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Security of quantum key distribution from
generalised entropy accumulation

Tony Metger 1 & Renato Renner 1

The goal of quantum key distribution (QKD) is to establish a secure key
between twoparties connectedby an insecure quantumchannel. Touse aQKD
protocol in practice, one has to prove that a finite size key is secure against
general attacks: no matter the adversary’s attack, they cannot gain useful
information about the key. A much simpler task is to prove security against
collective attacks, where the adversary is assumed to behave identically and
independently in each round. In this work, we provide a formal framework for
general QKDprotocols and show that for any protocol that canbe expressed in
this framework, security against general attacks reduces to security against
collective attacks, which in turn reduces to a numerical computation. Our
proof relies on a recently developed information-theoretic tool called gen-
eralised entropy accumulation and can handle generic prepare-and-measure
protocols directly without switching to an entanglement-based version.

Quantum key distribution (QKD) considers the following scenario: two
parties, Alice and Bob, can communicate via an insecure quantum
channel and an authenticated classical channel. An insecure quantum
channel allows the adversary to intercept and tamper with any quan-
tum state sent across the channel; an authenticated classical channel is
one where an adversary can read every message sent across the
channel, but cannot impersonate either party; for example, the
adversary cannot convinceBob that a certainmessagewas sent byAlice
when in fact, it was not. Using these resources, Alice andBobwould like
to establish a secure shared key, i.e. a piece of information that is
known to both of them, but entirely unknown to an adversary Eve1,2.

The key difficulty in establishing the security of a QKD protocol is
that one has to take into consideration any possible attack that the
adversary Evemayperform. For example, in one roundof theprotocol,
Eve may gather a piece of quantum side information about the quan-
tum state sent via the insecure channel. This piece of side information
could be combined with side information from previous rounds to
plan Eve’s attack for the next round, resulting in a very complicated
multi-round attack. Additionally, Alice and Bob can only execute a
certain finite number of rounds, introducing statistical finite-size
effects. A security proof that takes both of these challenges into
account is called a finite-size security proof against general attacks
(also referred to as coherent attacks)3–5. Such a proof is required to
safely deploy a QKD protocol in practice.

Due to the difficulty of proving finite-size security against general
attacks, many protocols are first analysed for collective attacks, for
which very general numerical techniques have been developed (see
e.g.6–14). For a security proof against collective attacks one makes the
assumption that Alice and Bob execute infinitely many rounds of the
protocol and Eve behaves independently and identically in each round.
This is also called the i.i.d. asymptotic setting. These assumptions are
of courseunrealistic, but a collective attackproof is a useful theoretical
tool as it can often be converted into a finite-size proof against general
attacks; this is called a reduction to i.i.d.

There are a number of existing techniques for performing such a
reduction to i.i.d. These techniques are very powerful, but typically
require additional assumptions on the protocol and can significantly
lower the amount of key that can be extracted compared to the col-
lective attack scenario. Themost widely used ones are either based on
the quantum de Finetti theorem15 (and the related post-selection
technique16) or the entropy accumulation theorem (EAT)17.

The quantum de Finetti theorem and relatedmethods such as the
post-selection technique rely on the permutation-symmetry between
different rounds of the protocol to reduce general to collective
attacks. While not every protocol possesses this permutation sym-
metry naturally, it can usually be enforced by including an additional
“symmetrisation step” in the protocol. The main downside of these
techniques is that the bounds they achieve scale unfavourablywith the
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dimension of the underlying Hilbert space, i.e. the Hilbert space that
contains the states sent from Alice to Bob. This means that these
techniques only yield useful bounds for protocols with a small Hilbert
space dimension, e.g. the BB84 or B92 protocols1,18. However, practical
implementations of QKD protocols do not always satisfy this require-
ment; for example, many protocols use laser pulses as the means by
whichAlice sends a quantum state to Bob19,20, and such laser pulses are
described in a Fock spacewhose dimension is in principle unbounded.
While methods for truncating the Fock space have been developed21,
this introduces additional complications andmay lead toweak bounds
if the dimension of the truncated Fock space remains large.

In contrast, the EAT provides bounds that do not depend on the
dimension of the underlying Hilbert space. This dimension-
independence of the second-order terms means that the EAT can
also be used to prove security for device-independent or semi-device-
independent protocols22.

The main downside of the EAT for security proofs is that it
requires that new side information must be output in a round-by-
round manner subject to a Markov condition between rounds, and
once side information has been output it cannot be updated anymore.
In general, it is not possible to model the way that Eve actively inter-
cepts quantum states and updates her side information in a prepare-
and-measure protocol by a process that outputs side information in a
round-by-round manner subject to the Markov condition. As a con-
sequence, the EAT cannot “naturally” deal with general prepare-and-
measure protocols. Instead, one first has to convert a prepare-and-
measure protocol into an entanglement-based protocol. This can be

done as follows: if Alice prepares one of a set of pure states
�
ψj
�� E

Q

�
j

with probability p(j) and stores the index j specifying the state in her
register A, we can replace this by Alice preparing a state
~ψ
�� �

AQ =
P

j

ffiffiffiffiffiffiffiffi
pðjÞ

p
j
�� �

A ψj
�� E

Q
and later measuring her system A. Then, we

can model Eve’s attack by replacing this state ~ψ
�� �

AQ by an arbitrary

state ψ̂
��� E

AQE
prepared by Eve, subject to the constraint that Alice’s

marginal, which Eve cannot access in the prepare-and-measure pro-

tocol, is “correct”, i.e. ~ψA = ψ̂A. This additional constraint is an artificial
one in the sense that it is not something thatAlice andBobcheck in the
actual protocol, and it is unclear how it can be incorporated into a
security proof using the EAT in a natural way. As a result, it appears
difficult or impossible to use the EAT to obtain reasonable finite-size
key rates for prepare-and-measure protocols except in very
simple cases.

In addition to these general techniques for reducing security
against general attacks to security against collective attacks, there are
also more specialised techniques that directly prove security against
general attacks without an explicit reduction to collective attacks.
Perhaps the most common of these are phase-error correction and
entropic uncertainty techniques, both of which use the com-
plementarity of different measurements in the protocol as the starting
point for a security proof (see e.g., refs. 23–28). These security proofs
usually give very tight bounds for “symmetric”protocols (i.e. protocols
relying on mutually unbiased measurement bases, even though these
bases need not be chosen with equal probability) where they can be
applied naturally, and can also be extended to symmetric protocols
with experimental imperfections that slightly break the symmetry, e.g.
using the reference state technique29,30. In addition, various other
proof techniques that use the symmetry of specific protocols have
been developed (see e.g. refs. 31–33).

In this work, we show that security against collective attacks
implies finite-size security against general attacks for a broad class of
protocols. Themain feature of our security proof is its generality: while
many existing security proofs work well for particular protocols, our
approach works for any generic protocol satisfying a few structural

assumptions. Furthermore, it provides a natural way of proving
security against general attacks, with the proof being in close corre-
spondence to the structure of the original protocol, whereas previous
techniques often required the protocol to be transformed into a the-
oretically equivalent one to fit into the framework of a particular proof
technique. In particular, our technique can be applied directly to
prepare-and-measure protocols without transforming them into an
entanglement-based version. As a sample application, we show that a
direct application of our general framework yields the first asympto-
tically tightfinite-size security proof against general attacks for the B92
protocol. Importantly, our technique provides bounds that are inde-
pendent of the dimension of the underlying Hilbert space; instead, the
bound depends only on the number of possible classical outputs that
Alice and Bob may receive. This is particularly relevant for photonic
QKD protocols, where the underlying Hilbert space is a Fock space
with unbounded dimension34,35, and is also useful for (semi-)device-
independent protocols. For our security proof, we employ the gen-
eralised entropy accumulation theorem (GEAT), a recent information-
theoretic result36 that resembles the EAT discussed above, but allows a
more flexiblemodel of side information; this enables us to circumvent
many of the difficulties in applying the EAT and deal with prepare-and-
measure protocols directly, while retaining the advantages of the EAT,
most importantly its dimension-independence.

Results
Framework for prepare-and-measure protocols
Our main result, Theorem 4, shows that for a broad class of prepare-
and-measure protocols, security against collective attacks implies
security against general attacks. To make this result easy to use, we
phrase it as a security statement for a general “template protocol”;
many existing prepare-and-measure protocols can be viewed as an
instance of this template protocol, and their security then follows from
the security of the general template protocol. For protocols that do
not fit exactly into this template, the security proof can usually easily
be adapted from our proof of Theorem 4.

Our template protocol is described formally in Box 1; here, we
make a few additional remarks regarding this general protocol, using
the notation introduced in Box 1. Firstly, without loss of generality, we
can assume that the cq-state ψUQ is of the form ψUQ =

P
upðuÞ uj i uh j �

ψ
�� � ψ
� ��

Qju for a probability distribution p(u) and pure states ψ
�� � ψ
� ��

Qju.
This means that Alice chooses a value u according to p(u) and then
sends the pure state ψ

�� � ψ
� ��

Qju to Bob. The reason that we can assume
that ψ

�� � ψ
� ��

Qju is pure is that if Alice wanted to send a mixed state, she
could express that mixed state as amixture of pure states, send one of
those pure states, and later “forget”whichof the pure states she sent as
part of the map RK.

Secondly, in the protocol in Box 1, Bob measures a POVM {N(v)}
with outcomes v 2 V. More commonly, we think of Bob as choosing an
input y according to some distribution q(y) and receiving an output

b 2 B. This can bedescribedby a collection of POVMs f~NðbÞ
y g

b2B, one for

each possible input y. For example, Bob might choose uniformly at
random whether to measure a qubit in the computational or Hada-
mard basis. In that case, y would be the basis choice, and for each

y,f~NðbÞ
y g

b2B is the measurement in the chosen basis. However, since

Bob’s measurements are trusted, the distinction between inputs and

outputs is unnecessary: we can convert a set of POVMs f~NðbÞ
y g

b2B with

an input distribution q(y) into an equivalent single POVM fNðvÞgv2V by

choosing V =Y ×B and Nðy,bÞ =qðyÞ~NðbÞ
y . This satisfies the required

property of a POVM:

P
y,b

Nðy,bÞ =
P
y
qðyÞP

b

~N
ðbÞ
y =

P
y
qðyÞ1=1, ð1Þ

Article https://doi.org/10.1038/s41467-023-40920-8

Nature Communications |         (2023) 14:5272 2



where we used the fact that f~NðbÞ
y g

b2B is a POVM for the first equality
and the fact that q(y) is a probability distribution for the second. One
can think of N(y, b) as first choosing y 2 Y according to q(y) and then
measuring f~NðbÞ

y g on the state, providing (y, b) as output.
Thirdly, the function PD describes the total information exchan-

ged during the public discussion (Step (2)) for one round i of the
protocol. The details of how the public discussion takes place are of no
concern to the protocol: in general, Alice and Bob may exchange
multiple rounds of back-and-forth communication during this step,
and PDdescribes the transcript of the entire exchange. For example, in
a protocol that includes a sifting step, the public discussion would
include the information necessary to decide which rounds to sift out;
the actual sifting would occur in the raw key generation step, where
Alice’s function RK can use the information from the public discussion
to put a special symbol (e.g. ⊥) as the raw key for rounds that are
sifted out.

Additionally, the protocol distinguishes between information Ii
published during Step (2) and error correction information EC pub-
lished during Step (4). The difference between these two steps is that Ii
may only depend on the inputs Ui and Vi generated during the i-th
round of measurements. This means that Ii is generated in a round-by-
roundmanner andwill enter in the single-round security statement (or
collective attack bound, see “Definition 2”). In contrast, EC is global
information of a fixed length λEC, i.e. it can depend arbitrarily on
information generated during all rounds of the protocol, but to obtain
a good key rate, λEC should be as short as possible. We note that the
bound on the length of EC is needed in Supplementary Eq. (5), where
we use it to remove the error correction information from the con-
ditioning system; one can replace Supplementary Eq. (5) by a slightly
more sophisticated chain rule that subtracts a (one-shot) mutual
information between EC and Sn. In that case, the protocol needs to

specify an upper bound on this mutual information instead of the
length λEC.

Finally, we note that in the protocol in Box 1, Alice and Bob first
perform error correction, and afterwards Bob uses his error-corrected
guess for Alice’s raw key for the purposes of the statistical check. An
alternative that is commonly used in existing QKD protocols is that
Alice and Bob publish part of their data in a separate parameter esti-
mation step before the error correction step and use this public
information to run a statistical check. Our protocol in Box 1 can easily
be modified to include protocols of this form. For the modified pro-
tocol, the security proof stays exactly the same, except that the
reduction fromTheorem4 toClaim 10 now follows almost trivially and
does not need the argument from Supplementary Note A.

Example: BB84 protocol as an instance of Box 1. To gain further
intuition for the protocol in Box 1, we describe how to reproduce the
well-known BB84 protocol as an instance of our general protocol in
Box 1. In the BB84 protocol, Alice sends a random state from the set
f 0j i, 1j i, +j i, �j ig, where ±j i= 0j i± 1j iffiffi

2
p are the Hadamard basis states. As

her information Ui, Alice records which state she sent, i.e. she records
the basis x∈ {0, 1} and the valuea∈ {0, 1}. Hence, for the BB84protocol,

ψUQ = 1
4

P
x,a2f0,1g

x,aj i x,ah jU � Hx aj i ah jQHx , ð2Þ

whereH is the Hadamard gate andH0 = id,H1 =H. Bob’s measurements
output a basis choice y∈ {0, 1} and the outcome b of a single-qubit
measurement in that basis (with y = 0 corresponding to the computa-
tional and y = 1 to the Hadamard basis). Therefore, his measurements
are described by a POVM on system Q consisting of elements

Nðy,bÞ = 1
2H

y b
�� � b
� ��Hy: ð3Þ

BOX 1

General prepare-and-measure QKD protocol

Protocol arguments:
n 2 N : number of rounds.
ψUQ : quantum state prepared by Alice, where U is classical with alphabet U and Q is quantum.
fNðvÞgv2V : POVM acting on Hilbert space HQ describing Bob’s trusted measurements (where V is some finite set of possible outcomes).
PD : U ×V ! I : function describing transcript of public discussion (where I is some finite alphabet).
RK : U ×I ! S : function describing Alice’s raw key generation (where S is the alphabet of the raw key).
EV : V × I ×S ! C : function “evaluating” each round by assigning a label from the alphabet C
λEC 2 N0 : length of bit string exchanged during error correction step.
kCA >0 : required amount of single-round entropy generation.
εKV, εPA > 0 : tolerated errors during key validation and privacy amplification steps.
CA : PðCÞ ! R : affine function corresponding to collective attack bound.
l 2 N : length of final key.

Protocol steps:
(1) Data generation: Alice prepares ψUnQn =ψ�n

UQ and sequentially sends the systemsQ1,…,Qn to Bob via a public quantum channel. For each
i∈ {1,…, n}, Bob measures fNðvÞgv2V on register Qi and records the outcome in register Vi.

(2) Public discussion: for each i∈ {1,…, n}, Alice and Bob publicly exchange information Ii = PD(Ui,Vi).
(3) Raw key generation: for each i∈ {1,…, n}, Alice computes Si = RK(Ui, Ii).
(4) Error correction: Alice and Bob publicly exchange information EC 2 f0,1gλEC , which can depend on Un,Vn, and In. Bob com-

putes Ŝ
nðEC,Vn,InÞ 2 Sn.

(5) Raw key validation: Alice chooses a function HASH : Sn ! f0,1gdlogð1=εKVÞe from a universal hash family F (Definition 5) according to the
associated probability distribution PF and publishes a description of HASH and the value HASH(Sn). Bob computes HASHðŜnÞ and aborts
the protocol if HASHðSnÞ ≠HASHðŜnÞ.

(6) Statistical check: for each i∈ {1,…,n}, Bob sets Ĉi =EVðVi,Ii,ŜiÞ. Bob then computes k=CAðfreqðĈnÞÞ. If k < kCA, he aborts the protocol.
(7) Privacy amplification: Alice andBobconvert their registersSn and Ŝ

n
toabinary representation, obtaining strings of lengthm. Alice chooses

a seed μ∈ {0, 1}m uniformly at random and publishes her choice. Alice and Bob compute l-bit strings K = EXT(Sn, μ) and K̂=EXTðŜn
,μÞ,

respectively, where EXT: {0, 1}m × {0, 1}m→ {0, 1}l is a quantum-proof strong ðl+ d2 logð1=εPAÞe,εPAÞ-extractor (Definition 6).
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During the public discussion phase, Alice and Bob publish their
basis choices xi and yi for each of the rounds. Therefore, for Ui = (xi, ai)
and Vi = (yi, bi),

Ii =PDðUi,ViÞ= ðxi,yiÞ: ð4Þ

To generate her raw key, for each round Alice checks whether the
basis choices xi and yi are the same: if so, she uses her measurement
outcome ai for the raw key, and otherwise she discards that round.
Formally,

Si =RKðUi,IiÞ=RKððxi,aiÞ,ðxi,yiÞÞ=
ai if xi = yi,

? otherwise:

�
ð5Þ

Finally, for the statistical check in Step (6), Bobcheckswhether his
guess Ŝ

n
for Alice’s string matches his own raw data. In fact, Bob can

only do this check on a small subset of indices i. The reason is that for
our definition of collective attack bounds (“Definition 2”) and the
security proof (Theorem 4), we are bounding the entropy conditioned
on the systems Cn, i.e. we are essentially assuming that all of the sta-
tistical information gets leaked to Eve. Hence, Bob chooses a valueTi at
random with Pr Ti = 1

	 

= γ (where γ is the testing probability, and the

choice of Ti can formally be included into Vi), and then sets

Ĉi =EVðVi,Ii,ŜiÞ= EVððyi,biÞ,ðxi,yiÞ,ŜiÞ ð6Þ

=

? if xi ≠ yi orTi =0,

1 if xi = yi,Ti = 1, and bi = Ŝi,

0 otherwise:

8><
>: ð7Þ

Intuitively, ⊥ denotes that no useful check can be performed in this
round, “1” means the check has passed, and “0” means the check has
failed.

Modelling Eve’s attack
In the protocol in Box 1, Eve can obtain information about the final key
K in two ways: firstly, Eve can observe the classical information pub-
lished by Alice and Bob during the protocol, e.g. the error correction
information EC. In a security proof, this is easy to handle, as Alice and
Bob have full control over what information they publish. Secondly,
Eve can intercept the quantum systems Qi sent from Alice to Bob in
Step (1). This is much harder to analyse in a security proof as Eve can
perform arbitrary operations on the systems Qi and we need to bound
the amountof information Eve cangain aboutAlice’s andBob’s rawkey
from tampering with the systemsQiwithout being detected. The set of
actions Eve performs on the systems Qi is called Eve’s attack.

In principle, Eve could collect all of the n systems Q1,…,Qn, per-
form an arbitrary quantum channel A : Qn ! EQn, and send the out-
put on systems Qn to Bob. The system E would be kept by Eve and
would contain her (potentially quantum) side information about the
final key.

To analyse the security of a prepare-and-measure protocol with
the GEAT, we need to introduce an extra condition.

Condition 1. Eve can only be in possession of one of the systems Qi at
the same time.

Since Alice sends the systems Q1,…,Qn sequentially in Step (1),
this means that with this additional condition, Eve’s most general
attack also takes a sequential form.More formally, with this condition,
themost general attack Eve can perform is described by a sequence of
mapsAi : E

0
i�1Qi ! E 0

iQi, where E 0
i are arbitrary quantum systems that

contain Eve’s side information after having intercepted the i-th system
Qi. (The system E0 can be chosen to be trivialwithout loss of generality,
but we will not need this for our security proof).

In fact, it is easy for Alice and Bob to enforce Condition 1 by
checking that system Qi has arrived on Bob’s side before Qi+1 is sent.
The downside of this simple strategy is that if Alice and Bob are far
apart, it limits the number of signals that can be sent per unit time.

To circumvent this, Alice and Bob can agree on a “schedule” on
which signals are transmitted, i.e. they decide when Alice will send out
each signal, so Bob, being aware of its travel time without Eve’s inter-
ference, knows when to expect to receive it. Then, assuming that Eve
cannot significantly speed up the transmission of signals, this would
ensure that Condition 1 is satisfied without Alice having to wait for
Bob’s confirmation to send the next signal (see Supplementary Fig. 1
for an illustration of this). Whether or not the assumption that Eve
cannot significantly speed up the transmission of signals is realistic
depends on the specific QKD setup: for example, if signals are trans-
mitted from Alice to Bob through vacuum (e.g. in satellite-to-satellite
QKD), they travel at the speedof light and cannot be spedup further by
Eve, so Condition 1 can be enforced by sending signals on a pre-agreed
schedule without issues.

On the other hand, if Alice and Bob exchange signals via a (very
long) optical fibre, Eve could in principle extract the signal at the start
of thefibre, transmit it through free space, and then re-insert it into the
fibre on Bob’s side. Since the speed of light in a fibre is slower than in
free space, this would enable Eve to have simultaneous access to a
(relatively small) set of s sped-up signals, perform some attack invol-
ving this set of signals, and then feed the “first” of these signals to Bob
in such a way that it arrives at the time expected by Bob; then, Eve
could add the next sped-up signal to her set, apply another attack to
that set of s signals, and so on. Such an attack would violate Condition
1, but itwould gounnoticedbyAlice andBob since the signalsdo arrive
at the expected times on Bob’s end.

Setting aside the question of how realistic it is for Eve to perform
such an attack, this issue can be addressed by relaxing Condition 1 so
that instead of requiring Eve to be in possession of only one signal at a
time, we allow her to be in possession of s signals at a time. To prove
security under this weakened condition, we can divide the signals into
interleaved groups such that any two signals within a group are s
rounds apart, use a standard chain rule for min-entropies (or Renyi
entropies) to divide the total entropy into a sum of group-wise
entropies, and simply apply our analysis at the level of these groups.
Our proof then goes through essentially unchanged, although the
resulting second-order terms in the key rate will depend on the
allowed number s of signals available to Eve at a time. We explain this
modification inmore detail in Supplementary Note C and focus on the
case where Condition 1 holds exactly in the main text for simplicity.

We have now seen how to model Eve’s general attack under
Condition 1. In contrast to such general sequential attacks, collective
attacks only allow Eve to perform the same independent attack in each
round of the protocol. Hence, a collective attack can be modelled by a
mapA : Q ! EQ, which Eve applies in each round of the protocol, so
Eve’s full attack over n rounds is given by the tensor product map
A�n : Qn ! EnQn. Proving security against this restricted class of
attacks is typically much easier than proving security against general
attacks. However, we stress that, unlike Condition 1, the assumption
that Eve performs only a collective attack cannot be enforced by Alice
and Bob. Therefore, a security proof that only considers collective
attacks is insufficient for practical applications.

Collective attack bounds
If one restricts Eve to performing collective attacks, it is known that in
the limit n→∞ of many rounds the key rate is given by a simple
entropic expression that only involves quantities corresponding to a
single round of the protocol37. Note that the entropic expression for
the key rate in37 already includes information leaked to Eve during the
error correction step assuming an optimal error correcting protocol.
Our Definition 2 does not include a term corresponding to this –
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instead in Box 1 we assume that the error correction information has
length at most λEC, which we can later subtract from the length of the
final key that can be generated.

More formally,we can viewa collective attackboundas amap that
takes as input the statistics corresponding to a single round of the
protocol and outputs a lower bound on a certain conditional entropy,
which specifies howmuchkey can safely be extracted froma statewith
those statistics.

Definition 2. (Collective attack bound for Box 1) Fix arguments
ψUQ,fNðvÞgv2V ,PD, RK, and EV for the protocol in Box 1. Suppose that
Alice andBob run a single round (i.e. n = 1) of the protocol in Box 1with
these arguments up to (and including) Step (3). For a collective attack
A : Q ! QE, denote the state at the end of Step (3) as νUVSIE. Let νUVSIEC
be an extension of this state, where C = EV(V, I, S). A collective attack
bound (for the choice of parameters fixed above) is amapCA : PðCÞ !
R such that for any collective attack A, the state νUVSIEC (which
depends on A) satisfies

HðSjIECÞν ≥CAðνCÞ: ð8Þ

Security against general attacks
Having introduced our framework for general prepare-and-measure
protocols and collective attack bounds, we can now state the main
technical result of this paper, namely that a collective attack bound
implies a security statement against general attacks. For this, we first
recall the security definition for QKD, namely the notions of correct-
ness, secrecy, and completeness15. This security definition is compo-
sable, meaning that the key generated by a protocol satisfying this
definition can safely be used for other protocols38.

Definition 3. (Correctness, secrecy, and completeness) Consider a
QKD protocol in which Alice and Bob can decide whether or not to
abort the protocol. Let ρKK̂E be the final state at the end of the protocol
(for a given initial state), whereK and K̂ are Alice’s and Bob’s version of
the final key, respectively, and E contains all side information available
to the adversary Eve at the end of the protocol. The protocol is called
εcor-correct, εsec-secret, and εcomp-complete if the following holds:
(i) Correctness. For any actions of the adversary Eve:

Pr K ≠ K̂ ^ not abort
h i

≤ εcor: ð9Þ

(ii) Secrecy. For any actions of the adversary Eve:

ρKE^Ω � τK � ρE^Ω
�� ��

1 ≤ ε
sec, ð10Þ

where τK is the maximally mixed state on system K,Ω is the event that
the protocol does not abort, and ρ^Ω = Pr Ω½ �ρjΩ is the subnormalised
state conditioned on Ω (see Methods Subsection “Notation” for
details). Note that here and throughout the paper, we use the differ-
ence in trace norm, not the trace distance. The latter has an additional
normalisation factor of 1

2.
(iii) Completeness. For a given noise model for the protocol there

exists an honest behaviour for the adversary Eve such that

Pr abort
	 


≤ εcomp: ð11Þ

Note that correctness and secrecy must hold for any behaviour of
Eve (and also any noise model), while completeness is concerned with
the honest implementation of the protocol. Correctness and secrecy
bound the probability of Alice and Bob receiving different or insecure
keys without detecting this fact and aborting the protocol. Com-
pleteness says that the protocol is robust against a given noise model
in the sense that for this noise model, the probability of aborting the

protocol is small if Eve behaves honestly. It is common to combine the
correctness and secrecy parameters and call a protocol
ðεcor + εsec=2Þ-secure, where the factor of 1/2 arises because our defi-
nition of secrecy uses the difference in trace norm, not the trace dis-
tance, which has an additional factor of 1/2.

Our main result is that the protocol in Box 1 satisfies the cor-
rectness and secrecy conditions. Formally, we show the following.

Theorem 4. Fix any choice of arguments
n,ψUQ,fNðvÞgv2V , PD, RK, EV, kCA, λEC, εKV, and εPA for Box 1. Let CA :

PðCÞ ! R be an affine collective attack bound for this choice of
arguments. For any εs, εa >0 and α∈ (1, 3/2), choose a final key length l
that satisfies

l ≤nkCA � n
α � 1
2� α

lnð2Þ
2

V 2 � gðεsÞ+α logð1=εaÞ
α � 1

� n
α � 1
2� α

� 2

K 0ðαÞ � d2 logð1=εPAÞe � dlogð1=εKVÞe � λEC,

ð12Þ

where g(εs), V, and K 0ðαÞ are defined in Theorem 9. With this choice of
parameters and assuming that Condition 1 holds, the protocol in Box 1
is εcor-correct and εsec-secret for

εcor = εKV, εsec = maxfεPA + 4 εs,2 εag+2 εKV: ð13Þ

We prove this theorem in “Methods” subsection “Proof of main
theorem”. In addition, we also show completeness; since this is much
more straightforward and only uses standard techniques, we defer this
to Supplementary Note B.

Sample application: B92 protocol
We now demonstrate how to apply our framework, using the B92
protocol as an example. The B92 protocol has no natural
entanglement-based analogue (i.e. an equivalent entanglement-based
protocol that does not require “artificial” constraints on the reduced
state on Alice’s side and still achieves the same key rate as the prepare-
and-measure version of B92) and therefore cannot be analysed with
the original EAT. Nonetheless, the B92 protocol is very simple, and
therefore provides arguably the easiest example to demonstrate the
application of our framework to a protocol that cannot be analysed
with the EAT. Furthermore, while there exist analytic security proofs of
B92using entropic uncertainty relations25,39, these techniques yield key
rates that are far fromoptimal even in the asymptotic regime. This is in
contrast to highly symmetric protocols such as BB84, where entropic
uncertainty relations yield essentially tight proofs28.

We emphasise that the purpose of this section is to illustrate our
general results with a simple example, not to derive the tightest pos-
sible key rates for a particular protocols.We leave the analysis of more
complicated protocols, where deriving the collective attack bound
may be more involved, for future work. In Supplementary Note G, we
also sketch how to express the decoy state BB84 protocol as an
instance of our framework and how to derive a collective bound for it,
demonstrating that the widely-used decoy state technique also natu-
rally fits within our framework.

We also note that very recent work40 has analysed the perfor-
mance of the EAT on entanglement-based QKD protocols (and
prepare-and-measure protocols that have a natural entanglement-
based analogue) and found that it provides better key rates than pre-
vious methods. Since our GEAT-based security proof produces
essentially the same key rates as the EAT in cases where both methods
can be applied, this suggests that our framework will provide very
good key rates also in cases where the EAT cannot be applied.

We start by giving an informal description of the B92 protocol and
the intuition behind it. Then, we show how to view the B92 protocol as
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an instance of our general protocol in Box 1. Using the technique from
“Results” subsection “Collective attack bounds” to derive a collective
attack bound, we can then apply Theorem 4 to obtain a security
statement for general attacks. To illustrate the result, we numerically
compute the key rate for different choices of the number of rounds
and tolerated noise level in Fig. 1.

Each round of the B92 protocol works as follows: Alice chooses a
bit u∈ {0, 1} uniformly at random. If u = 0, she prepares the state
ψ
�� �

Q = 0j i, whereas if u = 1, she prepares ψ
�� �

Q = +j i. She sends ψ
�� �

Q to
Bob, who chooses y∈ {0, 1} uniformly at random and measures the
system Q in the computational basis if y =0 and the Hadamard basis if
y = 1. If he obtains outcome “1” (when measuring in the computational
basis) or “-” (when measuring in the Hadamard basis), he sets v = y⊕ 1.
Otherwise, he sets v =⊥. In the sifting step, Bob announces in which
rounds he recorded v =⊥, and Alice sets u =⊥ for those rounds, too.
The bits u and v from all of the rounds form the raw key. To detect
possible tampering by Eve, Alice andBob compare their values ofu and
v on a subset of rounds.

The intuition behind this protocol is the following: the secret
information that will make up the key is encoded in Alice’s basis choice
u (where u =0 corresponds to the computational and u = 1 to the
Hadamard basis). When Bob receives the system Q he tries to find out
which basis the state was prepared in. For this, he guesses a basis y and
measuresQ in this basis. Supposehe chose y =0, i.e. the computational
basis, and assume that Eve did not tamper with the system Q. Then, if
he obtains outcome “1” he concludes that Alice cannot have prepared
the state 0j i and thereforemust have chosen u = 1. Accordingly, he sets
v = 1 = y⊕ 1. If Bob obtains outcome “0” he cannot deduce Alice’s basis
choice as both the states 0j i and +j i may produce outcome “0” when
measured in the computational basis, so he sets v =⊥. Likewise, if he
chose y = 1 and obtains outcome “-”, this provides conclusive evidence
that Alice cannot have prepared the state +j i, so he sets v =0 = y⊕ 1,
whereas the outcome “+” is inconclusive. If Eve tries to tamperwith the
system Q, she is likely to disturb the state as she does not know which
basis it was prepared in. Therefore, Alice and Bob will detect this
tampering when comparing their values of u and v.

We now give a more formal description of the B92 protocol as an
instance of the protocol in Box 1. As for the BB84 protocol described in
Results Subsection “Framework for prepare-and-measure protocols”,
this means specifying the arguments ψUQ,fNðvÞgv2V ,PD,RK, and EV. For
each roundAlice chooses a bitUiuniformlyat randomandprepares 0j i

or +j i based on her choice, so

ψUQ = 1
2 ð 0j i 0h jU � 0j i 0h jQ + 1j i 1h jU � +j i +h jQÞ: ð14Þ

Bobmeasures in either the computational or Hadamard basis and uses
the outcome to determine Vi∈ {0, 1,⊥} as described before. This
measurement is described by the following POVM:

Nð0Þ = 1
2 �j i �h j, Nð1Þ = 1

2 1j i 1h j, Nð?Þ = 1
2 ð 0j i 0h j+ +j i +h jÞ: ð15Þ

During the public discussion phase, Bob informs Alice which rounds
were inconclusive, i.e. yielded outcome ⊥. Therefore,

Ii =PDðUi,ViÞ=
? if Vi = ? ,

> otherwise:

�
ð16Þ

To generate her raw key Sn, Alice uses her bits Ui and discards the
rounds for which Bob’s measurement outcome was inconclusive,
which she knows from the value of Ii:

Si =RKðUi,IiÞ=
? if Ii = ? ,

Ui otherwise:

�
ð17Þ

To generate the statistics Ĉi, Bob will check whether his guess Ŝ
n
for

Alice’s raw key agrees with his own raw data Vn. As for the BB84 pro-
tocol described in Results Subsection “Framework for prepare-and-
measure protocols”, Bob can only do so on a small fraction γ of rounds
because Definition 2 includes the classical statistics as a conditioning
system. Therefore, Bob chooses a value Ti at randomwith Pr Ti = 1

	 

= γ

(the choice ofTi can formallybe included intoViorone canviewEV as a
randomised rather than deterministic function). If Ti = 0, he sets
Ĉi = ?, i.e. EVTi =0

ðVi,Ii,ŜiÞ= ?. Otherwise, he sets Ĉi =EVTi = 1
ðVi,Ii,ŜiÞ

to

fail if Ŝi =0 ^ Vi = 1or Ŝi = 1 ^ Vi =0,

inc if Vi = ? ,

+ else:

8><
>: ð18Þ

Of course, the functions EVTi =0
and EVTi = 1

can be combined into a
single function EV to formally fit into the framework of Box 1.

We need to derive an affine collective bound CAðνCÞ= λ
!�

ν!C + c
λ
! for the B92 protocol, where ν!C denotes the probability

vector of distribution νC as in Results Subsection “Collective attack
bounds”. For this, we use the steps and notation from Methods Sub-
section “Deriving collective attack bounds”; we recommend skipping
this subsection on a first reading and returning to it after under-
standing that subsection.

In the notation of Methods Subsection “Deriving collective attack
bounds”, the state ~ψPQ is given by

~ψPQ = 1ffiffi
2

p ð 0j iP � 0j iQ + 1j iP � +j iQÞ: ð19Þ

For any state ψ̂PQ chosen by Eve, the statistics observed by Alice and
Bob are described by

ν!C = Tr Γ
!

ψ̂PQ

h i
, ð20Þ

where Γ
!

= ðΓfail,Γinc,Γ+,Γ?Þ with

Γfail = γð 0j i 0h jP � Nð1Þ
Q + 1j i 1h jP � Nð0Þ

Q Þ, ð21Þ

Γinc = γ1P � Nð?Þ
Q , ð22Þ

Fig. 1 | Key rates for the B92 protocol as a function of the depolarising prob-
ability p for εcor = 5 � 10�11,εsec = 10�9, and εcomp = 10−2. The dashed line shows the
key rate in the i.i.d. asymptotic setting, i.e. assuming that Eve behaves the same in
each round and infinitelymany rounds areexecuted.We see that as the numbernof
rounds in the protocol increases, the finite-size key rates against general attacks
approach the i.i.d. asymptotic rate.
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Γ+ = γð1� Γfail � ΓincÞ, ð23Þ

Γ? = ð1� γÞ1P � 1Q, ð24Þ

and Tr Γ
!

ψ̂PQ

h i
is shorthand for the vector of the traces with the

individual elements of Γ
!

. We can now directly apply themethod from
Methods Subsection “Deriving collective attack bounds” to find a

collective attack bound CAðνC Þ= λ
!� ν!C + c

λ
!: we can heuristically

choose a λ
!

and then determine c
λ
! by solving the convex optimisa-

tion problem fromEquation (70) using the packageMatlab CVXQUAD41.

Note that one can pick λ
!

by any numerical optimisation technique

suchasMatlab’s fminsearch: since λ
!

canbe chosen heuristically, it is
not an issue if such an optimisation method does not have a con-
vergence guarantee. In contrast, to determine c

λ
! one must use an

optimisationmethod that guarantees a lower bound in order to ensure
that the collective attack bound is valid. This is why it is important that
c
λ
! be determined via a convex optimisation problem for which one

can certify the solution by duality. For our numerical implementation,
we employ additional simplifications to the optimisation problem
fromEquation (70) using the steps described in SupplementaryNote E.
This helps with numerical performance, but is not strictly necessary.

As our noise model for an honest implementation, we consider
the depolarising channel with depolarising probability p, i.e. the
channel that maps ρ↦ (1 − p)ρ + pτ, where τ is the maximally mixed
state. We determine the key rate as a function of p, i.e. we determine
the amount of key that can safely be generated from any potentially
dishonest implementation that produces the same statistics as the
honest implementation with noise level p. To this end, for every value
of p we first determine the statistics produced by an honest imple-
mentation with that noise level. We then choose a collective attack
bound and parameters for Theorem 4 that ensure that the protocol is
εcor-correct, εsec-secret, and εcomp-complete for that noise level and
εcor = 5 � 10�11, εsec = 10�9, and εcomp = 10−2. Finally, we choose the key
length to be the largest integer l that satisfies the condition in Equation
(12). We provide the choice of parameters in detail in Supplementary
Note F and plot the resulting key rate in Fig. 1 for different numbers of
rounds n. We again note that the choice of parameters here is largely
arbitrary and not optimised as the purpose of this example is only to
illustrate the use of our general framework.

Discussion
We have introduced a proof technique for analysing the security of
QKD protocols in the finite-size regime against general attacks. This
technique is best understood as a general procedure for converting a
security proof in the i.i.d. asymptotic setting into a finite-size security
proof against general attacks. To apply our technique, one can express
a protocol of interest as an instance of our template protocol in Box 1,
derive a collective attack bound (either using the general numerical
technique described in “Results” subsection “Collective attack
bounds” or by reusing an existing analysis in the i.i.d. asymptotic set-
ting), and apply our Theorem 4 to obtain finite-size key rates against
general attacks. Unlike previous techniques, our method can be
applied directly to prepare-and-measure protocols and does not
depend on the dimension of the underlying Hilbert space, allowing for
a simple analysis of photonic prepare-and-measure protocols.

While we have provided a simple illustrative example of applying
our framework to the well-known B92 protocol (Results Subsection
“Sample application: B92 protocol”), which is not amenable to

treatment with the EAT, and sketched the analysis of the BB84 decoy-
state protocol (Supplementary Note G), we leave it for future work to
analyse more practical protocols and optimise the bounds one can
obtain for those protocols. This is especially relevant given that com-
mercial QKD systems may become increasingly prevalent in the near
future. In particular, it would be interesting to see whether our fra-
mework can be used to prove the security of the differential phase-
shift42 and coherent one-way43 QKD protocols. These protocols (and
related ones using similar ideas) are relatively practical to implement,
but notoriously hard to analyse.

Methods
Notation
The set of states for a quantum systemA (with associatedHilbert space
HA) is given by SðAÞ= fρ 2 PosðAÞ j Tr ρ½ �= 1g, where Pos(A) is the set of
positive operators onHA. If A is a quantum system and X is a classical
system with alphabet X , we call ρ∈ S(XA) a cq-state and can expand it
as ρXA =

P
x2X xj i xh j � ρA,x for subnormalised ρA,x∈ Pos(A). ForΩ � X ,

we define the partial and conditional states

ρXA^Ω =
P
x2Ω

xj i xh j � ρA,x andρXAjΩ = 1
Prρ Ω½ �ρXA^Ω, ð25Þ

where Prρ Ω½ � :¼ Tr ρXA^Ω
	 


. If Ω = {x}, we also write ρXA∣x for ρXA∣Ω. The
set of quantum channels from system A to A0 is denoted as CPTPðA,A0Þ.
The trace norm (sum of the singular values) of an operator L on HA is
denoted as Lj j1.

We will deal with two different entropies, the von Neumann
entropy and the min-entropy, which are defined as follows. Let
ρAB∈ S(AB) be a quantum state. Then the conditional von Neumann
entropy of A conditioned on B is given by

HðAjBÞρ = �Tr ρAB logρAB

	 

+ Tr ρB logρB

	 

: ð26Þ

For ε∈ [0, 1], the ε-smoothed min-entropy of A conditioned on B is

Hε
minðAjBÞρ = �log inf

~ρAB

inf
σB2SðBÞ

σ
�1

2
B
~ρABσ

�1
2

B

��� ���
1
, ð27Þ

where �k k1 denotes the spectral norm and the first infimum is taken
over all states ~ρAB 2 BεðρABÞ in the ε-ball around ρAB (in terms of the
purified distance44).

Universal hashing and randomness extraction
To check that Alice’s and Bob’s keys are the same, our general QKD
protocol will make use of a universal hash family, and to extract a
secure key from Alice’s and Bob’s raw data we will use a randomness
extractor. Here, we briefly define what these primitives achieve. We
refer to ref. 15 for a more detailed exposition and explanation of their
construction.

Definition 5. (Universal hash family) Let M be a set. A family F of
functions fromM to {0, 1}l with a probability distribution PF over F is
called a universal hash family if for any x ≠ x0 2 M,Prf ½f ðxÞ= f ðx0Þ�≤ 2�l .

Definition 6. (Quantum-proof strong extractor15,45,46) A function
EXT: {0, 1}m × {0, 1}d→ {0, 1}l is a quantum-proof strong (k, εEXT)-extrac-
tor if for any ρSE∈ Pos(SE) with Tr ρ½ �≤ 1 (and S classical with dimen-
sion 2m) for which HminðSjEÞρ ≥ k, we have

EXTðρSE � τDÞ � τK � ρE � τD
�� ��

1 ≤ εEXT, ð28Þ

where τD and τK are maximally mixed states of dimension 2d and 2l,
respectively, and the map EXT acts on the classical systems S and D.
The input on system D is called the seed of the extractor.
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This definition of extractors makes use of the non-smoothedmin-
entropy HminðSjEÞρ. It is straightforward to modify this condition so
that it only requires a lower bound on the smooth min-entropy: if EXT
is a quantum-proof strong (k, εEXT)-extractor as in Definition 7 and ρSE
satisfies Hε

minðSjEÞρ ≥ k, then

EXTðρSE � τDÞ � τL � ρE � τD
�� ��

1 ≤ εEXT + 4ε: ð29Þ

To see that this is the case, note that Hε
minðSjEÞρ ≥ k means that there

exists a ρ0 within ε purified distance of ρ for which HminðSjEÞρ0 ≥ k. By
the relation between purified distance and trace distance44, we have
ρ� ρ0�� ��

1 ≤ 2ε. Then, Equation (29) follows from the triangle inequality
and because applying themap EXT cannot increase the trace distance.

For the purposes of QKD, a simple construction based on two-
universal hashing15 provides sufficiently good parameters. We also
note thatmore involved constructions exist that require shorter seeds,
but this if typically not a concern for QKD applications (see e.g.46 for a
very efficient example using Trevisan’s extractor).

Lemma 7. (ref. 15) There exist quantum-proof strong (k, εEXT)-extrac-
tors EXT: {0, 1}m × {0, 1}d→ {0, 1}l for d =m and l ≤ k � 2 logð1=εEXTÞ.

Generalised entropy accumulation
In this section, we introduce the GEAT from ref. 36. Most of this section
is takendirectly from36 andwe refer to the introductionof thatpaper for
a more detailed description of the setting and how it compares to the
EAT17. Consider a sequence of channels Mi 2 CPTPðRi�1Ei�1,CiAiRiEiÞ
for i∈ {1,…,n}, where Ci are classical systems with common alphabet C.
In the context of cryptographic protocols, one should thinkof Ei as Eve’s
side information after the i-th round, Ri as some internal system of a
device, Ai as the protocol’s output in the i-th round, and Ci as classical
statistics that determine whether the protocol aborts (e.g. by checking
the number of rounds on which Ai does not satisfy a certain property).
For all results in this paper, Ri can be chosen to be trivial. However, for
(semi-)device-independent applications, the systems Ri are important
because they can be used to describe the internal memory of the
untrusted devices. As this is an interesting direction for future work, we
state the theorem in full generality here.

We require that these channelsMi satisfy the following condition:
defining M0

i =TrCi
�Mi (where TrCi

is the partial trace over system Ci

and ∘ is the composition of channels), there exists a channel T 2
CPTPðAnEn,C

nAnEnÞ such that Mn � � � � �M1 = T �M0
n � � � � �M0

1 and
T has the form

T ðωAnEn
Þ=

X
y2Y,z2Z

ΠðyÞ
An � ΠðzÞ

En

� �
ωAnEn

ΠðyÞ
An � ΠðzÞ

En

� �
� rðy,zÞ
�� �

rðy,zÞ� ��
Cn , ð30Þ

where fΠðyÞ
An g and fΠðzÞ

En
g are families of mutually orthogonal projectors

on Ai and Ei, and r : Y ×Z ! C is a deterministic function. Intuitively,
this condition says that the classical statistics can be reconstructed “in
a projective way” from systems An and En at the end of the protocol. In
particular, this requirement is always satisfied if the statistics are
computed from classical information contained in An and En, which is
the case for the applications in this paper. We note that the statistics
are still generated in a round-by-roundmanner; Eq. (30)merely asserts
that they could be reconstructed from the final state.

LetPbe the set of probability distributions on the alphabet C ofCi,
and let ~Ei�1 be a system isomorphic to Ri−1Ei−1. For any q 2 P we define
the set of states

ΣiðqÞ=
�
νCiAiRiEi

~Ei�1
=MiðωRi�1Ei�1

~Ei�1
Þjω 2 SðRi�1Ei�1

~Ei�1Þ and νCi
=q
�
,

ð31Þ

where νCi
denotes the probability distribution over C with the prob-

abilities given byPr c½ �= ch jνCi
cj i. In otherwords,Σi(q) is the set of states

that can be produced at the output of the channel Mi and whose
reduced state on Ci is equal to the probability distribution q.

Definition 8. A function f : P ! R is called amin-tradeoff function for
fMig if it satisfies

f ðqÞ≤ min
ν2ΣiðqÞ

HðAijEi
~Ei�1Þν 8i= 1, . . . ,n : ð32Þ

Note that if ΣiðqÞ= ;, then f(q) can be chosen arbitrarily.
Our result will depend on some simple properties of the tradeoff

function, namely the maximum and minimum of f, the minimum of f
over valid distributions, and the maximum variance of f:

Maxðf Þ : = max
q2P

f ðqÞ, ð33Þ

Minðf Þ : = min
q2P

f ðqÞ, ð34Þ

MinΣðf Þ : = min
q:ΣðqÞ≠;

f ðqÞ, ð35Þ

Varðf Þ : = max
q:ΣðqÞ≠;

X
x2C

qðxÞf ðδxÞ2 �
X
x2C

qðxÞf ðδxÞ
 !2

, ð36Þ

where Σ(q) =⋃iΣi(q) and δx is the distribution with all the weight on
element x. We write freq(Cn) for the distribution on C defined by
freqðCnÞðcÞ= jfi2f1,...,ng:Ci = cgj

n . We also recall that in this context, an event
Ω is defined by a subset of Cn, and for a state ρCnAnEnRn

we write
Prρ Ω½ �=Pcn2Ω Tr

	
ρAn

1 EnRn ,cn


for the probability of the event Ω and

ρCnAnEnRn jΩ = 1
Prρ Ω½ �

P
cn2Ω

cnj i cnh jCn � ρAnEnRn ,cn ð37Þ

for the state conditioned on Ω. With this, we can finally state the
GEAT of36.

Theorem 9. (GEAT36) Consider a sequence of channels Mi 2
CPTPðRi�1Ei�1,CiAiRiEiÞ for i∈ {1,…, n}, where Ci are classical systems
with common alphabet C and the sequence fMig satisfies Equation
(30) and the following no-signalling condition: for each Mi, there
exists a channelRi 2 CPTPðEi�1,EiÞ such that TrAiRiCi

�Mi =Ri � TrRi�1
.

Let ε 2 ð0,1Þ,α 2 ð1,3=2Þ,Ω � Cn,ρR0E0
2 SðR0E0Þ, and f be an affinemin-

tradeoff function with h= min
cn2Ω

f ðfreqðcnÞÞ. Then,

Hε
minðAnjEnÞMn�����M1ðρR0E0

ÞjΩ
≥nh� n

α � 1
2� α

lnð2Þ
2

V 2

� gðεÞ+α logð1=Prρn Ω½ �Þ
α � 1

� n
α � 1
2� α

� 2

K 0ðαÞ ,

ð38Þ

where Pr Ω½ � is the probability of observing event Ω, and

gðεÞ= � logð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2

p
Þ≤ logð2=ε2Þ, ð39Þ

V = logð2d2
A + 1Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2+Varðf Þ

p
, ð40Þ

K 0ðαÞ= ð2� αÞ3
6ð3� 2αÞ3 ln 2

2
α�1
2�αð2 logdA +Maxðf Þ�MinΣðf ÞÞ

ln3 22 logdA +Maxðf Þ�MinΣðf Þ + e2
� �

,

ð41Þ

with dA =maxi dimðAiÞ.
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Webriefly comment on themaindifferences between the GEAT as
stated above and the EAT from17. The GEAT deals with a sequence of
channels Mi 2 CPTPðRi�1Ei�1,CiAiRiEiÞ that can update both the
internal memory register Ri and the side information register Ei (sub-
ject to the no-signalling condition), i.e. change these states to e.g.
incorporate additional side information obtained in the protocol or
account for measurements performed in response to the user’s input.
In contrast, the EAT does not allow the side information register to be
updated. More formally, the EAT deals with channels
M0

i 2 CPTPðRi�1,CiAiRiIiÞ, where Ii is side informationproduced in each
round that cannot be updated in the future. The final side information
at the end of such a process is EIn, where E can be any additional side
information from the initial state of the process that was never upda-
ted during the process. If the side information registers Ii satisfy the
Markov condition Ai−1↔ Ii−1E↔ Ii (see ref. 17 for a more detailed expla-
nation), then the EATgives a lower boundonHε

minðAnjInEÞM0
n�����M0

1ðρR0
ÞjΩ

similar to the one in Theorem 9.
We can now see at a high level why the EAT cannot be used to deal

with prepare-and-measure protocols directly: in a prepare-and-
measure protocol, the adversary Eve intercepts the quantum state
sent fromAlice to Bob in each round and updates her side information
based on that. Therefore, any technique used to deal with such pro-
tocols must allow for the side information to be updated like in the
GEAT; the more restrictive scenario considered in the EAT does not
capture this kind of protocol.

We also note that the GEAT is strictly more general than the EAT
(see [ref. 36, Section 1] for a proof). Hence, any application that can be
treated with the EAT can also be treated with the GEAT (up to some
very minor loss in second-order parameters), and the resulting proofs
are often much more straightforward; see [ref. 36, Section 5.2] for an
example.

Proof of main theorem
In this section, we prove our main result, Theorem 4, i.e. we show that
the protocol in Box 1 is correct and secret.

Proof of Theorem4. For the correctness statement, we need to show
that Pr½K ≠ K̂ ^ not abort�≤ εKV. To see that this is the case, we note
that due to the check in Step (5), the protocol not aborting implies
that HASHðSnÞ=HASHðŜnÞ. Furthermore, from Step (7) we see that
K ≠ K̂ implies that Sn≠ Ŝ

n
. Therefore, it suffices to show that

Pr Sn ≠ Ŝ
n ^ HASHðSnÞ=HASHðŜnÞ

h i
≤ εKV: ð42Þ

Since Alice chooses the function HASH at random from a universal
hash family, this follows directly from Definition 5 and completes the
correctness proof.

The remainder of the proof will be concerned with the secrecy
condition. As explained in “Results” subsection “Modelling Eve’s
attack”, assuming Condition 1 we can model a general attack by a
sequence of channels

Ai : E
0
i�1Qi ! E 0

iQi: ð43Þ

Alice, Bob, and Eve’s joint final state at the end of the protocol there-
fore contains systems

UnVnInSnŜ
n
Ĉ
n
KK̂E 0

nE
0: ð44Þ

Here, E 0
n is Eve’s system after using the maps A1, . . . ,An,E

0 stores the
additional classical information published after Step (4), i.e., the error
correction information EC, a description of the hash function HASH,
the hash value HASH(Sn), and the seed μ, and the other systems are
labelled as in Box 1. Thismeans that Eve’s full side information is given

by InE 0
nE

0. Throughout the proof, we will denote the final state at the
end of the protocol by ρ

UnVnInSnŜ
n
CnKK̂E 0

nE
0 .

By Definition 3, we need to show that

ρKInE 0
nE

0^Ω � τK � ρInE 0
nE

0^Ω
��� ���

1
≤ maxfεPA + 4 εs,2 εag+2 εKV, ð45Þ

where Ω is the event that the protocol does not abort and τK is the
maximally mixed state on system K of dimension ∣K∣ = 2l. Since the
protocol’s final state arises by application of a strong extractor in Step
(7), we can reduce Eq. (45) to an entropic statement. This step requires
careful technical treatment because the statistical check in Step (6)
uses the systems Ĉ

n
, which are computed from Ŝ

n
. However, Ŝ

n
is Bob’s

guess for Alice’s string Sn and depends on the global error correction
information EC, i.e., it cannot be generated in a round-by-round
manner as required for the GEAT. The intuition for circumventing this
issue is as follows: if Ŝ

n
≠ Sn, then the protocol is likely to abort anyway

becauseof Step (5); on the other hand, if Ŝ
n
= Sn, thenwe can replace Ŝ

n

by Sn, and the latter is generated in a round-by-round manner.
Following this intuition, we can show that the entropy bound in Claim
10 implies Theorem 4. We give a formal proof of this step in
Supplementary Note A and continue here with proving the required
entropy bound.We also note that for protocols that include a separate
parameter estimation step rather thanusing Bob’s guess forAlice’s raw
key, Claim 10 implies Theorem 4 almost immediately. □

Claim 10. LetΩC be the event that CA(freq(Cn)) ≥ kCA (i.e. the statistical
check (Step (6)) passes using the values Cn). Continuing with the
notation from before, for any α∈ (1, 3/2):

Hεs
minðSnjInCnE 0

nÞρjΩC
≥nkCA � n

α � 1
2� α

lnð2Þ
2

V 2 � gðεsÞ +α logð1=Pr ΩC

	 
Þ
α � 1

� n
α � 1
2� α

� 2

K 0ðαÞ,

ð46Þ

with g(εs), V, and K 0ðαÞ as in Theorem 9.

Proof.. To make use of the GEAT, we need to write ρSnInCnE 0
n jΩC

as the
result of a sequential application of a quantum channel. For this we fix
an attack A1, . . . ,An and define

Mi : E
0
i�1 ! SiIiCiE

0
i ð47Þ

as the following channel: given a quantum system ωE 0
i�1
,

(i) create the state ψUiQi
(defined in Step (1) of Box 1),

(ii) apply the attack map Ai : QiE
0
i�1 ! QiE

0
i to ψUiQi

� ωE 0
i�1
,

(iii) measure fNðvÞgv2V on systemQi and store the result in register Vi,
(iv) set Ii = PD(Ui,Vi),
(v) set Si = RK(Ui, Ii),
(vi) set Ci = EV(Vi, Ii, Si),
(vii) trace out registersUi andVi.Comparing the steps of the protocol

and Supplementary Eq. (1) with this definition ofMi, we see that
the marginal of ρ on systems SnInCnE 0

n is the same as the output
of the maps Mi:

ρSnInCnE 0
n
=Mn � � � � �M1ðωE 0

0
Þ, ð48Þ

where ωE 0
0
is the initial state of Eve’s side information (which can be

chosen to be trivial without loss of generality as explained in Results
Subsection “Modelling Eve’s attack”). If we define the systems
Ei = I

iCiE 0
i, then by suitable tensoring with the identity map and copy-

ing the register Ci we can view Mi as a map

~Mi : Ei�1 ! SiEiCi: ð49Þ
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With this we can also express the final state (which technically now
includes two copies of Cn, one explicit and one part of En) as

ρSnEnC
n = ~Mn � � � � � ~M1ðωE0

Þ: ð50Þ

With this notation, the entropy on the l.h.s. of Equation (46) can be
written as

Hεs
minðSnjInCnE 0

nÞρjΩC
=Hεs

minðSnjEnÞ ~Mn����� ~M1ðωE0
ÞjΩC

: ð51Þ

We want to apply Theorem 9 to derive the desired lower bound in Eq.
(46). For this, wefirst need to check that the required conditions on the
maps ~Mi are satisfied. The condition in Eq. (30) is clearly satisfied as
the systems Ci are themselves included in the conditioning system E 0

n.
The non-signalling condition in Theorem 9 is also trivially satisfied in
this case since there is no system Ri.

We now need to argue that the collective attack bound CA :

PðCÞ ! R used as an argument in Box 1 is a min-tradeoff function for
the maps f ~Mig. By Definition 8, we need to show that for any i, attack
Ai : QiE

0
i�1 ! QiE

0
i (in the definition of ~Mi, see Step (ii)), and state

ωi�1
Ei�1

~Ei�1
(where ~Ei�1 � Ei�1), the following holds:

CAð ~Miðωi�1ÞCi
Þ ≤ HðSijEi

~Ei�1Þ ~Miðωi�1Þ: ð52Þ

For the rest of the proof, we fix an arbitrary choice of i,ωi−1, and Ai.
To relate Eq. (52) to the definition of collective attack bounds
(“Definition 2”), we construct a collective attack A0 : Qi ! QiEi

~Ei�1

such that

~Miðωi�1ÞSiCiEi
~Ei�1

= νSiCiEi
~Ei
, ð53Þ

where ν is defined as in Definition 2, i.e. ν is the state produced by
running a single round of the protocol in Box 1 with the attack A0. Of
course, A0 will depend on i,ωi−1, and Ai. This is not a problem since
Definition 2 holds for any collective attack, i.e., to show that Eq. (52)
holds for any i,ωi−1, and Ai, we can first fix an arbitrary choice, con-
struct a “custom” collective attack that shows Eq. (52) for that choice,
and then apply the condition in Definition 2 to that choice.

It is easy to check that Eq. (53) is satisfied for the following choice
of A0: given a state σQ,A0

first creates the (fixed) state ωi�1
Ei�1

~Ei�1

and then applies the (fixed) attack Ai to σQ � ωi�1
Ei�1

~Ei�1
(with Qi =Q).

Then, since CA is a collective attack bound, Eq. (52) follows from
Definition 2:

CAð ~Miðωi�1ÞCi
Þ=CAðνCi

Þ≤HðSijEi
~Ei�1CiÞν =HðSijEi

~Ei�1Þ ~Miðωi�1Þ: ð54Þ

Compared to Definition 2, we have dropped the explicit conditioning
on I≔ Ii since Ii is already part of Ei, and in the last equality we can drop
Ci since it is also part of Ei.

This means that the function CA is a min-tradeoff function for the
protocol in Box 1. By definition, for any cn∈ΩC, CA(freq(cn)) ≥ kCA
Hence, Claim 10 follows by applying Theorem 9. □

Having proved correctness and secrecy, we turn our attention to
the completeness of the protocol in Box 1, i.e. we need to bound the
probability that the protocol aborts when Eve does not interfere in the
protocol, but the channel between Alice and Bob may be noisy. In the
protocol, Alice sends a quantum system Q to Bob. If the channel
connecting Alice and Bob is noisy, instead of Alice’s and Bob’s joint
state in each round being ψUQ, the joint state is N ðψUQÞ for some
channel N : Q ! Q. This channel N describes the noise model for
Box 1.Note that the channelN is not something thatneeds tobe added
explicitly to thedescriptionof Box 1: formally,N canbeviewed asEve’s
attack, i.e. we can model the implementation of the protocol in Box 1
with a noisy channel and honest Eve by saying that Eve’s attack is

described byN . This alsomeans that whenwe proved correctness and
secrecy, we only needed to prove this for any behaviour of Eve, not any
noise model, since the noise model can be included in Eve’s actions.

For a given noise model N , we need to choose the length of the
error correction string λEC to be sufficiently long such that Bob’s guess
Ŝ
n
for Alice’s raw key Sn is correct with high probability, and as a

consequence the check in Step (5) passes. Furthermore, we need to
choose the threshold kCA to be sufficiently low that an honest noisy
state passes Step (6) with high probability. The precise choice of
parameters can be worked out using the properties of the error cor-
recting code in Step (4) and statistical tail bounds for Step (6). We
provide the details in Supplementary Note B.

Deriving collective attack bounds
Our main result, Theorem 4, turns an affine collective attack bound
(defined in “Definition 2”) into a security statement against general
attacks. Therefore, the main step one has to perform to use our fra-
mework is finding such an affine collective attack bound for a protocol
of interest. In this section, we give a numerical method for finding
collective attack bounds for the protocol in Box 1 based on ideas from
refs. 7,47. Combined with Theorem 4, this means that the problem of
finding key rate bounds against general attacks for any instance of the
protocol in Box 1 is reduced to a numerical computation.

We begin by noting that we can rewrite the condition Eq. (8) from
“Definition 2” as follows: for any probability distribution ν*C 2 PðCÞ we
require that

inf
νs:t: νC = ν*C

HðSjIECÞν ≥CAðν*C Þ, ð55Þ

where the infimum is over all states ν that can result from a collective
attack and have statistics ν*C (and the infinimum is infinite if there is no
such state). In the language of the GEAT, a collective attack bound
essentially is a min-tradeoff function for a certain sequence of maps
associated with Box 1. More details on how a collective attack bound
serves as amin-tradeoff function can be found in the proof of Claim 10

Since we are interested in an affine lower bound, we write the
probability distribution νC as a probability vector ν!C and,
following12,48, make the ansatz

CAð ν!C Þ= λ
!� ν!C + c

λ
! ð56Þ

for some vector λ
!

of the same dimension as ν
!

C and a constant c
λ
!.

We treat λ
!

as a parameter that will be chosen heuristically. For

example, one can choose λ
!

by numerically estimating the gradient of
the function ν0C 7! inf

νs:t: νC = ν0C
HðSjIECÞν around a particular choice of

classical statistics ν*C that has been observed in an experimental rea-
lisation of the protocol, although this choice is not necessarily optimal

and λ
!

should be numerically optimised if onewants to obtain the best
possible key rates.

Having chosen λ
!

heuristically, we need to compute a value of c
λ
!

that ensures that λ
!� ν

!
C + c

λ
! is a valid min-tradeoff function.

Inserting our ansatz into Equation (8), we see that for any fixed λ
!

, a
valid choice of c

λ
! is one that satisfies

c
λ
! ≤ inf

ν
HðSjIECÞν � λ

!� ν!C : ð57Þ

The infimumhere is taken over the states ν described in “Definition 2”.
To avoid confusion, we emphasise that the infimum here is taken over
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all such states ν, not just ones with a specific classical distribution ν*C as
considered in Eq. (55). As explained in ref. 12, one can view the opti-
misation in Eq. (57) as arising from the Lagrange dual of Eq. (55), butwe
will not make use of this relation here explicitly.

To tackle this optimisation problem, we consider an
entanglement-based version of the protocol in Box 1 using the source-
replacement scheme explained in ref. 6. As explained in the intro-
duction, switching to an entanglement-based version of a prepare-and-
measure protocol generally requires introducing “artificial” con-
straints on Eve’s actions. These artificial constraints are troublesome
when applying the EAT to the entanglement-based version, but here
we take a different approach: we only use the entanglement-based
version to derive a collective attack bound (for which the artificial
constraints do not present a problem). This collective attack bound
also applies to the original prepare-and-measure protocol and in
Theorem 4 we apply the EAT with this collective attack bound to the
prepare-and-measure protocol directly. We emphasise that the
method for deriving a collective attack bound and our Theorem 4 are
entirely independent: Theorem 4 does not depend on how the col-
lective attack bound was derived and does not make use of an
entanglement-based protocol itself.

In Box 1 Alice prepares the state

ψUQ =
P
u
pðuÞ uj i uh j � ψ

�� � ψ
� ��

Qju ð58Þ

and sends system Q to Bob. It is clear that Alice could equivalently
prepare the state

~ψ
�� �

UQ =
P
u

ffiffiffiffiffiffiffiffiffi
pðuÞ

p
uj iP � ψ

�� �
Qju, ð59Þ

send system Q to Bob, and only afterwards measure her own system P
in the computational basis, storing the outcome in system U. Eve
would now apply her collective attackA : Q ! QE to systemQ of ~ψ, so
the state after Eve’s attackwould be ~ψPQE .We can replace this attack by
giving Eve the ability to prepare a state ψ̂PQE directly and distribute P
and Q to Alice and Bob, respectively. This kind of attack clearly gives
Eve more power. In fact, it gives Eve too much power: in order to still
obtain a good key rate, we need to enforce the additional constraint
that Alice’s marginal of the state ψ̂ is the same as her marginal of the
state ~ψ she would have prepared herself, i.e. ψ̂P = ~ψP . It is easy to see
that evenwith this additional constraint, this latter kind of attack is still
at least as general as any collective attack on the prepare-and-measure
protocol described before. Note that the condition ψ̂A = ~ψA is not a
physical constraint that Alice checks in an actual protocol, but rather
the aforementioned additional artificial constraint. Nonetheless, we
can impose this artificial constraint on the optimisation problem used
to calculate the collective attack bound.

For a fixed instance of Box 1, we can now view the state ν in
“Definition 2” as a function of ψ̂PQE :

νESICðψ̂Þ=
X
u,v

TrPQ uj i uh jP � NðvÞ
Q ψ̂PQE

h i
� RKðu,iÞ
�� �hjS � PDðu,vÞ

�� �hjI � EVðv,iÞ
�� �hjC :

ð60Þ

Here, RKðu,PDðu,vÞÞ
�� �h j is shorthand for the projector

RKðu,PDðu,vÞÞ
�� �

RKðu,PDðu,vÞÞ� �� and i is shorthand for PD(u, v). We can
therefore write the optimisation problem from Equation (57) as

inf
^ψPQE

HðSjIECÞν � λ
!� ν

!
C ð61Þ

s:t: ψ̂PQE ≥0, Tr ψ̂PQE

h i
= 1, ψ̂P = ~ψP , ð62Þ

where ν = νðψ̂Þ, and without loss of generality we can restrict the
optimisation to pure states on PQE with E ≡ PQ.

A lot of work in QKD has been focused on numerical methods for
this kind of optimisation problem (see e.g. refs. 6,7,13,49,50). The key
difficulty is that we need a lower bound on the infimum of a concave
functionHðSjIECÞ

νðψ̂Þ. Herewe use amethod from refs. 7,47 to turn this
optimisation problem into a convex one. As a first step, we observe
that in the definition of ν we can incorporate the classical functions
RK, PD, and EV into Alice’s and Bob’s measurements by defining

Mðs,i,cÞ
PQ =

P
u,v:

RKðu,iÞ= s,
PDðu,vÞ= i,
EVðv,i,sÞ= c

8><
>:

uj i uh jP � NðvÞ
Q :

ð63Þ

Then, we can write νESIC as

ν =
P
s,i,c

TrPQ Mðs,i,cÞ
PQ ψ̂PQE

h i
� sj i sh jS � ij i ih jI � cj i ch jC : ð64Þ

Remembering that we can assume thatψPQE is pure, we now define the
pure state

ν1
�� �

=
X
s,i,c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðs,i,cÞ

PQ

q
ψ̂
��� E

PQE
sj iS ij iI ij iI 0 cj iC cj iC0 : ð65Þ

We observe that

νEIC = ν
1
EIC : ð66Þ

Following the proof of [ref. 47, Theorem 1], a direct calculation shows
that

HðSjIECÞν =D ν1PQSIC PSðν1PQSICÞ
������� �

ð67Þ

wherePS is the pinchingmapPSðν1Þ=
P

s2S sj i sh jSν1 sj i sh jS. We can view
ν1PQSIC as a linear function of ψ̂PQ:

ν1PQSICðψ̂PQÞ=
X
s,s0 ,i,c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðs,i,cÞ

PQ

q
ψ̂PQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðs0 ,i,cÞ

PQ

q
� sj i s0

� ��
S � ij i ih jI � cj i ch jC ,

ð68Þ

Furthermore, the relative entropy is jointly convex. Therefore, for a

given λ
!

, a valid choice for c
λ
! can be found by solving the following

convex optimisation problem:

c
λ
! = inf

^ψPQ

D ν1PQSIC
��PSðν1PQSIC Þ

� �
� λ

!� ν!C ð69Þ

s:t: ψ̂PQ ≥0, Tr ^ψPQ

h i
= 1, ψ̂P = ~ψP , ð70Þ

where ν1PQSIC and νC are linear functions of ψ̂PQ. To solve this optimi-
sation problem, we can use standard techniques from convex opti-
misation. In particular, in refs. 41,51,52 techniques have been
developed to bound the relative entropy from below by a sequence of
semidefinite programs (SDPs). These SDPs can then be solved using
standard SDP solvers, and the solution to the dual SDP provides a
certified lower bound. Alternatively, one can also turn any feasible
choice of ψ̂PQ (ideally close to the optimal attack) into a certified lower
bound using the techniques from refs. 6,7.

We note that many protocols have additional structure that allow
the optimisation problem in Eq. (70) to be simplified before tackling it
numerically. Additionally, if the map EV from Box 1 has a particular
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structure that distinguishes between “test rounds”, in which Alice and
Bob use theirmeasurement outcomes to checkwhether Eve tampered
with the protocol, and “data rounds”, in which Alice and Bob generate
the raw data for their key, the derivation of a collective attack bound
canbe further simplified.We refer to [ref. 53, SectionV.A] for a detailed
explanation of this method and to Results Subsection “Sample appli-
cation: B92 protocol” for an example of its use in our context.

Data availability
No experimental data was collected as part of this work.

Code availability
Code for reproducing Fig. 1 is available from the authors upon request.
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