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Global determinants of insect mitochondrial
genetic diversity

Connor M. French 1,2 , Laura D. Bertola 1,3, Ana C. Carnaval1,2,
Evan P. Economo4, Jamie M. Kass 4,15, David J. Lohman1,2,5,
Katharine A. Marske 6, Rudolf Meier 7,8, Isaac Overcast 2,9,10,
Andrew J. Rominger 11,12, Phillip P. A. Staniczenko 13 &
Michael J. Hickerson 1,2,14

Understanding global patterns of genetic diversity is essential for describing,
monitoring, and preserving life on Earth. To date, efforts tomapmacrogenetic
patterns have been restricted to vertebrates, which comprise only a small
fraction of Earth’s biodiversity. Here, we construct a global map of predicted
insect mitochondrial genetic diversity from cytochrome c oxidase subunit 1
sequences, derived from open data. We calculate the mitochondrial genetic
diversitymean andgenetic diversity evenness of insect assemblages across the
globe, identify their environmental correlates, and make predictions of mito-
chondrial genetic diversity levels in unsampled areas based on environmental
data. Using a large single-locus genetic dataset of over 2 million globally dis-
tributed and georeferenced mtDNA sequences, we find that mitochondrial
genetic diversity evenness follows a quadratic latitudinal gradient peaking in
the subtropics. Both mitochondrial genetic diversity mean and evenness
positively correlate with seasonally hot temperatures, as well as climate sta-
bility since the last glacial maximum. Our models explain 27.9% and 24.0% of
the observed variation in mitochondrial genetic diversity mean and evenness
in insects, respectively, making an important step towards understanding
global biodiversity patterns in the most diverse animal taxon.

Resolving global patterns of biodiversity is essential for under-
standing how life is distributed across the world, and where it is
most important to protect it. As yet, global-scale assessments have
largely focused on species richness1, phylogenetic diversity2,3,

species abundances4,5, and functional trait diversity6,7. These mac-
roecological metrics have long been used to inform conservation
and gain insights into mechanisms underlying eco-evolutionary
patterns.
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Large-scale georeferenced DNA barcode surveys have great
potential beyond their original use and are increasingly used in global
studies of biodiversity8,9. In addition to accelerating taxonomy10, DNA
barcoding has become a tool in diagnosing conservation status and,
more generally, better understanding ecology, evolution, and
biogeography11–13, but see ref. 14. More recently, DNA barcode surveys
provide data for the emerging field of “macrogenetics”15,16, which has
the potential to become one of the many approaches used to monitor
and protect genetic diversity17,18. Class III macrogenetic studies, as
defined by Leigh et al.19, summarize the geographic distribution of
intraspecific genetic variation of a taxonomic group across broad
geographic scales and use data from large numbers of species aggre-
gated from public repositories. Typically used to find correlated
environmental variables that predict this critical component of
biodiversity19,20, previous class III macrogenetic studies have focused
on vertebrate groups, uncovering links between global patterns in
intraspecific mitochondrial genetic diversity, species richness, and
phylogeneticdiversity21,22, while documenting latitudinal gradients23–25.
They have provided mixed support for the influence of human dis-
turbance on mitochondrial genetic diversity21,23,26,27, and suggest that
climate stability21,27 and species’ range sizes20,28 affect intraspecific
mitochondrial genetic diversity on a global scale.

This bias in macrogenetic studies towards vertebrates leaves
undocumented the bulk of the planet’s animal biodiversity: insects.
Insects are vital for maintaining critical ecosystem services and
functions29,30, yet existing insect macrogenetic studies have been
restricted to regional scales due to the immense effort required to
collect, identify, and sequence such a species-rich group31–36. Studies
on the resilience of insect communities to global change37,38, including
biological invasions39,40, habitat conversion41, and climate change42

arrive at conflicting conclusions. Moreover, comprehensive knowl-
edge of species diversity, distributions, and population dynamics is
largely lacking for large insect groups43,44. These constraints on
understanding broad-scale insect biodiversity patterns point to a need
for systematic global data syntheses45,46.

Despite their known limitations14,47,48, DNA barcoding and meta-
barcoding address the severe bottleneck posed by species identifica-
tion through conventional morphological methods46,49,50, and they are
viable approaches for rapid, large-scale, global quantification of insect
biodiversity14,47,48,51. While being mindful of these limits in our study
design and data14,15,19,52,53, we present a global class III macrogenetic
analysis of insect intraspecific mitochondrial DNA patterns. Our study
is especially timely given increasing evidence that many insect taxa
may be in global decline with respect to occurrence, local richness,
abundance, and biomass38,54–60.

Nearly all class III macrogenetic studies of animal taxa are based
on mitochondrial DNA (mtDNA) sequence data, by far the most
abundant type of sequence data in public repositories15. Therefore, it is
important to note that while mtDNA has useful properties12, mtDNA
diversity patterns are impacted by multiple processes that distort the
patterns shaped by phylogeographic demographic histories, including
selection, coalescent variance, and mutation rate variation across
taxa52,61–64. While taking these complex dynamics into consideration,
sampling the mitochondrial genetic diversity of thousands of taxa per
locale is a promising initial step towards understanding an important
component of biodiversity at global spatial scales10,12,65,66.

We do so here by using open data from the Barcode of Life
Consortiumdatabase (BOLD), a rich sourceof single-locusmtDNA that
links quality-controlled genetic data with georeferenced metadata8.
Leveraging this resource, we compiled and analyzed the largest animal
macrogenetic dataset ever assembled: 2,415,425 globally distributed
and georeferenced mtDNA sequences (cytochrome c oxidase subunit
1; COI) for 98,417 operational taxonomic units (OTUs) within the class
Insecta. We used these data to generate a global map of insect mito-
chondrial genetic variation using the commonly used genetic diversity

mean (GDM) and a new measure we adapted from macroecology:
genetic diversity evenness (GDE). While GDM describes the average
genetic diversity (GD) among species sampled from a spatial unit of
arbitrary size (i.e., two-dimensional area), GDE represents the evenness
of the distributionof per-speciesGDmeasures for all focal taxa that co-
occur in the same sampled area67. So far, macrogenetic studies have
not quantified variation in per-species GD and are therefore unable to
distinguish if the high GDM observed in a geographic region is due to
high diversity withinmost communitymembers, or to the coexistence
of a few taxa with extremely high diversity and many low-GD taxa
(Fig. 1; see “Methods”). Much like species abundances and the even-
ness of abundances within a community, GDM and GDE present
broadly complementary information when considered together, with
potential utility in discriminating among processes generating natural
community assemblages68.

After calculating these two metrics across all OTUs for each cell,
we explore how they correlate with global environmental and geo-
graphic variables. If GDM and GDE follow classic global biodiversity
trends,we expect GDMandGDE todecreasewith latitude69 andhuman
disturbance70, while increasing with climate stability71. Once these
environmental correlates of intraspecific insect mitochondrial genetic
diversity are identified based on information extracted from insect
sampling efforts across the globe, we use them to predict patterns of
insect GDM and GDE in undersampled regions. We discuss and inter-
pret our results in the context of classic biogeographic patterns such
as the latitudinal diversity gradients in insect species richness, average
and variability in range sizes, and late Pleistocene climate cycles.

Results
GDMandGDEwere calculated fromCOI sequences of insects native to
the 193 km× 193 km equal-area resolution raster grid cells in which
they were sampled. To account for the potential impact of sampling
biases, six thresholds for the minimum number of OTUs per grid cell
(10, 25, 50, 100, 150, and 200OTUs)were considered. These cells were
distributed heterogeneously across the globe and on every continent
except Antarctica (N100 = 245, Fig. 2, Supplementary Fig. 1). Genetic
diversity patterns and modeling results were mostly consistent across
the minimum number of OTUs thresholds (Supplementary Fig. 1,
Supplementary Methods). For conciseness, we highlight results for a
minimum number of 100 OTUs, which balanced per-cell and global
sampling magnitude with per-cell and global sampling variance (Sup-
plementary Fig. 2). This threshold resulted in the lowest bias (slope
near 1 and y-intercept near zero) and highest accuracy (high R2, low
root mean squared error) when predicting trainedmodels to withheld
test data (Supplementary Fig. 3). This filtering criterion led to a final
dataset that included 2,415,425 COI sequences from 98,417 OTUs
sampled across 245 globally distributed grid cells.

On average, each sampled cell included ten insect orders, 689
OTUs, and 9859 individuals. Regions with both high GDM and high
GDE (above the 90th percentile) were found in eastern North America,
the North American desert southwest, southern South America,
southern Africa, and southwestern Australia (Supplementary Fig. 4b).
Areas with the lowest values of both observed GDM and GDE were
mostly distributed in northern North America and Europe (Supple-
mentary Fig. 4d). GDM and GDE were significantly and positively cor-
related (spatially modified t-test, two-sided; r100 = 0.612, p100 < 0.001).

Insect mitochondrial genetic diversity correlates with latitude
Absolute latitude was not significantly linearly correlated with GDE
(p100 = 0.064), but squared latitude had a negative relationship with
GDE across the globe at α = 0.05 (spatially modified t-test, two-sided;
Fig. 2; Table 1; r100 = −0.360; p100 = 0.022). In contrast to GDE, neither
absolute latitude (p100 = 0.924) nor squared latitude had a significant
correlation with GDM (Fig. 2; Table 1; p100 = 0.767). When considering
the top three most-sampled orders independently, we found that
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squared latitude had a negative relationship with GDE in Diptera
(r100 = −0.468; p100 = 0.001) and Lepidoptera (r100 = −0.360;
p100 = 0.043), but not in Hymenoptera (p100 = 0.352) (Fig. 3). GDM did
not significantly vary with absolute latitude in any insect order (Fig. 3).

Relationships between insect mitochondrial genetic diversity
and the environment
Higher GDE values were observed in areas that rarely freeze (Figs. 2d
and 4c). To capture this relationship as a binary predictive variable, we
divided the globe into areas that do or do not freeze, which is deli-
neated bywhether the long-termminimum temperature of the coldest
month (MTCM) is above or below 0 °C72. We found that GDE is sig-
nificantly higher in areas that do not freeze (spatially modified t-test;
r100 = 0.338; p100 = 0.013), while GDM was not correlated with this
binary metric (P =0.484).

We found that GDMandGDE covary significantly with current and
historical climate, and that both are positively correlated with

maximum temperature of the warmest month and climate stability
variables (Figs. 2 and 4). We considered 49 environmental variables
that could possibly structure the genetic diversity of insect assem-
blages (Supplementary Table 1). After removing strongly correlated
variables (r >0.75), we retained 11 environmental variables describing
current climate, variables summarizing climate variation since the last
glacial maximum (LGM, or “historical climate”), a habitat hetero-
geneity metric, a human habitat modificationmetric, and topographic
variables. After removing additional variables that did not contribute
substantial predictive power according to projection predictive vari-
able selection (see Methods), we used Bayesian generalized linear
mixedmodels (GLMMs) that account for spatial autocorrelation in the
residuals to explain environmental relationships and make
predictions73. The resulting GLMMs explained 27.9% of the training
data variation in GDM (95% highest density interval (HDI): [14.6%,
40.7%]) and 24.0% of the training data variation in GDE (95% HDI:
[10.1%, 39.0%]) (Fig. 4a, c).Whenprojecting themodels towithheld test

High GDM/High GDE

G
D

OTU Rank

High GDM/Low GDE

D
G

OTU Rank

D
G

OTU Rank

D
G

OTU Rank

Low GDM/High GDE Low GDM/Low GDE

High GD Low GD

a)

b)

c)

Regional phylogenetic tree

Genetic diversity (GD) of a single OTU

Local assemblages with high/low GD mean (GDM) and GD evenness (GDE)

d)

Fig. 1 | Diagram illustrating genetic diversitymean (GDM) and genetic diversity
evenness (GDE). A local assemblage (c) is a set of operational taxonomic units
(OTUs, analogous to species) sampled from a single grid cell that are a subset of a
wider regional pool with evolutionary relationships shown in (a). OTUs have vary-
ing amounts of genetic diversity (GD), represented by blue circles with sizes cor-
responding tomagnitudeofGD. Longerbranches among individualswithin anOTU
indicate a longer time to coalescence and therefore higher GD (b). Panel (c) illus-
trates four local assemblages sampled from four different grid cells from the same
regional pool. The first local assemblage in (c) has high GDM and high GDE,
represented by OTUs with high and similar GD and a corresponding relatively flat

curve on the rank plot in (d). The second local assemblage in (c) has the same high
GDMas the first assemblage in (c), but has lower GDE, indicated by dissimilar circle
sizes and a steeper curve in the corresponding rank plot in (d). The third and fourth
local assemblages in (c) have the same GDE as the first and second assemblages,
respectively, but have lower GDM, indicated by the smaller circle sizes and lower
height curves on the rank plots in (d). This illustrates the complementary nature of
the two metrics, where GDM describes the average magnitude of GD in a local
assemblage, while GDE describes the distribution of GD in that same local
assemblage.
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data (75% training, 25% testing, stratified by continent), we found that
predictions for all OTU thresholds were strongly correlated with
observed data for GDE (Supplementary Fig. 3; R2

100 = 0.515,
slope100 = 0.961, y-intercept100 = 0.019) and GDM (Supplementary
Fig. 3; R2

100 = 0.510, slope100 = 1.114, y-intercept100 = −0.007).
The GLMM for GDM included eight variables related to current

climate: precipitation seasonality, precipitation of the wettest month
(PWM), precipitation of the driest month (PDM), maximum tempera-
ture of the warmest month (MTWM), and four variables summarizing
climate change since the LGM: temperature trend, temperature var-
iation, precipitation trend, and precipitation variation (Fig. 4b,

Supplementary Fig. 5). In contrast, the GLMM for GDE only included
three variables, all related to current climate: temperature trend, PWM,
and MTWM (Fig. 4d, Supplementary Fig. 5). Notably, predictor vari-
ables describing human habitat modification, habitat heterogeneity,
and topography did not significantly predict either GD metric (Sup-
plementary Tables 2 and 3).

There was no residual spatial autocorrelation in the final GLMMs
(Table 2, Supplementary Fig. 6), and residual error in test dataprediction
didnothaveobvious spatial biases (Supplementary Fig. 3). All parameter
posterior distributions had less than 13% overlap with their prior dis-
tributions, indicating high model identifiability (Supplementary Fig. 7).

Fig. 2 | Global maps of observed and predicted genetic diversity. The observed
(a, c, e) and projected (b, d, e) distributions of genetic diversity mean (GDM) (a, b),
evenness (GDE) (c, d), and their composite (e, f) across the globe. Values for the
projected maps were derived from a spatial Bayesian generalized linear mixed
model with environmental predictor variables. For GDM (b), the best fit model
includedMTWMand precipitation seasonality, while for GDE (d), the best fit model
includedMTWM, temperature seasonality, and PWM. Latitudinal trends inGDM (a)
and GDE (c) are included as insets of the observed maps, where latitude had no
significant relationship with GDM and a negative quadratic relationship with GDE

(spatially modified t-test, Table 1). The yellow lines drawn across the maps of GDE
(c, d) delineate areas that do or do not freeze, where areas north of the line and
inside the polygon in South America have minimum temperatures that dip below
0 °C, and areas south of the line and outside the polygon have minimum tem-
peratures that remain above 0 °C year-around. Areas that do not freeze on average
have higher GDE than those that do freeze. We masked in gray areas with envir-
onments non-analogous to the environments used formodeling.MTWMmaximum
temperature of the warmest month, PWM precipitation of the wettest month.
Source data are provided as a Source data file.

Table 1 | Results for two-sided spatially modified t-test correlations between genetic diversity mean (GDM), genetic diversity
evenness (GDE), and latitude

Model Term r F-statistic DOF p-value

GDM ~ latitude linear −0.018 0.009 29.596 0.924

GDM ~ latitude2 quadratic 0.053 0.089 0.767 0.767

GDE ~ latitude linear −0.280 3.617 42.562 0.064

GDE ~ latitude2 quadratic −0.360 5.730 38.550 0.022

Correlations were inferred for both linear and quadratic relationships. The bolded row indicates the relationship that is significant at α = 0.05.
r Pearson’s correlation coefficient, DOF degrees of freedom.

Article https://doi.org/10.1038/s41467-023-40936-0

Nature Communications |         (2023) 14:5276 4



Global predictions of insect mitochondrial genetic diversity
We then used the best-fit GLMM to predict and map the global dis-
tribution of GDM and GDE individually and jointly across the globe,
including for unsampled areas (Fig. 2, Supplementary Fig. 8). To pre-
vent model extrapolation into areas of non-analog environments and
highlight areas where further sampling is warranted, we omitted pre-
dictions in all areaswith environmental conditions that fell outside the
model training range, including Antarctica, a large portion of northern
Africa, the Arabian Peninsula, parts of central Asia, and interior
Greenland (Fig. 2; shown in gray; Supplementary Fig. 9).

Areas predicted to have high levels of both GDM and GDE (above
the 90th percentile) include eastern North America, the North Amer-
ican desert southwest, southern South America, southern Africa, and
southwesternAustralia (Supplementary Fig. 4a; Fig. 2). Areas predicted
to have the lowest GDM and GDE values (below the 10th percentile for
both) were found in northern North America and Europe (Supple-
mentary Fig. 4c). When considered independently, GDM is predicted
to be highest (above the 90th percentile) in eastern and southwestern
North America, southeastern Asia, southern Australia, northern
Madagascar, and southern Argentina (Supplementary Fig. 4e; Fig. 2),
and is predicted to be lowest (below the 10th percentile) for the
Nearctic and Palearctic tundra, Europe, Australasia, Central America,
the northwest coast of South America, and northern sections of the
Amazon (Fig. 1g). When GDE is considered independently, it is pre-
dicted to be the highest (above the 90th percentile) throughout sub-
tropical Australia, the southeastern U.S., the deserts of southwestern
U.S. and northern Mexico, the transition between Saharan and sub-
Saharan Africa, and South Asia (Supplementary Fig. 4i). On the other
hand, GDE is predicted to be lowest (below the 10th percentile) in

Europe and parts of the Nearctic and Palearctic tundra as well as
northern Madagascar and a region in central China overlapping the
Tibetan plateau (Supplementary Fig. 4k; Fig. 2). Maps of the upper and
lower 95% highest density interval (HDI) predictions are available in
Supplementary Fig. 8.

Taxon-specific patterns of GD
Six insect orders represent 97.2% of all OTUs in this study (Supple-
mentary Fig. 10; Supplementary Table 4). In order of prevalence, they
include Diptera, Lepidoptera, Hymenoptera, Coleoptera (the four
mega-diverse orders that include ca. 80% of known insect species),
Hemiptera, and Trichoptera. The remaining 2.8% ofOTUs belong to 20
additional insect orders. Although Coleoptera has more described
species than theother threemegadiverse orders, it comprises less than
10% of OTUs represented in the data, possibly due to the common
practice of using Malaise traps in flying insect surveys, where Diptera,
Hymenoptera, and Lepidoptera dominate sampling74. Across orders,
74.7% of all OTUs occupied a single grid cell with less than one percent
occupying more than 11 grid cells (Supplementary Fig. 11).

To investigate the influence of the three most prevalent orders
(Diptera, Lepidoptera, and Hymenoptera, 84.2% of total) we removed
these orders from the full dataset and reanalyzed patterns of GDE and
GDM. Using Welch’s unequal variance t-tests, we found no significant
difference in GDE estimates between the full dataset and the dataset
with the most prevalent outliers removed (Supplementary Fig. 12;
p100 = 0.065). However, GDMwas slightly but significantly lower in the
full dataset (meandiff = −0.004, df = 122.44, P <0.001).

OTU sampling across the most abundant three orders varied
geographically (Supplementary Fig. 13). When we calculated OTU

Fig. 3 | Genetic diversitydistributions for the top threemost sampled taxa.The
observed distributions of genetic diversity mean (GDM) (a, c, e) and evenness
(GDE) (b, d, f) for Diptera (a, b) (34.0% of OTUs), Lepidoptera (c, d) (32.4%), and
Hymenoptera (e, f) (17.3%). The same filtering criteria were applied here as in the

full analysis, where only cells with at least 100 OTUs and at least three sequences
per OTU were considered. Latitude did not significantly vary with GDM for all
orders (spatially modified t-test), but did vary with GDE for Diptera (b) and Lepi-
doptera (d). Source data are provided as a Source data file.
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sampling as the number of OTUs per order within each cell, Diptera
dominated OTU sampling towards the far northern latitudes, while
Lepidoptera dominated sampling south of these far northern latitudes,
from North America and Europe towards the equator, and Hyme-
noptera typically accounted for fewer than 50% of OTUs sampled, with
overrepresented sampling in Madagascar (Supplementary Fig. 13).

Discussion
We found a quadratic latitudinal gradient in genetic diversity evenness
(GDE) that peaks at subtropical latitudes and decreases near the
equator and towards the poles (Fig. 2). However, genetic diversity
mean (GDM) did not significantly vary with latitude, even though the

two metrics are significantly correlated. Although our approach is
correlative and does not link observations with causality as one could
with a process-explicit model75, these results suggest that forces
underlying intraspecific mitochondrial genetic diversity could be
inherently different from those driving the classical negative latitu-
dinal gradients in species richness and phylogenetic diversity found in
most arthropod taxa, including ants, butterflies, and spiders76–80, as
well as plants81, which are expected to be strongly linked to insect
biogeographic patterns. Bees (within order Hymenoptera) may be a
notable exception, as current estimates of species richness show a
latitudinal gradient similar to GDE with highest richness at mid-
latitudes82. However, whenwefitted quadratic correlations to the three

Table 2 | Results of the spatial linear modeling of environmental correlates for genetic diversity mean (GDM) and genetic
diversity evenness (GDE)

Response Predictor variables Median R2 Lower 95% HDI Upper 95% HDI Moran’s I p-value (Moran’s I)

GDM Precip. seasonality, PWM, PDM, temp. trend, precip. variation,
MTWM, temp. range, precip. trend

0.279 0.146 0.407 −0.038 0.738

GDE Temp trend, PWM, MTWM 0.240 0.101 0.390 −0.043 0.708

Columns 3–5 contain a summary of the Bayesian R2 model fit statistic for the Bayesian generalized linear mixed models. Residual spatial autocorrelation for each model was calculated using
Moran’s I and a one-sided permutation test with 10,000 simulations was used to calculate the p-value.
HDI highest posterior density interval, PWM precipitation of the wettestmonth, PDM precipitation of the driestmonth,MTWMmaximum temperature of the warmestmonth, Temp. Trend historical
temperature trend since the last glacial maximum (LGM), Precip. Trend historical precipitation trend since the LGM.
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Fig. 4 | Distributions of observed and predicted genetic diversity mean (GDM)
and evenness (GDE). The gray lines in (a) and (c) are 1000 random samples from
the posterior distribution of the GDM and GDE models. The blue and red lines are
the observed distributions of GDM and GDE, respectively. The boxplot overlaid on
(c) illustrates the higher observed GDE in areas that do not freeze (minimum
temperature >0 °C) versus GDE in areas that do freeze (minimum temperature
<=0°). The boxplot center represents the median of the data, while the lower and
upper hinges correspond to the first and third quartiles. Thewhiskers extend to the
largest value no further than 1.5 times the inter-quartile range from the hinge. The
observed differences in GDE are reflected in the posterior draws, which we

highlight with two gray, dashed lines drawn through the medians of the observed
data. Bayesian R2 posterior distributions are shown as insets in (a) and (c). The
density plots in (b) and (d) summarize 1000 random samples from the posterior
distributions of the slopes for each predictor variable. The thin bars under each
density plot indicate the 95% highest posterior density interval (HDI) and the thick
bars indicate the 90% HDI. The dots indicate the median of the posterior dis-
tribution. PWMprecipitation of the wettest month, PDMprecipitation of the driest
month, MTWM maximum temperature of the warmest month, Temp. Trend his-
torical temperature trend since the last glacial maximum, Precip. Trend historical
precipitation trend since the LGM. Source data are provided as a Source data file.
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most common orders separately, Hymenoptera was the only taxon
with the two genetic diversity (GD) metrics that did not match the
general trend (Fig. 3).

The negative quadratic latitudinal correlation ofGDE in twoof the
three most sampled orders (Diptera and Lepidoptera) and the lack of
an overall correlation with GDM suggests a departure from expecta-
tions of species genetic diversity correlation predictions, given the
expected negative linear correlation of species richness and
latitude32,83–85. However, many confounding factors could affect how
species diversitymetrics relate toGDMandGDE, and these factorsmay
have both positive and negative effects, leading to large variation in
the direction and strength of species genetic diversity correlations86,
especially at a global scale in such a large taxonomic group such as
insects. Sampling biases, especially for the overrepresented North
American and European regionsmay also influence this relationshipby
overfittingmodels towards patterns present in these regions, although
we find no evidence of a correlation between sampling effort and the
two GD metrics in our data (Supplementary Fig. 14, Supplementary
Table 5).

The lack of a latitudinal gradient in GDM and the presence of one
in GDE peaking in the subtropics also contrasts with recent macro-
genetic studies of vertebrates, all of which find a negative latitudinal
gradient of GDM and related metrics peaking in the tropics and
declining poleward, including for mammals20, amphibians23, and
fishes22. Why would GDE be lower in areas like the wet tropics where
the species diversities of most insect groups reach their peaks87,88?
Rapoport’s Rule, the tendency for species’ range sizes to increase with
increasing latitude89,90,might partially explain this result if specieswith
larger ranges tend to harbor greater genetic diversity91,92. This expec-
tation has recently been observed empirically28, as well as investigated
in a theoretical macrogenetic context whereby per-species GD relates
to species’ ranges following a power law20. If processes underlying
Rapoport’s Rule operate in the two large insect orders Diptera and
Lepidoptera, coalescent times among sampled individuals for larger-
ranged species at higher latitudes are expected to be older and
therefore yield consistently higher values of per-OTU GD that aggre-
gate to higher GDE within grid cells93. This expectation should hold
even if species’ ranges are larger than our chosen 193 × 193 km grid-
cells and if subdivision exists within the range of a species94,95. Fur-
thermore, the inflation of GD in a larger portion of OTUs within a grid-
cell serves to increase evenness (GDE) by bridging the difference inGD
between high GD and low GD OTUs within the sampled assemblage.
This should also lead to higher GDM, but the presence of OTUs with
extremely high or extremely low GD are more likely to lead to more
statistical noise for the calculation of GDM than GDE. Although we do
not find a significant correlation between latitude and GDM, we
acknowledge that the positive correlation between GDE and GDMmay
contain some signal of an increase in GDM with latitude (Fig. 2d, e).

Multiple mechanisms may positively influence per-species GD,
but they do not necessarily coincide with each other. For example,
although larger ranges and climatic stability both have a positive effect
on per-species GD, they may not co-occur. For example, a climatically
stable area might also coincide with small range sizes, and conversely
an area that experiences cycles of glaciation may also coincide with
many large-ranged species. Additionally, we find that OTUs occupy
more grid cells between 40° and 60° latitude (Supplementary Fig. 14),
matching our expectation for larger ranges at higher latitudes,
although we acknowledge that sampling bias may contribute to this
pattern as well. Given that the observed peak in GDE is in the sub-
tropics, but not at these higher latitudes, the impact of recent founder
effects associated with post-glacial expansions on GD may outweigh
the influence of larger range sizes at higher latitudes71.

Indeed, our finding of lower GDE in high-latitude areas that were
glaciated or tundra during the LGM is less surprising given that foun-
der expansion dynamics predict lower GD values for species that

expanded poleward from Pleistocene refugia71,96,97. While a significant
poleward decline is found only in GDE, with the decline in GDM being
apparent at extreme latitudes but not significant, this arises frommany
zero GD OTUs that are co-distributed with a small number of hyper-
diverse OTUs in these northern regions. Indeed, this pattern is largely
consistent with a gradient of lower haplotype richness in recently
deglaciated areas found in European butterflies31 based on the same
COI data from BOLD used here. Similarly, aquatic insect species have
lower intraspecific genetic diversities in recently deglaciated areas of
Europe compared to Neotropical areas33, as does an assemblage of
Anopheles taxa co-distributed across the Indo-Burma biodiversity
hotspot98. However, a deflation of GDE and GDM in temperate regions
could also be driven by widespread positive selective sweeps on the
mtDNA genome across insect species that expanded into these pre-
viously glaciated areas after the LGM, a scenario that is non-mutually
exclusive to founder-effect dynamics99.

In contrast to the declines of GDE in previously glaciated areas, we
hypothesize that thepeakofGDE in the subtropics, andmoregenerally
the correspondence of GDM and GDE with seasonally high tempera-
tures (MTWM), results from climates that have remained stable since
the LGM (Fig. 4). Likewise, declines in GDE in previously glaciated areas
and the positive correlations between GDM and GDE with MTWM are
also consistent with the evolutionary speed hypothesis, where warm
temperatures are posited to decrease generation times and speed up
mutation rates, leading to higher genetic diversity100. Similar patterns
are found in macrogenetic studies of fish22 and animals and plants in
general101. Moreover, GDM and GDE have contrasting relationships
with seasonally high precipitation (PWM), where GDM increases with
PWM, while GDE decreases. The former corresponds with wet, hot
regions, while GDE is highest where it is arid and hot (Figs. 2, 4).

GDM’s correlation with high MTWM and PWM, low seasonal var-
iation in precipitation (precipitation seasonality) and high long-term
climate stability (precipitation variation, precipitation trend, and
temperature trend) is reflectedbypredicted hotspots in themost long-
term stable and least seasonal tropical or subtropical forest habitat
(Supplementary Fig. 4e, Supplementary Fig. 5). In addition to increased
evolutionary speed, the high resource availability and stability of these
areas may allow for population persistence and the consequent
accumulation of genetic diversity. In contrast, GDE’s peak in sub-
tropical, hot, and arid environments could be partially driven by pro-
cesses related to geographic patterns in physiological tolerances that
lead to increases in the size and uniformity of species ranges. Wide-
ranging extratropical insect species can usually tolerate a broader
range of climatic variation, whereas limited-range tropical insect spe-
cies tend to have a narrow climatic niche, stronger habitat specializa-
tions, and narrower physiological tolerances102. Insect diapause is
thought to provide this adaptive tolerance to wider abiotic conditions
and may result in larger and more uniform range sizes across an
assemblage102,103. If there is a positive relationship between range size
and GD91,92, this could provide a possible mechanistic relationship that
connects Rapoport’s Rule and the more uniform genetic diversities
found in the subtropics. In this case, increasing GDE with latitude may
be driven by uniformly larger range sizes that result from greater
physiological tolerances in harsher environments. While this is con-
sistent with both GDM and GDE being most strongly associated with
the seasonally hot conditions (MTWM) found in the subtropics (Fig. 4),
this relationship drastically breaks down in the colder temperate and
subarctic regions (Fig. 2) that frequently freeze, especially for
GDE (Fig. 4).

The regions predicted to have higher and more uniform GD cor-
respond with some known hotspots of insect biodiversity. For
instance, the deserts of southwestern US and northern Mexico have
the highest butterfly phylogenetic endemism in North America82,104.
Southwestern Australian deserts also have exceptionally high arthro-
pod endemism105, and are among the original biodiversity hotspots
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identified by Meyers et al.106. One possible explanation is that these
areas aremore climatically stable and hencemayharbormore uniform
demographic histories thatmanifest as elevated GDM and GDE values.
However, much of the global pattern in GDE that we find is dominated
by Diptera and Lepidoptera (Fig. 3). Therefore, we caution against
making sweeping generalizations about such large taxonomic groups.

Areas with higher levels of GDE could also potentially emerge from
different points along the continuum of community assembly107.
Although the spatial scale is not always in line with the grid cells we
employ, Overcast et al.68 found simulated and empirical (arthropod,
annelid, and trees) communities to have elevated GDE under ecologi-
cally neutral conditions in contrast tonon-neutral, or “niche-structured”,
conditions. In these specific model-dependent cases, the lower GDE in
communities assembled via environmental filtering is likely caused by
increased genetic diversity in hyper-dominant species with stronger
local ecological adaptation. In line with this process-explicit modeling,
our observation of GDE increasing from the tropics to the subtropics
shows that equatorial insect communities may have stronger, local
niche-structured mechanisms (i.e., less ecologically neutral conditions)
than subtropical temperate insect communities. This would be con-
sistent with the idea of stronger niche conservatism in the tropics108.

While these are some of the many hypotheses emerging from our
study, the correlative approaches we use are a crucial first step to
developing a better understanding of the processes underlying bio-
diversity. To more directly test such hypotheses, process-explicit
models, which can uncover causal factors that drive biodiversity pat-
terns as well as discriminate among the processes that do not, will be
an important next step109,110. Thesemodelswill be especially valuable in
revealing the underlying mechanisms of unexpected correlations
found here and in other macrogenetic studies111.

While mtDNA genetic polymorphism is only one component of
genome-wide genetic diversity, the latter is critical to the survival of
insects and their complex interactions with other organisms112–114. High
genetic diversity may facilitate adaptation to changing climates,
emerging diseases, and pollutants: three (ofmany) potential drivers of
the “insect apocalypse”58. In addition, genetic diversity contributes to
the diversity and stability of species interaction networks by affecting
niche space and competition115, community structure116, and network
complexity117. At larger ecological scales, insect genetic diversity may
reflect ecosystem function and structure as reliably as other traditional
macroecological metrics such as species richness118. It can also aug-
ment the resilience of ecosystems that provide continuing services for
humankind119, such as disease management, curbing the spread of
invasive plants, aiding sustainable agriculture, pollinating food crops,
and controlling pests 120.

While themetric of global humanmodification we considered did
not significantly correlate with GDM or GDE, there are many facets of
anthropogenic disturbance acting at different spatial scales that are
difficult to summarize in a single metric121. For well-studied systems,
shifts in GDM and GDE may reflect the loss of rare species with less
genetic diversity or community shifts toward wide-ranging taxa,
including invasive species, and could thus be used in long-term mon-
itoring schemes122,123. Although large-scale data curation efforts are
underway124, the spatiotemporal resolution of genetic sampling cur-
rently available does not permit rigorous assessment of how humanity
affects insect GD at a global scale. A concerted increase in sampling
effort, especially in the data-poor regions we identify, will likely make
this feasible in the not-too-distant future.

It is important to note that both metrics are calculated using
mtDNA, which is a single, highly functional, non-recombining locus.
Using mitochondrial DNA has many important advantages12, yet rely-
ing on a single-locus marker has drawbacks. Notably, the genetic
diversity that mtDNA captures is from a single draw from the sto-
chastic coalescent process63, and due to the lack of recombination,
patterns ofmitochondrial diversity can be impacted by selection52,61–63.

Moreover, while a large fraction of insect taxa are infected with Wol-
bachia and other endosymbiotic bacterial parasites that can be in
linkage disequilibrium with mitochondria and act as potent selective
agents affecting mtDNA diversity125–127, a survey of Wolbachia infec-
tions inBOLDfind thatWolbachiaCOI is present inonly 0.16percent of
cases128. Furthermore, the pattern of genetic diversity at any single
locus is ultimately impacted by multiple processes (phylogeographic
demographic history, mutation rate, taxon-specificmutation rates and
linked selection) rather than any one process alone64,129. For example,
despite the likelihood for linked selection andhigh coalescent variance
to distort mtDNA diversity patterns, mtDNA data routinely retain key
features of species-specific demographic and phylogeographic
histories130–133. Lastly, emergent patterns of mitochondrial genetic
diversity across assemblages demonstrably recapitulate well-known
biodiversity patterns like the latitudinal biodiversity gradient, indi-
cating meaningful biological signals21,23,26.

While intraspecific mtDNA diversity has been shown to have a
weak, non-significant correlation with whole genome genetic diversity
in 38 European butterfly species134 and is generally not sufficient for
making detailed inference of demographic history or phylogenetic
reconstruction62, sampling the mitochondrial genetic diversity of
thousandsof taxaper localewith rapidly increasingdata availability is a
promising first step towards understanding an important component
of the biodiversity of assemblages at global spatial scales10,12,65,66, and
this will be especially valuable until whole-genome data becomemore
readily available through projects like the Earth BioGenome Project
(Lewin et al.135) and GEOME (Riginos et al.136). While taking these
important cautions into consideration, we view macrogenetics as a
developing field and thus basic expectations regarding observed pat-
terns are still not established. Our study is a step in the direction of
establishing this foundational knowledge and suggests avenues for
ways to test specific hypotheses.

By modeling relationships between environmental data and two
measures of intraspecific genetic diversity, GDE and GDM, we make
assemblage-level mitochondrial genetic diversity predictions for data-
poor regions of the planet, while flagging andmasking thosewith high
uncertainty137 (Fig. 2). These genetic diversity maps have the potential
to fill knowledge gaps that far exceed the undersampling and taxo-
nomic uncertainties underlying vertebrate and plant macroecological
studies138,139. They can also highlight mitochondrial genetic diversity as
an important biodiversity component that has yet been assessed for
relatively few taxa17, while focusing attention on a data-deficient group
with evidence of global population declines and strong connections to
ecosystem functions and services140. Taken together, GDM and GDE
are promising biodiversity metrics for documenting and under-
standing “the little things that run the world”141.

Methods
Aligning and filtering sequence data
The barcoding region of the mitochondrial locus cytochrome c oxi-
dase subunit I (COI, sometimes abbreviated cox1) was selected as a
genetic marker that can be deployed to study genetic diversity at the
macrogenetic scale. We downloaded COI mitochondrial sequence
data for insects directly from the BOLD website using the application
programming interface (http://www.boldsystems.org/index.php/
resources/api; downloaded 19 Nov 2019). Our initial database com-
prised 3,301,025 complete insect records before applying a series of
quality filters. We used the BOLD database’s OTU assignments
(termed barcode identification numbers; BINs), which cluster similar
sequences algorithmically and map them against the BOLD
database142. After trimming end gaps from sequences, we removed
exceptionally long sequences (>800 base pairs, bp) which contained
a large proportion of gaps that negatively impacted alignments and
the calculation of summary statistics. In addition, we removed
shorter sequences (<400 bp) that the BOLD database uses for BIN
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identification and may downwardly bias GD estimates. We only
retained COI sequences from georeferenced specimens. Sequence
alignments were independently performed for each OTU within sin-
gle sampled geographic raster cells, i.e., grid cells. We used default
settings in Clustal Omega (v1.2.3) to align the sequences and visually
assessed both a random subset of alignments and alignments with
genetic diversity values at the tails of the distribution to check for
alignment errors143.

To reduce the potential impact of invasive species on our ana-
lyses, we removed trans-continental invasive species from the dataset
using a list of invasive insect species compiled from seven resources:
Global Insect Species Database [http://www.issg.org/database; acces-
sed 23 May 2020]; Invasive Species Compendium [https://www.cabi.
org/isc/; accessed 24 May 2020]; Center for Invasive Species and
Ecosystem Health [https://www.invasive.org/; accessed 24 May 2020];
Invasive Alien species in South-Southeast Asia144; Japan Ministry of the
Environment [https://www.env.go.jp/en/nature/as.html; accessed 24
May 2020]; European Alien Species Information Network [https://
easin.jrc.ec.europa.eu/easin/Home; accessed 24 May 2020]. We iden-
tified all species and OTUs present on multiple continents and
removed those on the invasive species list from our dataset. While
some invasive species may be restricted to single continents, removal
of such taxa was not possible given the lack of information on changes
in insect range boundaries and species assignments.

Calculating the mean and evenness of genetic diversity (GDM
and GDE)
Previous global macrogenetic studies focused on spatially defined
metrics that summarize genetic diversities calculated across all species
sampled from an area of arbitrary spatial resolution19,145. This is most
commonly the average genetic diversity or, alternatively, a measure of
the allelic richness derived from the total number of unique and/or
common alleles of a genetic locus across all taxa within an area146. We
used two distinct summaries of the former measure of genetic diver-
sity (GD)—themean (GDM) and evenness (GDE) of genetic diversity per
unit of area. To obtain the GD for eachOTUper grid cell, we calculated
the average number of nucleotide differences across all pairwise
sequence comparisons per OTU per base pair93,147 (a.k.a. nucleotide
diversity). Aggregated across OTUs within each grid cell, GDM is then
defined as the average GD among OTUs in each grid cell, following21.
Because the distribution of GDM at the grid cell scale was highly
skewed towards zero, we performed a square-root transformation to
achieve a more normal distribution, consistent with Theodoridis
et al.’s21 approach. All subsequent statistical analyses of GDM at the
grid cell scale were based on the transformed GDM.

While GDM is a standardmetric in themacrogenetic toolbox, GDE
is derived from a set of metrics often used in ecological studies of
biodiversity. Hill numbers permit direct comparisons of diversity
across scales and data types148–150. GDE is then defined as the first-order
Hill number of GD across OTUs per grid cell, corrected by sampled
OTU richness68:

exp
PN

i =0
�πi lnðπiÞ

� �

N

ð1Þ

WhereN is the number ofOTUs in the assemblage andπi is theGD for a
single OTU. Correcting for sampled OTU richness allows for compar-
ison across assemblages of different numbers of OTUs. The numerator
of this metric is the exponential of Shannon’s diversity index, which is
also referred to as Shannon’s information measure or Shannon’s
entropy in the literature151. It is commonly used to describe evenness
and variability of species abundances152,153, and here we follow the
approach of Overcast et al.68 by adapting it to do the same for genetic
diversities calculated from all species sampled from a particular area.

High values of GDE indicate areas wheremostOTUs have a similar
GD (Fig. 1), whereas lower GDE arises when GD values across the
community diverge considerably152. The distribution of GD values
within an area of low GDE can take a variety of shapes, but the most
common in our observed data is markedly L-shaped whereby most
OTUs have low or zero GD along with a small number of OTUs with
large GD (Fig. 1d).

Spatial resolution and sampling decisions
To assess how the spatial scale and density of OTU sampling impacted
our results and to establish a sampling strategy that maximizes the
amount of information, we calculated both metrics at 1) three different
spatial resolutions, and 2) six different thresholds of minimum OTU
sample sizes per grid cell. The spatial resolutions include
96.5 km×96.5 km, 193 km× 193 km, and 385.9 km×385.9 km equal-
area grid cells using a Behrmann cylindrical equal-area projection,
which are 1°, 2°, and 4° longitude at 30°N.We considered aminimumof
10, 25, 50, 100, 150, or 200 unique OTUs per grid cell. We chose the
spatial resolution that balanced the average number of OTUs per grid
cell, the number of grid cells, the average number of taxonomic orders
per grid cell, and variation in the number of OTUs across grid cells
(Supplementary Fig. 2). After choosing an appropriate spatial resolution
for our analysis, we performed themodeling procedure outlined below
for all minimum OTU thresholds. While retaining results across the
range of minimum OTUs per grid cell, we focus our analysis using the
threshold that results in the least-biased and most precise estimates of
GD when predicting a trained model onto withheld test data, where a
slope near onewith a y-intercept near zero indicatesminimal prediction
bias and high precision is indicated by a high R2 with low root mean
squared error. With respect to numbers of sampled allele copies per
OTU,weusedaminimumof three individuals perOTUpergrid cell. This
is a sensible approach to estimate GD while still maximizing data use
because BOLD data submissions may omit duplicate alleles and coa-
lescent theory suggests that using average pairwise distance from
5–10 samples per OTU provides estimates of genetic diversity that are
as reliable as those obtained from hundreds of samples93. To explore
this sampling dynamic explicitly, we conducted coalescent simulation
experiments comparing how the calculationofGDvaries given identical
samples with and without duplicate alleles removed. These simulations
showed that retaining only unique haplotypes resulted in a small, con-
sistently upward bias in GD values. Additionally, increasing values of
effective population size (Ne) decreased this bias, with estimates of GD
with andwithout duplicate alleles converging forNe values greater than
~10e5 (Supplementary Methods, Supplementary Fig. 15).

Because 97.2% of OTUs are represented by six taxonomic orders
(Supplementary Fig. 10; Supplementary Table 4), with 84.2% repre-
sented by three (Diptera, Lepidoptera, and Hymenoptera), we inves-
tigated whether and to what degree over-represented ordersmight be
driving the signal ofGDMandGDE.We compared the global frequency
distributions of per-cell GDM and GDE with these three orders
removed with the distribution of these summary statistics for the
entire data set. The distributions of per-cell GDM and GDE between
these filtered data sets and the original data set were compared using
Welch’s unequal variance t-tests154. In addition, we mapped the
observed distribution of GDM and GDE for the three orders to com-
pare their geographical variation in GD with the full data sets.

Although coalescent theory predicts that the number of allele
copies per OTU per grid cell will have a limited impact on the per OTU
genetic diversity93, we examined whether this assumption was met in
the data by testing for Pearson’s correlations between the per OTUGD
and the number of individuals per OTU. The relationship was statisti-
cally significant, but extremely weak (r100 = 0.029, p100 < 0.001). Simi-
larly, to investigate whether per grid cell sampling, i.e., total number of
individuals, number of individuals per OTU, and number of OTUs per
cell, had an effect onGDE or GDM, we tested for Pearson’s correlations
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between these quantities (no relationship, all P > 0.20, Supplementary
Table 5; Supplementary Fig. 16). We also assessed sampling variation
by taking the ten most sampled grid cells (2748 to 13,300 OTUs per
grid cell) and obtaining sampling distributions of GDM and GDE for
each by resampling with replacement 100 OTUs per sample (N = 1000
resamples) and calculating the summary statistics for each resample
(Supplementary Fig. 17). Finally, we considered the spatial distribution
of OTUs by visualizing the distribution of the number of grid cells
occupied by each OTU.

Environmental variable selection
We aggregated a total of 49 abiotic, biotic, and anthropogenic vari-
ables that potentially influence intraspecific genetic diversity in insect
communities (Supplementary Table 1). We removed highly correlated
variables (r > 0.75), prioritizing variables that represent climate
extremes, climate variability, habitat variability, last glacial maximum
(LGM) climate stability, and human influence on the environment. We
prioritized these classes of variables because the influences of envir-
onmental extremes and variability across space and time are more
likely to shape local communities than averages155,156.

We retained a final data set of 11 ecologically relevant variables:
five bioclimatic variables, habitat heterogeneity, global human mod-
ification, and four metrics of climate stability (temperature and pre-
cipitation) since the LGM (Supplementary Table 1). The five bioclimatic
variables describe climate extremes and variability, and were obtained
from the CHELSA database157. They include maximum temperature of
the warmest month (MTWM), minimum temperature of the coldest
month (MTCM), precipitation of the wettest month (PWM), pre-
cipitation of the driest month (PDM), temperature seasonality, and
precipitation seasonality157,158. The habitat heterogeneity metric was
calculated as the standarddeviation of the EnhancedVegetation Index,
which was derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) (2.5 arc-min; ref. 159). The human modification
variable is a cumulative measure of human modification to terrestrial
areas160. Measures of both the historical trend and variability of tem-
perature and precipitation over the last 21,000 years were obtained
from Theodoridis et al.21. The specific definitions of these derived
metrics include “deep-time climate trend”, the change in climate
within each century, averaged across centuries, and “deep-time cli-
mate variability”, meaning the standard deviation around the change
in climate, averaged across centuries. Low deep time trend values
indicate regions with long-term climate stability, while low variability
values indicate regions with short-term climate stability. Each variable
was aggregated from its original resolution (see Supplementary
Table 1) to 193 km by 193 km resolution through bilinear interpolation.

In addition, we explored the relationship between GDE and GDM
and a binary variable delineating the globe into areas that do or do not
freeze, which are areas where the long-termminimum temperature of
the coldest month (MTCM) is below 0 °C versus above 0 °C, respec-
tively. These regions correspond with sharp community turnover in
birds72 and could correlate with critical life processes for insects. We
tested this variable separately fromthe full predictivemodel because it
is highly collinear with the deep-time temperature variability metric
(r >0.75) included in the model. Given this correlation, we acknowl-
edge the redundancy in the statistical tests, but we believe that
including two perspectives on the geographical structure of genetic
diversity allows for direct comparison with existing patterns in the
literature that are not apparent otherwise.

Modeling approach
We applied a Bayesian modeling approach to identify the environ-
mental conditions that best explain the global distribution of GDM and
GDE in insects. We independently modeled the relationship between
the set of 11 uncorrelated, ecologically relevant variables (see above)
andper grid-cell GDMandGDEvalues. To assess thepredictive ability of

the model, we split the data set into 75% training and 25% testing sets,
stratifying the sampling by continent to maximize spatial representa-
tion of sampling in both data sets. All model selection andmodel fitting
was performed on the training set, while predictive performance of the
best fit model was assessed by predicting the withheld test data set.

We prioritized constructing a simple, interpretable linear model
that predicts GDM and GDE across the globe by first reducing the
number of potential variable combinations, followed by a Bayesian
hierarchical generalized linear mixed model (GLMM) approach that
accounts for spatial autocorrelation73. We reduced the number of
potential predictor variable combinations from the set of 11 variables
with low collinearity using Bayesian regression coupledwith projective
prediction feature selection. This approach minimizes the number of
variables in a simple model while retaining comparable predictive
power to amodel that includes the full suite of predictor variables161,162.
Computational and statistical limitations due to exploring such a wide
variety of variable combinations in a Bayesian context prohibited
accounting for spatial autocorrelation in this first step. For eachmodel
we used regularizing priors on all slope parameters (N(0, 0.1)) and the
error term (N(0, 1)). We centered and scaled all variables to a standard
deviation of 1 and mean of 0 prior to modeling.

If residual spatial autocorrelation (SAC) is present, the assumption
of independent and identically distributed residualswould be violated,
resulting in potentially biased overprecision of parameter estimates163.
We tested for SAC in the residuals of the resulting simplified models
usingMoran’s I and 10,000 simulations implemented in the R package
spdep v1.1-2164. We detected significant levels of SAC in the residuals of
our GDE model (Moran’s I =0.149, P =0.008) and our GDM model
(Moran’s I =0.306, P <0.001).

Given this presence of SAC, we used a Bayesian hierarchical
GLMM implemented in the R package glmmfields v 0.1.4 to model the
relationship between the variables and the two GD metrics (GDE and
GDM) while accounting for SAC73. SAC is modeled as a random effect
with a multivariate t-distribution determining the shape of the covar-
iance matrix. Model parameters were estimated from the posterior
distribution using a No U-Turn Sampler165,166. Further model specifica-
tions are provided in the SupplementaryMethods. We again tested for
SAC in the residuals of these models using the same approach as
above. The proportion of variance explained by the models were
assessed with Bayesian R2167, modified to account for spatial auto-
correlation error. After selecting a model, we used the percentage of
prior-posterior overlap to assess the identifiability of parameter esti-
mates relative to the information provided by their prior
distributions168. Low overlap between the prior and posterior dis-
tribution of a parameter indicates that there is sufficient information in
the data to overcome the influence of the prior.

We tested for the statistical significance of a linear or quadratic
relationship between latitude and GDM and GDE while accounting for
spatial autocorrelation using a modified two-sided t-test of spatial
association, implemented in the R package SpatialPack v0.3.0169,170.
This was done for the full data set and independently for the three
most sampled orders. We also independently tested the effect of
whether an area freezes or not on the two GD metrics using the same
modified t-test of spatial association.

Global genetic diversity map generation
Using the finalmodels of GDM andGDE, we createdmaps of the global
distribution of insect GD. We used 1000 draws from the posterior
distribution to predict terrestrial environments across the globe. We
included all continents except Antarctica, which had no observed data
and included environments far more extreme than the observed data.
We created maps of the median predicted GDM and GDE, along with
the upper and lower 95% HDI. In addition, we created bivariate color
maps of these prediction intervals for combined GDM/GDE to high-
light areaswhereGDMandGDE vary in similar anddifferent directions.
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To avoid making poor predictions into areas with environments
that are non-analogous to the areas used to train the models, we used
multivariate environmental similarity surface (MESS) maps (Supple-
mentary Fig. 9). MESS maps visualize how environmentally similar or
different areas across the globe are compared to the model training
data171. Following best practices to avoid extrapolation172, we used the
MESS results to mask areas with non-analogous environmental space
(values less than 0) on our global prediction maps, indicating areas
with high prediction uncertainty.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The geographic and genetic sequence data, in addition to raw model
output generated in this study, have been deposited in the figshare
database at https://doi.org/10.6084/m9.figshare.c.6563836.v1173. All
environmental data are publicly available and links are provided in
Supplementary Table 1. Source data are provided with this paper.

Code availability
All code used for data processing and analysis is available at https://
doi.org/10.5281/zenodo.8125548.
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