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Drug classification with a spectral barcode
obtained with a smartphone Raman
spectrometer

Un Jeong Kim 1,10, Suyeon Lee1,10, Hyochul Kim1, Yeongeun Roh1,
Seungju Han 2, Hojung Kim1, Yeonsang Park 3,4, Seokin Kim5,
Myung Jin Chung6,7,8,9, Hyungbin Son5 & Hyuck Choo 1

Measuring, recording and analyzing spectral information of materials as its
unique finger print using a ubiquitous smartphone has been desired by sci-
entists and consumers. We demonstrated it as drug classification by chemical
componentswith smartphoneRaman spectrometer. The Raman spectrometer
is based on the CMOS image sensor of the smartphonewith a periodic array of
band pass filters, capturing 2D Raman spectral intensitymap, newly defined as
spectral barcode in this work. Here we show 11major components of drugs are
classified with high accuracy, 99.0%, with the aid of convolutional neural
network (CNN). The beneficial of spectral barcodes is that even brand name of
drug is distinguishable and major component of unknown drugs can be
identified. Combining spectral barcode with information obtained by red,
green and blue (RGB) imaging system or applying image recognition techni-
ques, this inherent property based labeling system will facilitate fundamental
research and business opportunities.

Miniaturization of optical spectrometers has been an active area of
research because the demand for portable scientific and industrial
characterization tools remains high1–5. Furthermore, smartphones are
ubiquitous devices that provide numerous applications and services.
Recently, many efforts have focused on converting smartphone cam-
eras into optical spectrometers for mobile food inspection6,7 beauty
care8, health care9, and other applications10–14. In these cases, the image
sensor of the smartphone detects optical signals from the object of
interest—such as reflectance, fluorescence, and Raman emissions.
Then, the smartphone’s application processor (AP) and communica-
tion chip can together perform on-device or cloud-linked analysis12,
providing identification of specimens or evaluation of physical or
chemical conditions.

Most research on smartphone-based spectrometers uses grat-
ings as a dispersion component, assembled in an external optics
module6–13. Gratings is an excellent optical component in spectro-
meter to disperse optical signals with high spectral resolution, but is
not easy to minimize its form factor to fit into smartphone. To
overcome this issue, mini spectrometers by replacing conventional
grating with such as photonic crystals14,15, metasurfaces16–18, quantum
dots19 and silicone nanowires20 integrated on charge coupled detec-
tor (CCD) or CMOS image sensors have been investigated. To cal-
culate the input spectrum, s λð Þ out of measured intensity, I xð Þ at the
detector, numerical analysis needs to be done as expressed by the
equation below due to its low Q-factor or complicated form of
response function, r λ,xð Þ at each pixel where x is the position of each
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pixel at the detector.

I xð Þ=
Z

r λ,xð Þ � s λð Þdλ ð1Þ

Thus, experimental results in the literature14–20 have substantial
limitations—especially in terms of capturing weak and high spectral
resolution required for Raman signatures.

Due to the increasing online pharmacies and supply chain,
counterfeit drugs have become threatening even to public health
safety. This issue becomes more critical since increasing the online
pharmacies and supply chain canprovide blind spots for counterfeit or
substandard drugs to be distributed into the public health market21.
Current smartphone applications (such as DrugID, ID My Pill, Pill
Identifier, Pill Finder, and Drug Info) can distinguish drug types and
models either by entering the name, shape, color, and/or etchedmarks
of the drugs; or by comparing the drug pill’s RGB images (acquired
with the camera)with theU.S. Food andDrugAdministration database.
The identification accuracy is insufficient due to similar appearance,
absence in the database, or other technical issues. In this sense, Raman
spectrum can provide valuable information on drugs, and there have
been some researches in the literature on classifying drugs by Raman
spectroscopy with the aid of machine learning22–26. Classifying phar-
maceutical ingredients, and detection of newly emerging psychoactive
substance and illicit drugs were demonstrated by partial least squares-
discriminate analysis (PLS-DA)22, principal component analysis (PCA)23

and CNN24, respectively. Detection of illicit drugs25 or psychoactive
drugs26 were demonstrated even in human urine and finger marks to
prevent patients from overdose or misuse of it by support vector
machines (SVM) and PLS-DA, respectively.

We demonstrated smartphone based Raman spectrometer which
are enough for drug classification. The Raman spectrometer is com-
posed of 2D periodic array of band passfilters on the image sensor of a
Samsung Galaxy Note 9, with a compact external Raman module.

Raman intensity map captured by the image sensor is defined as
Raman spectral barcode by the analogy of conventional barcodes,
machine-readable optical labels that enable location, identification,
and/or tracking. As a demonstration, we experimentally investigated
54 commonly used drugs for diabetes, hyperlipidemia, hypertension,
painkillers, and nutritional supplements; which frequently come in
almost identical shapes, sizes, and colors. Since each spectral barcode
of drug contains unique Raman signatures of the material, we con-
ducted the identification of spectral barcodes of drugs with a con-
volutional neural network (CNN) embedded in the smartphone. In
addition, identification accuracy can be further enhanced by infor-
mation fusion with spectral barcode and conventional RGB images
taken by the smartphone camera. Another advantage of spectral
barcode-based classification is that we can identify chemical compo-
nent of unknown drugs once other drugs with the same chemical
component are in the database.

Integrating with AI capability in the smartphone spectrometer
allows users to analyze the spectrum at various places and situa-
tions. This will enhance its portability and usability of smartphone
spectrometer in numerous disciplines including drug classification.
Our proposed concept of a CNN powered spectral barcode will
facilitate many research and business opportunities for smartphone
spectrometers.

Results
Smartphone Raman spectrometer and spectral barcode
Figure 1 shows schematics of the smartphoneRaman spectrometer and
spectral barcode; which is the 2D Raman intensity map acquired with
the smartphone Raman spectrometer, and an artificial intelligence
algorithm embedded in the smart phone for classification. Raman
signals are generated and collected by a compact external module
integratedwith a 785 nm laser diode. Theminiaturized external Raman
module is attached to the rear-wide camera of the Samsung Galaxy
Note 9, and its detailed optical components and configurations is

Fig. 1 | Schematics of smartphoneRamanspectrometer anddataprocessing for
analysis. a The smartphone Raman spectrometer consisted of band pass filter
arrays attached to a rear camera image sensor and an external attachable Raman
modulewith a 785 nm laser diode.We embedded an artificial intelligence algorithm

in the smartphone for classification. b Each band pass filter transmitted a specific
wavelength and the captured image (containing spectral information) encoded as
the spectral barcode. Color bar represents the peak wavelength of band pass fil-
ter (λpeak).
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shown in Supplementary Fig. 1 with a photograph. The Raman emis-
sion,which is excitedbypositioning the specimen at the focal point, i.e.
contacting at the objective lens, simultaneously illuminates several sets
of 128 channels (CHs) located near the center of the image sensor. For
120 CHs out of 128 CHs, its band pass filters transmit 120 distinct
wavelengths in the range of 830–910 nm. The rest CHs are blocked by
metal as position indicators exhibited as black squares in Fig. 1. The
spectral width and transmission rate of the bandpass filters range from
1–1.2 nm and 0.45–0.6, respectively (Supplementary Fig. 2). Each band
pass filter consisted of a pair of Si/SiO2 distributed Bragg reflectors
(DBRs), its resonant wavelength is adjusted by the thickness of the Si
cavity layer in the center27,28. The details of the filter structure and
fabrication can be found in Methods. In Supplementary Table 1, the
smartphone Raman spectrometer of this work is compared with min-
iaturized spectrometers which are controllable by android smart-
phones, or embedded in the smartphone12,29,30. The compared details
are shown in the caption of Supplementary Table 1. As the role of the
external module in this work is just to excite and collect Raman signals
from the specimen without additional connecting electronic board to
the smartphone, the smartphone Raman spectrometer becomes more
compact and versatile with minimized external module.

From the image, a unique spectral barcode of the specimen is
generated, which contains the Raman information of the sample.
The Methods explains the detailed process to convert a raw image—
acquired with the smartphone spectrometer—to a spectral barcode,
a unique spectral identifier. Analogous to conventional barcodes,
our work introduces a new concept of symbology to map spectral
information into a spectral barcode: a set of multiple wavelengths,
physical positions, and continuously variable transmitted Raman
intensities at given wavelengths after normalization. Our spectral
barcodes can express 1200 bits of information since 120 CHs deliver
different wavelength information and one pixel of the image sensor
encodes 10 bits. This is comparable with conventional 2D barcodes,
which contain ca. 4000 bits of information depending on the sym-
bology. The capacity of the encoding information of the spectral
barcode can be enhanced by increasing the number of CHs or
adapting sensor with higher dynamic range. Supplementary Fig. 3
shows examples of spectral barcodes of three drug pills that are
similar in appearance: Glu-M SR for diabetes, Vitamin C 1000mg
Yuhan, and Tylenol 8 h ER Tab. Whereas they have a virtually indis-
tinguishable appearance, one can easily distinguish their Raman
spectra—obtained with a commercial spectrometer as well as cor-
responding Raman spectral barcodes obtainedwith our smartphone
spectrometer. When comparing the Raman spectra obtained with
the two measurements, blue squares indicate the Raman peaks or
major spectral components of each drug and the corresponding
locations in the Raman spectral barcode. Although the spectrum
obtained with the smartphone Raman spectrometer exhibited a
lower spectral resolution, it matched well with that of the com-
mercial Raman spectrometer. The spectrum from the smartphone
exhibited a slight shift in the peak locations (<1 nm), different rela-
tive peak intensities, and inter-peak spacing (Δλ) resulting from the
spectral resolution. The full width at half maximum (FWHM) of the
peaks corresponding to the C–O–C stretching bond at 861 nm and
the C = C ring stretching bond at 903 nm of Vitamin Cwere 180% and
140% wider than those obtained with the commercial Raman spec-
trometer. Nevertheless, the narrowly spaced Raman bands at
899 nm (aryl CC stretch) and 903 nm (C =O stretch) were still well-
resolved. The FWHM at these corresponding bands of 120 band pass
filters ranged between 1 and 1.2 nm, and Δλ was <1 nm.

Drug classification using spectral barcodes
We demonstrated drug classification with a smartphone Raman spec-
trometer because this tool can provide important information in
healthcare; for example, when distinguishing counterfeit from legal

drugs, or choosing the correct drug pill among similar looking drug
pills to prevent misuse. To overcome the issues of previous works as
explained in the introduction, Raman spectroscopy provides mole-
cularfingerprints and is suitable for identifying drugs by their chemical
compositions and functions. We chose the most widely prescribed
drugs for three common diseases (hypertension, diabetes, and
hyperlipidemia) and three over-the-counter medicines (vitamin B6,
vitamin C, and acetaminophen) for drug classification. Medical pro-
fessionals prescribe amlodipine, losartan, and valsartan for hyperten-
sion; glimepiride and metformin for diabetes; and atorvastatin,
rosuvastatin, and simvastatin for hyperlipidemia. Supplementary Fig. 4
shows the chemical structures of the major components, and Sup-
plementary Fig. 5 shows the list of 58 drugs as well as their major
components and RGB images. Supplementary Fig. 6 shows reference
Raman spectra measured with a commercial Raman spectrometer at
785 nm excitation. Raman spectra of the same component exhibited
the same Raman peaks, whereas the intensity of the background was
quite different; or even newRamanpeakswere evident at 810, 825, and
830 nm due to the additives in the drugs (such as atorvastatin and
simvastatin for hyperlipidemia). Figure 2 shows representative spectral
barcodes of 11 major components found in hypertension, diabetes,
hyperlipidemia, and the other over-the-counter drugs. Spectral bar-
codes result from sharp Raman bands and broad fluorescence, which
produce different patterns. Most of the spectral barcodes are readily
distinguishable; but in some cases, drugs with different major com-
ponents (for example, amlodipine, losartan, and simvastatin) need a
classification algorithm to distinguish.

Figure 3 shows the schematics of data processing for drug clas-
sification based on spectral barcodes. When combined with CNN,
Ramanspectroscopybecomes a powerful tool for predicting themajor
components of drugs and even their brand identities. We used 54
drugs (1–54 in Supplementary Fig. 5) to train and test the neural net-
work, and four drugs (A1–A4 in Supplementary Fig. 5) to prove the
hypothesis that a CNNbased onRaman spectral barcodes can properly
recognize chemical components of drugs that are not in the database
to train CNN. The details to obtain Raman spectral images are
explained in theMethods. The statistical analysis of 42 Raman spectral
images of Vitamin C to test CNN has been done as shown in Supple-
mentary Fig. 7. The average value with standard deviation of normal-
ized Raman intensity at each wavelength of the spectral barcodes is
plotted. We used RGB images as additional information to improve
drug classification accuracy by their brand name. The entire process,
from the measurement (Raman spectral barcodes and RGB images) to
the display of the results (types or brand names of the drugs), can be
completed with a single device by using the pre-embedded CNN
algorithm in the smartphone’s AP. Among various classification algo-
rithms such as Bayesian network, support vector machine (SVM), etc.,
we select CNN with a simplified Residual neural network (ResNet)
architecture to identify the major component of drugs (based on a
common CNN structure, including e.g. Alex neural network (AlexNet)
and visual geometry group neural network (VGGNet), and imple-
mented a shortcut(add) skipping convolution)31. This CNN is made up
of one conventional residual block of ResNet, consisting of a con-
volution layer with batch normalization, add, and rectified linear unit
(ReLu); and two fully connected layers produced after flattening (one
with batch normalization and ReLu, and the other with batch nor-
malizationand softmax).ReLu is a commonactivation function indeep
learning algorithms and returns a max (0, input), which provides a
threshold in various parameters generated during the execution of the
algorithm. The Methods describes details of the CNN architecture,
training method, and database. To identify the brand name of each
drug, we applied another CNN—simplified ResNet—followed by clas-
sification of the major component. The architecture of the CNN for
identifying the brand name was similar to that of the CNN for classi-
fying the major component, except the size of the fully connected
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Fig. 3 | Schematics of encoding spectral barcode and data processing to ana-
lysis. Encoding the spectral barcode from the 2D Raman image of a drug as well as
classification by major component or brand name with convolutional neural net-
work (CNN). One conventional residual block of residual neural network (ResNet)
(convolution layer with batch normalization, add, and rectified linear unit (ReLu)).
Two fully connected layers followed by flattening (one with batch normalization

andReLu, andonewith batchnormalization and softmaxas an activation function).
We combined aCNN for the red, green andblue (RGB) images of the drugs taken by
the smartphone camera as a tool to enhance the accuracy of drug classification.
Schematics of CNN architecture (visual geometry group neural network (VGGNet))
for classifying the shape and color from the RGB image of the drug. The smart-
phone shows the results as an auxiliary classification tool.

Fig. 2 | Representative spectral barcodes of 11 major components of drugs.
Representative spectral barcodes of amlodipine, losartan, and valsartan for
hypertension; glimepride and metformin for diabetes, atorvastatin, rosuvastatin,

and simvastatin for hyperlipidemia; and vitaminB6, vitaminC, andTylenol for over-
the-counter drugs. Eachpanel also shows the specific brand names that correspond
to the spectral barcodes for each major component.
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layers (since the size is related to the dimensions of the final result; the
brand name of the drug).

Classification results for the major component and brand name
Figure 4 shows the confusion matrix for classifying the major chemical
components of the drugs. The confusion matrix is for evaluating the
performance in classification problems, comparing the actual class, and
predicting the class with a classification algorithm. Diagonal and off-
diagonal terms represent the correct and incorrect cases, respectively.
Valsartan, vitamin B6, vitamin C, and Tylenol produced 100% accurate
classification. The overall accuracy for 54 drugs major component was
99.0%. Additionally, we confirmed the expandability and effectiveness
of the CNN for spectral barcodes by identifying four drugs as listed A1,
A2, A3, A4 in Supplementary Fig. 5, (Glimel 3mg, Dymit XR, Glucophase
1000mg, and Metofol 500mg). Even though these drugs are excluded
inCNN trainingprocedure (both training andvalidation set), the trained
CNN accurately predicted the major components from the spectral
barcodes once the spectral barcode of the same major components
were in the database. RegardingDymit, Glucophase, andMetofol, other
11 drugs with the same major components (metformin) were in the
database. Regarding Glimel, eight drugs with glimepiride were in the
database. The prediction accuracy for the major component of three
drugs from metformin and one drug from glimepiride was obtained
from 424 and 141 trials, respectively. Only one failure from metformin
was confirmed, which corresponds to 99.8% accuracy for the major
component prediction of unknown four drugs.

It is valuable to mention that broader spectral range could
enhance the accuracy topredict its brandnamesbydesigning theband
pass filter arrays on the image sensor to capture additional Raman
features, for example, at 810, 825 and830 nmassociatedwith additives
in the drugs as shown in Supplementary Fig. 6.

Classifications on various applications by CNN have been done
using full spectrum of objects under interest obtained by benchtop or
portable spectrometers using high signal-to-noise ratio (SNR) CCD and
conventional grating22,26 with high spectral resolution. The smart-
phone based Raman spectrometer using 120 filter arrays on CMOS
image sensor produces lower spectral resolution but still highQ factor
(>1 nm by FWHM). CMOS image sensors are highly efficient in power
consumptions compared to CCD. Thus, the developed spectrometer
on CMOS image sensor exhibits SNR and Q factor enough to classify
drugs by Raman spectral barcode, and is suitable for lower power
consumption.

Itmight occasionally be necessary to identify the names aswell as
brands of drugs that are in the same drug group because brand-
specific additives or coatings can affect the behavior in the body, such
as speedof absorptionor allergic reaction. Figure 5 shows the spectral

barcodes of three metformin drugs (Diabex 1000mg, Dybis, and Glu-
M SR) and their spectra. The squares of the same color indicate the
Raman peaks which are from the same major chemical component,
metformin. Higher fluorescence appears for Glu-M SR than Diabex as
the overall intensitywas high in the spectral barcodes. The accuracy in
terms of classifying brand names remained still large: 79.5% (Sup-
plementary Fig. 8 shows the confusion matrix for brand name from
the spectral barcode.), since the additives or coatings provided
increased fluorescence levels or additional Raman bands, which
provide the distinguishability among drugs with the same major
component. The accuracy of the CNN for differentiating one major
component from the others was high, and thus misclassifying cases
were most common among drugs with the same major components.
(Supplementary Fig. 8).

Information fusion with RGB image for classification accuracy
enhancement
The appearance of the drugs such as color and shape provides
additional information for identification as RGB images taken by the
smartphone camera exhibit various shapes and colors (Supple-
mentary Fig. 5). We applied CNN with a commonly used VGGNet
architecture32,33 in conventional RGB imaging of drugs to recognize
the shape (snowman, circle, ellipse, and pentagon/octagon) and
color (blue, yellow, green, white, and pink) for higher recognition
accuracy as well as brand name classification (Fig. 3). We achieved
classification by subsampling (i.e. reduced data size) with a con-
volution layer, fully connected layer, and max pooling; and used
ReLu as an activation function. Supplementary Fig. 9 and the
Methods show the confusionmatrix and the architecture of the CNN
algorithm for the RGB images for classifying the shape and well as
color. By additionally applying the CNN of RGB images as an aux-
iliary classification tool, the accuracy of identifying the exact brand
name was slightly increased up to 83.2% (Supplementary Fig. 10
shows the confusion matrix). We designed the final CNN (for pre-
dicting the brand name) to use the product of the outputs from both
CNNs as a combined method, treating them with equal importance.
One could further optimize the prediction accuracy by adjusting the
output ratio between two types of CNNs. One could also use the
imprinted marks on the drugs in conjunction with proper image
processing, and/or further subdivisions of shape and color for
appearance recognition with the RGB images.

Discussion
In this work, we introduced the concept of the spectral barcode,
obtained with a smartphone Raman spectrometer. Even with relatively
lower spectral resolution and SNR due to the inherent properties of

Fig. 4 | Confusionmatrix of classifying themajor component of 54 drugs.Diagonal and off diagonal terms represent correct and wrong classification of drugs. Color
scale bar for relative number at each cases out of total trials is shown in the right corner.
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band pass filter arrays and CMOS image sensor compared with com-
mercially available spectrometers installed with grating and CCD, the
smartphoneRaman spectrometer exhibits still high enoughQ factor as
portable spectrometer with high efficiency in terms of power con-
sumption. Only external excitation and collection optics are needed to
excite and collect Raman signals from the specimenwithout additional
connecting electronic board to the smartphone. This makes the
smartphone spectrometer more compact with minimized external
module and versatile. Integrating with AI capability in the smartphone
spectrometer makes the developed spectrometer more powerful. We
demonstrated drug classification by spectral barcodes containing
weak Raman signals with 99.0% and 79.5% accuracy for major com-
ponent and brand name, respectively. By combining a CNN for RGB
images of drugs,we increased the accuracy of brand nameup to 83.2%.

There might be methods to increase the prediction accuracy to
100%by using additional information on drugs, such as etchedmarks
or additional spectral features, and even upgrading the specification
of the smartphone spectrometers such as spectral range, Q-factor,
SNR and etc. In the measurement aspect for prediction accuracy
enhancement, detection of major components under thick coating
may be possible, for example, by introducing spatially offset Raman
spectroscopy (SORS). Fluorescence could be separated from Raman
signals of drugs by shifted-excitationRaman difference spectroscopy
(SERDS). Moreover, systematic understanding how drug companies
mix major components in collaboration with medical society is
necessary to develop more powerful drug classification CNN.

In the future, by reducing the size of channel to one-pixel level and
increasing the density of CH arrays, simultaneous measurement of
spectral and morphological information of the object under interest
can be achieved, which is called hyperspectral imaging, by using
smartphone camera. This will extensively increase the portability and
usability opening up new field in smartphone business.

Methods
Samples
Fifty four drugs for hypertension (Amlodipine, losartan, and varsar-
tan), diabetes (metformin and/or glimepride), and hyperlipidemia
(atorvastatin, rosuvastatin, and simavastatin) are provided by Sam-
sung medical center and returned back for discarding after finishing
theproject. VitaminB6 (plidoxineTab. Sinil), VitaminC (VitaminCTab.

1000mg Yuhan),Tylenol Tab. 500mg and Tylenol 8 h ER Tab. were
purchased from local pharmacies in South Korea. The name, appear-
ance and pharmaceutical companies of each drug can be found in
Supplementary Fig. 5 as annotation.

Database
170–223 Raman images per drug and 198–202 RGB images of both
sides per drug were taken, respectively. Images for training only,
monitoring the training to validate and testing the classification
accuracy belong to mutually exclusive group. 100 (118–122), 35–67
(40), and 35–67 (40) for training, validation, and testing CNN for the
number of image for the spectral barcode (number of RGB image on
each side of drug), respectively. 140-143 images for Raman spectral
barcodes of each of the four excluded drugs were used to test the
expandability of the spectral barcode.

The drug samples need to be placed at the focal point of the
excitation laser. Depending on the position of drug against the
objective lens (The aperture size is 0.5mm in diameter), the sample
surface can be either at the focal point or slightly out of focal point.
Furthermore, excitation light can be scattered by the etched marks
depending on the contacting position of drugs. These can slightly
influence the background intensity of the Raman signal. Thus, drugs
are placed randomly on the hole of the objective lens to obtain Raman
images for training testing CNN.

RGB images were acquired in the normal direction with con-
straints that the drugs were placed on black paper under typical room
light. Preprocessing of the RGB images consisted of denoising,
extracting contours, erasing the background, resizing the images, and
color normalization. The RGB images for training were augmented to
reduce the dependence on the position, angle, and size of the drug in
the images.

In this study, the relatively small number of images was sufficient,
even though tens of thousandsorhundreds of thousandsof images are
generally used in the artificial intelligence field. That is why there is
little chance of other signals in spectral barcodes, and condition of
RGB image measurements is limited.

Integration of smartphone Raman spectrometer
120 band pass filters in the range of 830–910 nm were formed on a
quartz substrate by plasma-enhanced chemical vapor deposition and

Fig. 5 | Comparison of the spectral barcodes with same major component.
Three spectral barcodes from the same major component of drug category (met-
formin). Diabex 1000mg,Dybis, andGlu-M SR shown from left to right. The Raman
spectrum extracted from each barcode are below the spectral barcode, along with

the reference Raman spectrum from a commercial spectrometer, indicated by a
black solid line and red symbols connected by lines, respectively. The insets show
the RGB images of each drug. The gray-shaded tapered areas indicate fluorescence
or background, induced by additives or binders.
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photolithography. Eachbandpass consists of one vertical pair of DBR
separated with a Si cavity layer, performing as a Fabry–Perot filter.
The bottom DBR consists of TiO2 (90 nm)/SiO2 (146 nm)/Si (55 nm)/
SiO2 (146 nm)/Si (55 nm). The thickness of each layer of the DBR is
determined as λpeak/4n where λpeak is peak wavelength and n is the
refractive index of each layer, respectively. For the top DBR, the
identical structure of the bottom DBR is inversely stacked in order.
The thickness of the Si cavity layer between the DBR layers is deter-
mined as λpeak/2n (thickness range: 300–380 nm) adjusting the peak
wavelength, where n is the refractive index of Si. Each filter has a
narrow band in the range of 1.0–1.2 nm of full width half maximum
(FWHM) and 0.45–0.61 transmission. The difference of the peak-to-
peak wavelength (Δλ) was <1.2 nm except two filters for the two
longest wavelengths, in which case Δλ was 2 nm. Distinct 120
filters and 8 Cr metal blocks with image sensor consists 128 CHs,
arranged in a 16×8 mosaic pattern. With the image sensor of the rear
wide camera in Galaxy Note 9, 4 × 9 array of 128 CHs are manu-
factured, after removing the camera lens module and the infrared
cutoff filter.

Attachable Raman module
Laser diodes were purchased from Thorlabs, Inc. (LD785-SEV300).
Commercially available rechargeable batteries were used as an
external power supply. The outermodule case works as dark room to
block ambient light and pinholes are designed to exclude unwanted
scattered light or residual excitation light source. The laser power
and the frequency were stable for hours by supplying the external
electricity. Also, heat sink was carefully designed in the attachable
Raman module to maintain the output wavelength. The laser can be
powered by the external power supply such as commercially avail-
able rechargeable battery. The rechargeable battery can be as
small as to be installed in the attachable Raman module as shown
in Fig. 1 or Supplementary Fig. 1. The position of the rear camera
and the size of the image sensor can be varied depending on the
model of the smartphone. By onlymodifying the position of outlet of
the Raman signal to the image sensor, the optics set-up of the
attachable external module can be applicable to other models of the
smartphone.

Progression of image capture with a smartphone Raman spec-
trometer to the spectral barcode
The size of the image sensor is 3024 pixels × 4032 pixels, and 40 pixels
× 40 pixels is for each CH. Among the 4 × 9 array of 128 CHs in the raw
image, thedata froma 2 × 2 array illuminatedwith theRamansignal are
extracted for further analysis. It is transformed into a spectral barcode
after a series of processing, denoising, averaging these 4 sets of 128
CHs, and normalizing. Denoising is performed by averaging values
from 20 pixels × 20 pixels of each channel to reduce random noise.
The exposure time was set to 10 s in one shot to obtain a weak Raman
signal and reduce the readout noise by modifying the AP of a
Galaxy Note 9.

The reference Raman spectra from 58 drugs were obtained with a
commercial Raman spectrometer equipped with a 785 nm excitation
laser (XperRam, Nanobase, Inc.). The spectra were carefully measured
to compare intensities in absolute values.

CNN architecture
To classify the spectral barcode, CNN with a ResNet structure is used.
One feature of the ResNet is a shortcut, adding input-to-output after
convolution and batch normalization. Because a spectral barcode has
only 120 degrees of freedom, only one residual block (convolution a
with 3 × 3 kernel size, batch normalization, add, and activation with
ReLu) is used. After flattening, two fully connected layers are followed
by batch normalization; one with ReLu, and one with softmax as an

activation function. The final output has 11 dimensions, the number of
major components.

To identify the brand name of the drug, a classification algorithm
in series is designed. There is one CNN for classifying the major com-
ponent andnineCNNs for identifying the brandname, because there is
no need to identify the brand name for vitamins B6 and C. The struc-
ture of the CNN for classifying the brand name of the drug is similar to
that for the major component. The only difference is the size of the
fully connected layer.

The CNN for the RGB images uses the architecture of VGGNet to
classify the shape and color. The CNN consists of three convolutional
layers with batch normalization, ReLu, and max pooling. After flat-
tening, three fully connected layers are achieved by batch normal-
ization, the last layerwith softmax, and the other layerswith ReLu as an
activation function.

To estimate the accuracy of the combined CNNs for the spectral
barcodes and RGB images, a randomly selected spectral barcode and
RGB image are tested 1000 times. The result of the accuracy is 83.2%
and the deviation of the accuracy is ±0.2%p with 10 trials.

The overfitting is avoided by monitoring the training loss and
validation loss simultaneously. As over fitted, validation loss starts to
saturate or even increase while training loss keeps decreasing.
Therefore, training and validation losses are monitored during
training process, as epoch increases. Also overfitting can occur with
complicated algorithm structure, and thus the number of hidden
layers and parameters needs to be optimized. Furthermore, batch
normalization is added after convolution layer and fully-connected
layer to prevent gradient vanishing problem which stops updating
the parameters in CNN.

Android application
Android application was produced using program language C#, and
installed in galaxy not 9 from Samsung. The drug classification oper-
ated by smartphone Raman spectrometer can be confirmed in Sup-
plementary Movie 1 using three drugs (Tylenol, Lipito-M, Diabex) with
5 s of Raman signal collection time.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data and database containing minimum set of spectral bar-
codes and RGB images of each drugs used in this work have been
deposited in the repository34.

Code availability
The software with a readme.txt file for installing and running the
software can be found in the repository34.
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