitness cost would suggest that in a mixed
infection, lower-level resistant mutants would predominate.

Our analysis highlighted that it is more likely that cabamiquine-
resistant mutants were pre-existent rather than they emerged de novo

after treatment at frequencies approaching 1 resistant parasite per 2.4 ×
107 parasites given enough time for parasites to achieve high loads. We
have not explicitly considered the possibility that cabamiquine
increased the mutation rate of the parasite in our analysis (i.e. that
cabamiquine ismutagenic), based on the close agreement between the
frequencies of resistance predicted by our stochastic model and those
observed experimentally. Instead, the previously reported background
rate of P. falciparum mutations and the number of replication cycles
prior to treatment in each of these experimental systemswas sufficient
to explain the rates of resistance observed herein. This was consistent
withpreviousmodelling inHIV,which reported that resistancemutants
were more likely to emerge from random mutation prior to strong
selection pressure (such as immunity in the case of HIV) than from the
same random mutation processes after the emergence of selection
pressure; this can be attributed to high viral load prior to immune-
mediated selection pressure18. Together, this result suggests that any
antimalarial compound where moderate or high-grade resistance can
be conferred by any one of approximately 11 single point mutations is
likely to have similar frequencies of resistance to cabamiquine. This
highlights the need for using cabamiquine in combination therapies as
recommended by WHO and preferably in settings where low parasite
burdens are expected, for example as chemoprevention.

In selecting a partner drugduring the development of antimalarial
combinations, there are a number of important factors to consider,
such as the half-lives of each drug19–21, drug interactions and how these
will impact onoverall effectiveness, andpropensity of the combination
to resistance22. In addition, one element to consider is the number of
surviving parasites that would need to remain susceptible to the sec-
ond drug, in the case that the partner drugs do not interact. Using the
data from the 12mg/kg dose in NSG mice, which corresponds to
~500mg (free base) of cabamiquine used for the human dose, we
estimated a frequency of about 1 resistant mutant per 108 parasites.
Thus, for an individual with 1012 parasites, the partner drug would
contribute to reducing the number of parasites to <108 (preferably far
below this level) and eliminate cabamiquine-resistant parasites to
avoid recrudescence.

Based on our datasets, cabamaquine can select for pre-existent
resistant parasites in naive conditions, i.e. in laboratory settings,
starting from an inoculum of ~107 parasites in vitro and in vivo with P.
falciparum laboratory strains such as 3D7 or Dd2. As the parasite strain

Fig. 5 | Potential binding site and top-ranked docking pose of cabamiquine.
a Surface and known mutants in the predicted protein structure of PfeEF2 and
potential binding of cabamiquine near residues E134 and Y186. b The
ligand–receptor interaction map highlights amino acid residues of PfeEF2 within a
5 Å radius around the potential binding pose of cabamiquine. Amino acids are
coloured based on their properties (olive, hydrophobic; blue, polar; purple,

positively charged; and orange, negatively charged) and interactions are shown by
arrows (purple, hydrogen bonding; dark blue, salt bridge; and green,π–π stacking).
Single-letter code for amino acid residues: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G,
Gly; H, His; I, Ile; K, Lys; L, Leu;M,Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V,
Val; W, Trp; and Y, Tyr.
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may influence the frequency of mutations, we evaluated an in vitro
regrowth assay with 52 P. falciparum field isolates fromMali in parallel
with 52 P. falciparum 3D7 selections as reference, using different RBC
donors. We did not observe any differences in the number of field
isolates (2/52) that developed resistance comparedwith the frequency
of the 3D7 laboratory strain (3/52); the low numbers of resistant lines
limited the power to observe a difference between these groups. Thus,
we cannot exclude the possibility that propensities for resistance may
differ between these field and laboratory strains. Sequencing of these
mutant parasites revealed mutations in previously described resis-
tance sites in PfeEF2 (E134V, Y186C, and L755F) yielding EC50 increases
of two to three orders of magnitude. Independent of the strain (field
isolates or 3D7), the selection of mutants was substantially more
challenging in field-based in vitro recrudescence assays than in MIR
studies. This may be due to differences in assay design between the
MIR and recrudescence approaches, experimental conditions, or dif-
ferences resulting from the use of RBCs from malaria-experienced or
naive donors across the two assay platforms23. For example, variation
in host cells, especially those from malaria-endemic settings, may
further reduce the fitness of resistant mutants, consistent with the
observations of multiple RBC polymorphisms that can reduce RBC
susceptibility to P. falciparum infection24–26.

A limitation of our stochastic model is that it assumes that fitness
costs are a fixed quantity over time and across infection models.
However, the costs of resistance are likely not fixed andmay be highly
dependent on the ecological conditions27. Although the model was
relatively insensitive to the fitness cost parameter in the range tested
(Supplementary Fig. 1C), fitness cost will invariably be an important
factor in more extreme scenarios wherein, for example, fitness is
dramatically reduced. Our current model could not consider these
factors, nor could we predict with certainty that these results would
translate to a field setting, as fitness costs were not assessed in the
different host environments or over time. Despite these simplifica-
tions, the model could accurately predict the observed frequency of
resistant mutants across different experimental systems, with the
exception of the field isolate experiments. For the latter, host RBC-
specific determinants and/or innate immune mechanisms may play a
role in reducing the frequency of resistant mutants. Studies have
demonstrated the critical interplay between the host and antimalarial
drug treatment in terms of the clearance of drug-resistant parasites in
patients28, 29. We speculate that with the use of host cells frommalaria-
endemic residents, the fitness cost of resistantmutantsmay be higher.
Further studies are merited to determine whether MIR values differ
between field and laboratory settings.

In conclusion, cabamiquine is a PfeEF2 inhibitor that appears to
bind to a shallow mRNA binding site, as inferred by our homology
model recapitulating the known PfeEF2mutants. Broadly speaking, we
observed that the selection of mutants under cabamiquine pressure
could be translated across models, suggesting that in vitro studies
(MIR, field isolates, etc.) may prove useful for the assessment of
resistance risks for antimalarials early in their development. Our
mathematical modelling suggests that PfeEF2 mutants are likely to be
pre-existent. Moreover, clinical data from the VIS could indicate that
high doses may select for more resistant parasites. Importantly, unlike
other targets such as DHODH, it seems that the fitness cost for PfeEF2
mutant parasites appears to be high, which would pose a barrier to
their dissemination. Overall, this study helps understand the potential
risks associated with a given drug and provides better guidance in
defining selection criteria for the partner drugs to mitigate the emer-
gence of resistance.

Methods
Ethics statements
The human biological samples were sourced ethically, and their
research use was in accord with the terms of the informed consents.

The studywas approvedby the ethical committee of theUniversité des
Sciences, des Techniques et des Technologies de Bamako (USTTB)
under the reference: N° 2020/296/CE/FMOS/FAPH renewed N° 2022/
03/USTTB and then N° 2023/03/USTTB.

In vitro growth inhibitory assays of P. falciparum field isolates
in Mali
P. falciparum clinical isolates from Mali and 3D7 lab strain parasites
were cultured at 0.5% parasitemia/2% haematocrit in complete RPMI-
1640medium (10.43 g of RPMI-1640, 5.96 g of HEPES, 2.5 g of NaHCO3,
50mg of hypoxanthine, 5 g of Albumax, 2.5mL of 50mg/mL genta-
micin in 1 L of H2O) in 96-well plates in the presence of cabamiquine.
Compounds at 10μMwere 1:3 serially diluted into eight concentration
points and tested in duplicated wells. Parasites were exposed to drugs
for 48 h at 37 °C under 5% CO2 atmosphere. At the end of the treat-
ment, drug susceptibility was determined by flow cytometric analysis
of parasites stained with SYBR Green and Mitotracker as previously
reported30. Fluorescence data were plotted using GraphPad Prism v.9
(GraphPad Software, San Diego, CA, USA). The data were curve fitted
to a curve with a variable slope function to estimate EC50 values. For
each isolate, a Z′ factor to assess assay quality was calculated from
positive controls (eight drug-free wells) and negative controls (eight
parasite-free, RBC control wells). Assays with a Z′ values of >0.5 were
considered good assays; however, each curve was visually examined
for suitability. Some assays with a Z′ value of <0.5 may be considered
valid depending on factors such as the standard error of the curve fit
EC50. Dose–response curves and EC50 values were calculated via non-
linear regression analysis using GraphPad Prism v.9, with the data
previously normalized to the untreated controls. At least three inde-
pendent experiments were conducted using each compound. Wild-
type samples from Mali are deposited at the ICERMALI biobank.

In vitro evolution of cabamiquine resistance in P. falciparum
field isolates
Mutant parasites resistant to cabamiquine were selected from Malian
field isolates. A total of 52 isolates (collected in February 2021) that
were adapted to culture and tested alongside the reference strain 3D7
were used for the assays. Parasites were cultured in humanRBCs using
complete RPMI-1640 medium31 in 25 cm2 cell culture flasks (cat#
CLS430639, Corning). Cultures were maintained in a 5% CO2 atmo-
sphere at 4% haematocrit in a total volume of 6mL in humidified
modular chambers at 37 °C.Whenparasitemias reached ~5%with > 95%
ring stages, cultures were treated with 15 × EC50 (7.5 nM) of cabami-
quine (Merck KGaA, Darmstadt, Germany) for three consecutive 48-h
incubation cycles. At the end of the drug exposure, cabamiquine was
removed from cultures using three consecutives washing steps with 1×
phosphate buffered saline. Cultures were resuspended in complete
RPMI-1640 and incubated at 37 °C under 5% CO2/5% O2/90% N2

atmosphere. Parasite growth was monitored every 48 h using Giemsa-
stained slides32. O+ RBCs used for the parasite culture were obtained
from theMalianbloodbank inBamako fromadults assumed to be non-
naive for prior P. falciparum infection. Parasite synchronization was
performed by resuspending the infected RBC pellets in 10 volumes of
5% D-sorbitol (SIGMA) for 5 min33.

P. falciparum eEF2 gene sequencing
The PfeEF2 gene was sequenced at the Malaria Research and Training
Centre, Bamako, Mali as previously described9. The original protocol
was modified to amplify and sequence the entire gene using the Seq-
Studio Genetic Analyzer (Applied Biosystems). Briefly, genomic DNA
was extracted fromblood samples using theQiagenDNAextraction kit
(cat# 51306, Qiagen). The 2.5 kb PfeEF2 gene was PCR-amplified using
flanking primers (Supplementary Table 12). The PCR conditions for the
initial amplification were as follows: 95 °C for 3min, 45 cycles at 98 °C
for 20 s, 55 °C for 30 s, and 68 °C for 2.5min, with a final extension of
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3min at 68 °C. Agarose gel (1%) electrophoresis was used to confirm
the PCR product size. The PCR product was purified using the ExoSAP-
IT Express kit (cat# 78200.200.UL, Thermofisher). In addition to the
amplification primers, 10 sequencing primers were used to fully
sequence the PfeEF2 gene (Supplementary Table 12). The sequencing
conditions for the second step were as follows: incubation at 90 °C for
1min, following by 25 cycles of denaturation at 90 °C for 10 s,
annealing at 50 °C for 5 s, and extension at 60 °C for 4minwith a ramp
rate of 1 °C/s. The sequencing product waspurified, resuspended inHi-
Di™ Formamide, and subjected to capillary electrophoresis using the
SeqStudio™ instrument. Raw sequence data were visualized using
BioEdit 7.2 /UGENE 43, trimmed, and aligned to the WT 3D7 PfeEF2
reference sequence. Mutations were determined from the alignment
files and inspected using the 4Peaks V1.8 software.

Estimation of the frequency of resistant mutants
To estimate the frequency of resistant mutants, we used four different
datasets: (i) in vitro 3D7 andDd2MIRdata (Supplementary Table 2), (ii)
in vivo humanized NSG mice infected with P. falciparum (Pf3D70087/

N9)34–36 (Supplementary Table 3), (iii) VIS data10 (Supplementary
Table 4), and (iv) data from in vitro regrowth using 3D7 and field
isolates. From the in vitro MIR data set, we used data for the 3D7 and
Dd2 strains (Supplementary Table 2) and a maximum likelihood
approach to estimate the fraction of resistant parasites for the 3D7 and
Dd2MIR data.We assumed that therewereno resistant parasites in the
inoculum if a well was negative and that therewas at least one resistant
parasite if the well was positive. As a sensitivity analysis, we also esti-
mated the frequency of resistant mutants assuming that 5% of cul-
tures/mice/individuals with resistant parasites are false negatives37

(Supplementary Table 7). Subsequently, the likelihood of a certain
fraction of resistant parasites was then computed using a binomial
distribution (see Supplementary Material and Methods, Estimation of
the frequency of mutants from the data, for details). For the estimated
frequencyof resistantmutants in theMIRdata,weused thedata shown
in Supplementary Table 2. For the estimated frequency of resistant
parasites in the regrowth data, the NSG mouse data, and the VIS data,
we used the same approach as for the in vitro MIR data. We note that
this method assumes independence in the probabilities of resistance
among parasites from within the same well/mouse/individual (see
Supplementary Material and Methods for details). The number of
parasites at the time of treatment was computed assuming a blood
volume of 2mL, a haematocrit value of 70%, and a mean human RBC
volume of 90 fL for the NSGmouse data and a blood volume of 5 L for
the VIS data. For the regrowth data with endemic donor cells, we
assumed that each culture had a volume of 6mL with a haematocrit
value of 4% and a mean human RBC volume of 90 fL. If recrudescence
with resistant parasites was observed, then we assumed that there was
at least one resistant parasite present at the time of treatment (see
Supplementary Material and Methods, Estimation of the frequency of
mutants from the data; Supplementary Table 6).

To test for differences in the estimated frequencies of resistant
mutants across the different experimental conditions, we used the
likelihood ratio test comparing the model with different parameters
for the frequency of mutants in two datasets (different frequency of
mutants) and the model with only one parameter for the frequency of
mutants (same frequency of mutants). A significant P-value (<0.05)
indicates that themodel with different frequencies ofmutant parasites
was a significantly better model and thus that there was a significant
difference between the estimated frequencies.

Stochastic and deterministic models for the frequency of resis-
tant mutants
We used a stochastic model to simulate the experimental settings of
the different infection models. Briefly, we constructed a simple
deterministic model that includes multiplication of parasites sensitive

to cabamiquine, mutation to produce drug-resistant parasites, multi-
plication of drug-resistant parasites, and a replicative fitness cost of
resistant parasites (see Supplementary Materials and Methods,
Deterministic model for the frequency of resistant mutants). We then
extended thismodel to include stochasticity in the number of progeny
of each parasite and in themutations (the stochastic and deterministic
models agreed well after several generations and converged to the
same equilibrium frequency of resistant parasites, Supplemen-
tary Fig. 3).

In the stochastic model, the number of progeny of each parasite
was sampled from a Poisson distribution, wherein the mean was the
parasite multiplication rate (PMR) of either sensitive or resistant
parasites. Each emerging parasitewas subject to a probability of being
a drug-resistant mutant. We simulated this by sampling from a bino-
mial distribution wherein the number of “trials” was the number of
parasites that may mutate, and the “success” probability was the
probability that a resistance mutation occurs. The overall number of
sensitive parasites in the next generation was then the total
progeny of sensitive parasitesminus the number of sensitive parasites
that had a resistance mutation. The overall number of resistant
parasites refers to the total number of offspring of resistant parasites
plus the progeny of sensitive parasites that mutated to acquire
resistance.

Since the sum of independent Poisson distributions is Poisson
distributed, with the mean being the sum of the means of the indivi-
dual Poisson distributions, the total progeny of sensitive parasites is
Poisson distributed and themean is the sum of the PMRs (which is the
same for all sensitive parasites i.e. the mean is the product of the PMR
and the number of parasites that replicate).

The parameters used for both the deterministic and stochastic
models varied across the different experimental conditions and a
sensitivity analysis was performed. In the analysis shown in Fig. 4, a
fitness cost of 7% reduction in the PMR was used (consistent with a
fitness cost per generation of between 3–11% of E134D, L755F, and
Y186N, Supplementary Fig. 2), along with 11 amino acid locations for
resistance mutations (Supplementary Table 1), and a mutation rate of
1.05 × 10−9 base pair substitutions per generation and base pair
(median of four studies using 3D7 parasites38–41, Supplementary
Table 10). However, we also considered the effect of varying these
parameter values on the frequency estimate of resistant parasites
(Supplementary Fig. 1). With this stochastic model, we could also
simulate the experiment-specific settings of the different infection
models by using experiment-specific parameter values (see Supple-
mentary Materials and Methods, Stochastic simulations of the differ-
ent experimental settings, and Supplementary Table 8).

Computational analysis of Plasmodium eEF2 homology model
and binding site of cabamiquine
A 3Dproteinmodel of PfeEF2 was predicted from its protein sequence
(Uniprot ID Q8IKW5) using the software trRosetta (Supplementary
Fig. 4A, C)42–44. An alternative predicted 3D model was retrieved from
the AlphaFold prediction database (Supplementary Fig. 4B, D). All
further calculations were performed in the Schrödinger molecular
modelling suite (release version 2021-01) using default parameters
unless otherwise noted. The predicted structures were prepared with
the Protein Preparation Wizard using default settings, including a
structure minimization with the force field OPLS3e45 and a hydrogen-
bond optimization at pH 7. Binding site predictions were performed
using SiteMap46. Potential binding sites were detected on both pre-
dicted protein structures in proximity to known mutation sites (E134
and Y186) (Supplementary Fig. 4E, F).

Cabamiquine as a ligand was prepared using LigPrep and docked
into selected pockets using Glide (mode: Single Precision)47. The top-
ranked docking pose of cabamiquine and its interaction map are
shown in Fig. 5a, b.
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Statistics & reproducibility
The number of in vitro replicates, animals or individuals in each
experiment is as reported throughout the main text and summarized
in the Supplementary Tables 1–3. No data was excluded from the
analysis, and human studies were not randomized or blinded. Unless
otherwise stated, all data fitting was performed using maximum like-
lihood approaches, and statistical comparison were likelihood ratio
tests (a two-sided statistical test for hypothesis testing between nested
models).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data and code to replicate the stochastic model simulations are
available on GitHub (https://github.com/estadler/cabamiquine) and
Zenodo48. Other datasets analyzed during the current study are pro-
vided with this paper as Supplementary Material. Source data are
provided with this paper.
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