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At-home wearables and machine learning
sensitively capture disease progression in
amyotrophic lateral sclerosis

Anoopum S. Gupta 1 , Siddharth Patel 1, Alan Premasiri 2 &
Fernando Vieira 2

Amyotrophic lateral sclerosis causes degeneration ofmotor neurons, resulting
in progressivemuscle weakness and impairment in motor function. Promising
drug development efforts have accelerated in amyotrophic lateral sclerosis,
but are constrained by a lack of objective, sensitive, and accessible outcome
measures. Herewe investigate the use of wearable sensors, worn on four limbs
at home during natural behavior, to quantify motor function and disease
progression in 376 individuals with amyotrophic lateral sclerosis. We use an
analysis approach that automatically detects and characterizes submovements
from passively collected accelerometer data and produces a machine-learned
severity score for each limb that is independent of clinical ratings. We show
that this approach produces scores that progress faster than the gold standard
Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (−0.86 ±
0.70 SD/year versus −0.73 ± 0.74 SD/year), resulting in smaller clinical trial
sample size estimates (N = 76 versus N = 121). This method offers an ecologi-
cally valid and scalable measure for potential use in amyotrophic lateral
sclerosis trials and clinical care.

Novel therapeutic modalities are now aimed at proximal disease
mechanisms in amyotrophic lateral sclerosis (ALS) and other neuro-
degenerative diseases1,2. One major barrier to the successful and
efficient development of disease-modifying therapies for neurode-
generative disorders is a lack of objective clinical outcome measures
that account for disease heterogeneity and can sensitively quantify
disease progression over the duration of a clinical trial3–5. The stan-
dard tool for assessing disease severity in ALS clinical trials and clin-
ical care is a semi-quantitative rating scale (ALS Functional Rating
Scale-Revised6,7 or ALSFRS-R) that uses multiple choice questions to
evaluate several behavioral functions (e.g., walking, handwriting,
speech, swallowing). The assessment is most often completed by
clinicians specializing in ALS7,8, however recent studies have shown
high correlation between clinician-performed ALSFRS-R and at-home,
patient-performed ALSFRS-R9. Clinician or patient-performed
ALSFRS-R is a useful assessment of global motor function; however,

it is subjective, categorical, and is only performed intermittently over
time, which limits its sensitivity for measuring disease change and
contributes to the need for relatively large and expensive trials10,11.
This is a particular challenge in rare diseases and results in pressure to
include relatively homogenous cohorts with faster rates of disease
progression, which restricts participation of some individuals and
may not be representative of the entire ALS population12.

There is a great opportunity to reduce the size and cost of ALS
trials, increase the population of individuals who can participate, and
accelerate the evaluation of promising therapeutics through the devel-
opment of new categories of sensitive quantitative motor outcome
measures13–15. Quantitativemotor outcomemeasuresmay be task-based
(i.e., measuring behavior during the performance of a specific task) or
task-free, where an individual’s natural behavior is measured passively
and continuously at home. There has been recent development of sev-
eral task-based approaches to quantify speech and limb function in ALS
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using scalable technologies at home9,16–18 and only a single report of a
task-free approach in ALS using a waist-worn accelerometer19. Task-
based measures, however, have some of the same limitations as rating
scales in that they arebasedona relatively small numberofdata samples
and cannot easily account for diurnal and day-to-day variability, they
rely on the participant’s ability and motivation to perform the task, and
they are susceptible to learning and placebo effects.

Task-free assessment approacheswhichpassively andcontinuously
measure natural behavior at homehave the potential to overcome these
limitations and be transformative by making reliable and sensitive
measures available at scale. Furthermore, they have the potential to
produce measures that more closely reflect the day-to-day function of
the individual by measuring the individual’s own selection of behaviors.
However, the information obtained by the tool must be interpretable
and meaningful to support its use in clinical trials or clinical care.

Here we demonstrate that a submovement-focused analysis of
triaxial accelerometer data20,21, recorded from wrist and ankle sensors
worn by hundreds of individuals with ALS at home during natural
behavior, produces interpretable and robust measures of motor
function and disease progression. We develop a machine learning
approach to train a model that is sensitive to disease change by uti-
lizing the information for how individuals’ sensor-based movement
patterns change over time, rather than being constrained by existing
clinical assessments such as ALSFRS-R. We show that the model’s
severity estimates and longitudinal trajectories are reliable and con-
sistent with ALSFRS-R, but aremore sensitive than the clinical scale for
measuring change over time. Thus, we demonstrate that objective,
sensitive, and scalablemeasures ofmotor function and disease change
can be obtained from passive analysis of everyday behavior using
inexpensive wearable sensors.

Results
Overview of the dataset
We analyzed accelerometer data from wrist and ankle-worn sensors
collected as part of the Precision Medicine Program launched by the
ALS Therapy Development Institute (ALS TDI) in 2014 (see Methods).
Individuals were asked to wear a sensor on each wrist and ankle con-
tinuously for a week each month. Participants also performed a
sequence of 5 limb-based exercises on alternating days, lasting a total
of approximately 5min. Participants were instructed that sensorsmust
be worn during the brief exercises, but to also wear the sensors as
much as possible throughout the week without further specifying
periods of wear time. An analysis of accelerometer data collected only
during the task-based assessments was previously reported17. Here, we
analyze the entirety of accelerometer data collected at home as indi-
viduals performed their typical daily routine without any constraints.
Participant clinical and demographic data are shown in Fig. 1A,
including themedianALSFRS-R at the study start and study end. 95%of
participants lived in the United States (41 states represented), 3% lived
in Canada, and 1% lived in the United Kingdom. 93.5% of participants
were White, 2% Hispanic, 2% Asian, 1% Black, <1% Middle Eastern, and
<1% Polish. 15% of ALS participants had a family history of ALS. The
dataset filtering steps are described in Fig. 1B. Cross-sectional analysis
included 4637 sessions from 402 unique participants (376 ALS, 26
controls) with at least 24 h of recorded accelerometer data, pooled
only fromdayswith at least 3 h of data, fromall four limbs (Fig. 1B). The
24 h session minimum for daytime data was chosen based on prior
work demonstrating high reliability of daytime data across the first
three and last three days in a week20,21. Longitudinal analysis was con-
ducted using data from participants with at least three data collection
sessions spanning a minimum of 0.75 years (188 ALS and 6 control
participants). Participants had a median of 9 days per session with at
least 3 h/day of data and averaged 8.9 h/day of wear time for the wrist
sensors and 7.4 h/day for the ankle sensors. The duration of daily
sensor wear time (averaged across the four sensors) decreased over

the course of the study from an average of 9.1 h/day (first session) to
6.5 h/day (last session). To understand the burden of wearing the four
sensors periodically over a 0.75-year period (relative to at-home self-
report of ALSFRS-R), we identified the subset of the 402 individuals
with adequate cross-sectional data who did not wear the sensors for at
least 0.75 years but continued to perform ALSFRS-R self-report for
90days ormore after the last time theywore sensors. This consisted of
39 participants or ~10% of the cohort who continued performing
ALSFRS-R but stopped wearing the sensors.

Submovement, activity bout, activity index, and spectral move-
ment features (85 total) were extracted from each session as previously
described20,21 (Fig. 1C, Supplementary Table 1). Briefly, continuous
triaxial accelerometer data was processed to identify activity bouts
(short periods of continuous movement), which were projected onto a
2Dplaneusingprincipal component analysis to identify theprimary and
secondary directions of motion20,21. The acceleration time series was
converted to a velocity time series via integration. Submovements (i.e.,
typically bell-shaped velocity-time curves flanked by zero velocity
crossings, see Fig. 1C)were then identified in theprimary and secondary
directions of motion and grouped into long and short-duration sub-
movements. Single feature analysiswas performedona subset of 24 key
submovement (SM) features of interest. These included SM distance,
peak velocity, and peak acceleration (8 features each). Mean and stan-
dard deviation were computed for short-duration and long-duration
SMs in the primary and secondary directions of planar movement
resulting in 8 features for each measurement type.

Overview of the pairwise comparisons severity estima-
tion model
The task was to train a machine learning model that could combine
information across the 85 movement features, previously shown to
strongly reflect motor function in pediatric and adult ataxias20,21, to
produce an ALS-specific composite measure that was sensitive to dis-
ease progression. The standard machine learning approach is to train a
regression model to predict the clinical scale score (e.g., ALSFRS-R).
However, the sensitivity of the model is then constrained by the sensi-
tivity of the scale. In the “pairwisemodel” approach, themodel is trained
to learn the steepest direction of disease change in feature space based
on longitudinal data, without using clinician or patient-reported infor-
mation. This approach, described in Fig. 2, can be applied to any disease
that progresses over time. The model produces a score in which lower
values represent increased impairment (as in ALSFRS-R) and there is no
lower or upper bound on the value of the score, although scores in the
current population ranged from −11.3 to 9.6. In addition to the pairwise
model, linear regressionmodels with L1-regularization22 were trained to
predict ALSFRS-R total, ALSFRS-R gross motor subscore, and ALSFRS-R
finemotor subscore, andwere evaluatedusingfive-fold cross-validation.

Cross-sectional properties of ankle and wrist sensor data
Individual right ankle SM features, including SMdistance, velocity, and
acceleration were significantly correlated with ALSFRS-R total
(r =0.31–0.58), demonstrated high test–retest reliability (ICC =0.71–
0.93), and were significantly different between ALS and control parti-
cipants (Table 1). All submovement features were positively correlated
with ALSFRS-R, indicating that submovement distances, peak velo-
cities, and peak accelerations were smaller and less variable in indivi-
duals with more severe disease. Similarly, right wrist submovement
(SM) features were positively correlated with ALSFRS-R total
(r =0.31–0.48) and were significantly different between ALS and con-
trol participants (Table 2). Long-durationwrist submovements showed
high test–retest reliability (ICC =0.86–0.91), whereas short-duration
submovements had moderate test–retest reliability (ICC = 0.55–0.83).
Ankle submovement features were more strongly correlated with the
ALSFRS-R grossmotor subscore (r =0.40–0.68) thanwith the ALSFRS-
R fine motor subscore (r = 0.16–0.51) and were only weakly correlated
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with respiratory and bulbar subscores. Conversely, wrist submove-
ment features correlated more strongly with the ALSFRS-R fine motor
subscore (r =0.40–0.60) compared with ALSFRS-R gross motor sub-
score (r = 0.19–0.32), and also only weakly correlated with the

respiratory and bulbar subscores. Both ankle andwrist submovements
demonstrated good agreement between right and left limbs, however
ankle right/left agreement (r =0.81–0.97) was stronger than wrist
right/left agreement (r =0.65–0.82).

7693 sessions
481 participants

Sessions with at least
one wearable sensor

data file 30 MB in size

Including days with 3h of recorded
daytime data and, subsequently,
sessions with 24h of total data

Right Ankle
4917 sessions

407 participants

Left Ankle
4927 sessions

408 participants

Right Wrist
5681 sessions

413 participants

Left Wrist
5624 sessions

411 participants

All 4 Sensors
4637 sessions

402 participants
Median data per

session:
9d, 68.6h (Rt wrist)
9d, 66.5h (Lt wrist

9d, 48.5h (Rt ankle)
9d, 48.1h (Lt ankle)

Sessions with data from all
four sensors

Used for cross-
sectional analysis

Rt Ankle and Wrist
194 participants
Median data per

participant:
15 sessions

1.5 year time span

Used for longitudinal
analysis

Participants with 3 sessions
over a span of 0.75 years
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Fig. 1 | Overview of population and dataset. A Participant clinical and demo-
graphic data with range of values provided in parentheses. B Filtering steps for
inclusion of sessions and participants used in cross-sectional and longitudinal

analysis.C Visualization of each participant’s session time points for data collection
from 2014 to 2022, alongwith themovement features extracted from each session.
ALSFRS ALS Functional Rating Scale-Revised, d day, h hour, Lt left, Rt right.
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Machine learning models trained to learn a composite severity
score based on right ankle movement features, correlated well with
ALSFRS-R total and ALSFRS-R gross motor subscore (r =0.66-0.77),
had high test–retest reliability (ICC =0.88–0.92), distinguished
between ALS participants and controls, and demonstrated strong
right/left limb agreement (r =0.91-0.95, see Table 1). For the right
wrist, composite severity scores correlated well with ALSFRS-R total
and ALSFRS-R fine motor subscore (r = 0.65–0.72), had high
test–retest reliability (ICC =0.84–0.90), distinguished between ALS
participants and controls, and demonstrated strong right/left limb
agreement (r = 0.82–0.86, see Table 2). Composite scores correlated
more strongly with ALSFRS-R for male participants compared to
female participants, however test–retest reliability and right/left limb
agreement was similar for both groups (Supplementary Tables 2–5).
The ankle and wrist pairwise models had the highest test–retest
reliability among the machine learning models and were the focus of
longitudinal analysis. To understand which individual features were
the most salient in the ankle and wrist pairwise models, we identified

features that were in the top five (out of 85) in feature importance for
all 5 cross-validation folds. For the right ankle pairwise model, the
features included SM peak velocity (mean, PC2 direction, long dura-
tion SM group) and SM distance (mean, PC2 direction, long duration
SMs). For the right wrist pairwise model themost salient features were
SM peak velocity (mean, PC2 direction, long duration SMs) and SM
peak velocity (mean, PC2 direction, short duration SMs). Although SM
peakvelocitywas strongly represented in themodels, theproperties of
peak velocity at an individual feature level (e.g., relationships with
ALSFRS-R, test–retest reliability) were comparable to SM acceleration
and distance features and showedweaker relationships with ALSFRS-R
compared to the pairwise models (see Tables 1, 2).

Longitudinal properties of ankle and wrist sensor data
The rate of change over time for each sensor-based composite score
and ALSFRS-R score was modeled using linear regression, with the
slope of the best fit line determining the rate of change23. To compare
the rate of change of different scores, each with a different range of

t1 t2 t3 t4 t5 t6 t7 t8

only intra-subject comparisonsx

Pairwise Comparisons Classification Model

Input Examples Response/Target

Dx1 Dx1 Dx1
difference

vector

Train model to predict whether sample 1 (S1) comes before or after
sample 2 (S2) in time, based on difference vector. In essence, the
model learns the direction in feature space that represents disease
worsening (forward in time) versus disease improvement (backward
in time).

Logistic
Regression

Model 0
(S1/t1 comes

before S2/t5 in time)

1
(S1/t7 comes

after S2/t2 in time)

Severity Estimation

Time point 1 (t1) comparisons shown for
participant 166

 possible pairwise
comparisons per participant

A B

C

1.

2.

1. Train logistic regression
model based on difference
vectors as described above:

2. Apply learned model weights
(  to original feature vectors to
generate a severity score at
each time point:

Fig. 2 | Overview of the pairwise comparisons model. A Schematic showing the
intra-subject pairwise session comparisons performed for participant 166’s first
session. For each individual there are n*ðn� 1Þ=2 possible pairwise comparisons
(where n represents the number of time points or sessions for that individual).
BThemodel takes two85-dimensional feature vectors or samples (S1 and S2) froma
single individual as input, representing that individual’s motor function at two
different points in time (tm and tn). For each comparison, the samples at times tm
and tn are randomly assigned to be S1 and S2, such that for approximately half the
comparisons S1 is the earlier time sample (as shown in B.1.) and for the other half S1

is the later time sample (B.2.). The element-wise differencebetween the two vectors
is computed (S1-S2), representing the direction of change in feature space. This
difference vector is the input to a binary classifier (logistic regression) which learns
to predict whether the direction of change reflects disease progression (S2 is
temporally after S1) or reflects disease improvement (S2 is temporally before S1).
C The learned logistic regression model parameters (representing the direction of
disease progression) were then applied as linear weights to the original feature
vectors to generate a score that reflects how far in the direction of disease pro-
gression the individual had traveled at that moment in time.
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values, each score was standardized (subtracting the mean and
dividing by the standard deviation) and expressed as a z-score. Rate of
change for each score was reported as z-score per year or equivalently
as standard deviations (SD) per year.

The rate of change of the pairwise model composite score was
computed for each limb. Rate of change was highly consistent across
right and left ankles (r =0.87) and right and leftwrists (r =0.80, Fig. 3A).
There was lesser agreement (r =0.52–0.56) between each upper and
lower limb pair (e.g., right ankle versus right wrist). Individual-level
trajectories demonstrated examples in which all four limbs progressed
similarly over time (Fig. 3B), the lower limb pair had similar trajectories
but differed from the upper limbs (Fig. 3C), andwhere the trajectory of
one or two limbs deviated from the others (Fig. 3D).

There was also congruence between lower limb pairwise model
trajectories and ALSFRS-R gross motor subscore trajectories and
between upper limb and ALSFRS-R fine motor subscore trajectories
(Fig. 3B–D). The population-level agreement between the right ankle
pairwise model rate of change and ALSFRS-R gross motor rate of
change (r = 0.73, p = 1.5 × 10−33) was stronger than the agreement with
ALSFRS-R fine motor (r =0.56, p = 1.4 × 10−17), and the right wrist pair-
wise model rate of change showed stronger agreement with ALSFRS-R
finemotor (r = 0.73, p = 1.1 × 10−33) compared to ALSFRS-R gross motor
rate of change (r =0.60, p = 4.2 × 10−20).

Next, for each participant, the pairwise model rate of change was
combined over the four limbs by either taking the average rate of

change or the maximum rate of change. When taking the average of
the four limbs, the pairwise model rate of change had strong agree-
ment with ALSFRS-R total rate of change (r =0.71), gross motor sub-
score rate of change (r =0.75), and finemotor subscore rate of change
(r =0.68, Fig. 4A), and weak agreement with respiratory and bulbar
subscores (r =0.38 and r = 0.45, respectively). Similarly, when taking
the limb with the maximum rate of change, the pairwise model had
strong agreement with ALSFRS-R (r =0.69), gross motor subscore
(r =0.75), and fine motor subscore (r =0.69, Fig. 4B), and weak
agreementwith respiratory andbulbar subscores (r = 0.34 and r =0.43,
respectively). The sensor-based pairwise model, which was trained to
estimate disease severity without knowledge of ALSFRS-R scores, had
strong rate-of-change agreement with the regressionmodel trained to
estimate ALSFRS-R total score, regardless of whether the average of
the four limbs or the limb with the fastest progression rate was used
(r =0.92 for both, Fig. 4A, B). Thus, averaging or taking the maximum
rate of change across the four limbs produced equally robust and
consistent measures of disease progression.

When taking themaximum rate of change, points shift downward
with respect to the y = x line (Fig. 4A versus 4B) indicating increased
sensitivity of the sensor-basedmodel to disease change in comparison
with ALSFRS-R total. Using the maximum rate of change, the pairwise
model had a progression rate of −0.86 ± 0.70 (mean ± standard
deviation) SD/year and the regression model had a progression rate
of −0.86 ± 0.74 SD/year. Both the pairwise and regression models

Table 1 | Cross-sectional properties of ankle submovement models and features

Feature
name

Stat. SM
dur.
group

Dir. of
motion
group

Relationship with ALSFRS-R Test re-
test rel.

ALS vs
Control

Right and
left ankle
agreementTotal Gross motor Fine motor Respiratory Bulbar

r p-val r p-val r p-val r p-val r p-val ICC p-val es r p-val

ALSFRS total prediction model 0.59 0 0.66 0 0.52 6.0E−293 0.26 2.0E−66 0.20 4.0E−41 0.88 2.0E−56 1.1 0.91 0

ALSFRS Gross Motor Prediction Model 0.54 0 0.77 0 0.40 3.0E−162 0.21 7.0E−43 0.11 7.0E−12 0.91 2.0E−78 1.4 0.95 0

Pairwise Model 0.56 0 0.75 0 0.43 2.0E−191 0.22 6.0E−49 0.16 4.0E−25 0.92 3.0E−73 1.3 0.94 0

SM Dist. M Long PC1 0.36 9.0E−134 0.45 3.0E−212 0.23 7.0E−53 0.26 2.0E−68 0.09 9.0E−10 0.85 5.0E−48 1.0 0.90 0

M Long PC2 0.48 2.0E−249 0.56 0 0.37 3.0E−144 0.30 2.0E−90 0.12 4.0E−15 0.90 8.0E−57 1.1 0.94 0

M Short PC1 0.50 5.0E−269 0.56 0 0.46 3.0E−226 0.22 4.0E−47 0.13 7.0E−19 0.90 7.0E−42 0.9 0.92 0

M Short PC2 0.54 0 0.60 0 0.48 9.0E−253 0.27 4.0E−70 0.15 2.0E−21 0.91 9.0E−42 0.9 0.93 0

SD Long PC1 0.31 3.0E−96 0.40 7.0E−163 0.16 5.0E−27 0.23 7.0E−54 0.10 4.0E−10 0.71 3.0E−49 0.9 0.81 0

SD Long PC2 0.39 5.0E−154 0.46 4.0E−228 0.26 4.0E−67 0.26 2.0E−66 0.12 7.0E−15 0.75 2.0E−59 1.1 0.86 0

SD Short PC1 0.52 2.0E−305 0.63 0 0.46 5.0E−227 0.23 6.0E−51 0.14 7.0E−19 0.90 8.0E−64 1.2 0.91 0

SD Short PC2 0.54 0 0.66 0 0.47 1.0E−231 0.24 6.0E−59 0.14 4.0E−21 0.88 6.0E−71 1.3 0.93 0

SM Vel. M Long PC1 0.49 2.0E−264 0.56 0 0.37 3.0E−142 0.30 2.0E−90 0.16 5.0E−26 0.88 7.0E−56 1.1 0.92 0

M Long PC2 0.57 0 0.65 0 0.47 8.0E−234 0.31 2.0E−95 0.16 3.0E−26 0.92 4.0E−63 1.2 0.96 0

M Short PC1 0.50 7.0E−277 0.59 0 0.46 2.0E−225 0.21 2.0E−42 0.14 3.0E−19 0.91 2.0E−38 0.8 0.92 0

M Short PC2 0.54 0 0.63 0 0.48 5.0E−248 0.25 8.0E−65 0.15 6.0E−22 0.91 3.0E−38 0.9 0.93 0

SD Long PC1 0.37 7.0E−137 0.44 2.0E−202 0.22 5.0E−50 0.23 2.0E−54 0.14 1.0E−20 0.71 4.0E−55 1.0 0.83 0

SD Long PC2 0.49 2.0E−262 0.59 0 0.36 2.0E−132 0.26 6.0E−67 0.17 3.0E−28 0.80 3.0E−77 1.3 0.91 0

SD Short PC1 0.52 8.0E−294 0.63 0 0.45 7.0E−219 0.21 3.0E−45 0.13 3.0E−17 0.91 8.0E−52 1.1 0.91 0

SD Short PC2 0.55 0 0.68 0 0.47 6.0E−237 0.24 5.0E−57 0.14 3.0E−20 0.90 2.0E−59 1.1 0.92 0

SM Accel. M Long PC1 0.58 0 0.63 0 0.51 2.0E−285 0.26 4.0E−69 0.20 3.0E−37 0.93 5.0E−48 1.0 0.95 0

M Long PC2 0.58 0 0.66 0 0.51 2.0E−284 0.27 1.0E−73 0.17 3.0E−30 0.93 2.0E−50 1.0 0.97 0

M Short PC1 0.49 2.0E−262 0.59 0 0.44 3.0E−209 0.19 7.0E−38 0.13 7.0E−18 0.92 5.0E−37 0.8 0.91 0

M Short PC2 0.53 0 0.63 0 0.47 2.0E−233 0.24 6.0E−58 0.14 3.0E−20 0.91 2.0E−37 0.8 0.92 0

SD Long PC1 0.55 0 0.63 0 0.48 6.0E−253 0.21 8.0E−46 0.18 4.0E−32 0.92 2.0E−52 1.0 0.92 0

SD Long PC2 0.57 0 0.68 0 0.48 3.0E−253 0.23 2.0E−54 0.17 4.0E−27 0.92 8.0E−56 1.1 0.94 0

SD Short PC1 0.49 2.0E−264 0.62 0 0.43 3.0E−193 0.19 3.0E−37 0.12 2.0E−15 0.92 3.0E−42 0.9 0.89 0

SD Short PC2 0.54 0 0.67 0 0.46 6.0E−222 0.22 3.0E−50 0.13 2.0E−18 0.91 2.0E−48 1.0 0.91 0

For relationships with ALSFRS-R and right-left agreement, p-values for Pearson’s correlation were computed using a Student’s t distribution for a transformation of the correlation (two-tailed test).
Mann–WhitneyU test was used for ALS versus control comparisons (two-sided test) andCohen’s dwas used tomeasure effect size. TheBenjamini–Hochbergmethodwas used to adjust formultiple
comparisons and corrected p-values are reported.
Stat statistic,Durduration,Dirdirection,Distdistance,Vel velocity,Accel acceleration,SMsubmovement,Mmean,SD standarddeviation,AI activity intensity,PCprincipal component,ALSFRS-RALS
Functional Rating Scale-Revised, ICC intraclass correlation coefficient, r Pearson correlation coefficient, es effect size.
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progressed faster over time than ALSFRS-R total (−0.73 ± 0.74 SD/year,
p =0.007 and p =0.017, respectively; Fig. 4C). Female and male parti-
cipants had nearly identical pairwise model progression rates (−0.86 ±
0.69 SD/year and −0.87 ± 0.70, respectively). Hypothetical clinical trial
sample size estimates were smallest for the pairwise model (N = 76),
followed by the regression model (N = 86), and ALSFRS-R (N = 121).
Pairwise model and the regression model scores did not progress for
control participants and were significantly different between ALS and
control participants (p =0.0004 and p =0.0006, respectively; Fig. 4C).
When using the mean rate of change of all four limbs, the pairwise
model and ALSFRS-R total score were not significantly different
(−0.56 ±0.51 SD/year versus−0.73±0.74 SD/year,p =0.12) andALSFRS-
R total score was more sensitive than the regression model (−0.73 ±
0.74 SD/year versus −0.54 ± 0.56 SD/year, p =0.037). Hypothetical
clinical trial sample size estimates were again smallest for the pairwise
model (N = 101), due to lower population variance in rate of change,
followed by ALSFRS-R (N = 121), and the regression model (N = 126).

Discussion
We have shown that data from inexpensive sensors worn on limbs at
home during natural behavior can produce reliable, sensitive, and
interpretablemeasures of gross and finemotor function in individuals
with ALS. Ankle movement features derived from accelerometer data
were highly consistent across right and left ankles and were in agree-
ment with gross motor function as assessed on ALSFRS-R, both in
terms of cross-sectional severity and in terms of rate of change over

time. Similarly, wrist movement features were highly consistent across
right and left wrists andwere in agreementwith finemotor function on
ALSFRS-R. Although there was strong right-left limb agreement at a
population level, arm-leg agreement showed only moderate agree-
ment, and some individuals were observed to have different rates of
progression for each limb. Taking the score of the limb with the
maximum progression rate produced a motor outcome measure that
was consistent with but more sensitive than the current primary out-
come measure in most ALS trials (ALSFRS-R), resulting in smaller
hypothetical clinical trial sample size estimates.

The analysis approach for quantifying motor function in ALS
centered on the extraction and characterization of motor primitives
called submovements during natural behavior, which was previously
developed for quantifying motor function in ataxia-telangiectasia20

and adult cerebellar ataxias21. There is evidence that motor control is
achieved by combining submovements to compose complex volun-
tary motor behaviors24–27 and that submovements change in a con-
sistent manner with the state of themotor system. In various contexts,
such as infant development28, aging29, stroke recovery30, and ataxia31,32,
submovements extracted from specific motor tasks reflect changes in
motor function. During natural at-homebehavior, ankle submovement
distance, peak velocity, and peak acceleration are smaller in adults
with spinocerebellar ataxias andmultiple system atrophy compared to
controls and become progressively smaller and less variable as self-
reported function decreases and ataxia severity increases21. The sub-
movement analysis approach contrasts with a prior analysis of task-

Table 2 | Cross-sectional properties of wrist submovement models and features

Feature name Stat. SM dur. group Dir. of motion
group

Relationship with ALSFRS-R Test re-
test rel.

ALS vs Control Right and left
wrist agreement

Total Gross motor Fine motor Respiratory Bulbar

r p-val r p-val r p-val r p-val r p-val ICC p-val es r p-val

ALSFRS Total Prediction Model 0.62 0 0.53 0 0.65 0 0.28 5.0E−77 0.27 2.0E−72 0.84 7.0E−88 1.4 0.86 0

ALSFRS Fine Motor Prediction Model 0.61 0 0.46 3.0E−224 0.72 0 0.27 2.0E−71 0.25 3.0E−64 0.85 1.0E−87 1.4 0.82 0

Pairwise Model 0.58 0 0.43 2.0E−196 0.65 0 0.21 4.0E−44 0.30 5.0E−89 0.90 7.0E−114 1.7 0.86 0

SM Dist. M Long PC1 0.38 5.0E-146 0.24 6.0E−59 0.52 9.0E−303 0.17 3.0E−30 0.10 6.0E−11 0.86 6.0E−19 0.6 0.66 0

M Long PC2 0.38 4.0E-150 0.24 5.0E−59 0.51 3.0E−290 0.19 2.0E−37 0.11 2.0E−12 0.86 3.0E−29 0.7 0.72 0

M Short PC1 0.37 7.0E-144 0.22 8.0E−49 0.49 3.0E−260 0.11 8.0E−14 0.20 2.0E−38 0.74 3.0E−50 0.9 0.72 0

M Short PC2 0.41 3.0E-175 0.25 2.0E−64 0.54 0 0.15 7.0E−22 0.19 7.0E−35 0.83 3.0E−47 1.0 0.76 0

SD Long PC1 0.45 2.0E-217 0.30 2.0E−90 0.58 0 0.20 1.0E−37 0.17 2.0E−29 0.88 2.0E−28 0.8 0.69 0

SD Long PC2 0.46 6.0E-221 0.29 5.0E−84 0.58 0 0.21 9.0E−45 0.18 2.0E−33 0.88 8.0E−45 1.0 0.73 0

SD Short PC1 0.35 2.0E-128 0.21 7.0E−45 0.44 3.0E−209 0.10 2.0E−10 0.21 7.0E−45 0.55 7.0E−63 0.8 0.65 0

SD Short PC2 0.42 7.0E-184 0.26 8.0E−67 0.54 0 0.12 4.0E−16 0.22 5.0E−49 0.73 2.0E−70 1.1 0.72 0

SM Vel. M Long PC1 0.40 2.0E-163 0.25 3.0E−63 0.54 0 0.18 7.0E−31 0.13 4.0E−18 0.88 1.0E−25 0.7 0.68 0

M Long PC2 0.40 9.0E-169 0.25 6.0E−65 0.53 0 0.19 5.0E−37 0.14 2.0E−20 0.88 4.0E−38 0.9 0.73 0

M Short PC1 0.39 5.0E-154 0.22 5.0E−49 0.50 2.0E−268 0.12 6.0E−15 0.22 3.0E−47 0.75 2.0E−63 1.1 0.74 0

M Short PC2 0.42 3.0E-180 0.26 1.0E−65 0.53 0 0.15 7.0E−22 0.20 5.0E−41 0.81 2.0E−54 1.1 0.77 0

SD Long PC1 0.48 1.0E-249 0.32 3.0E−100 0.60 0 0.20 4.0E−39 0.21 3.0E−45 0.90 7.0E−40 0.9 0.71 0

SD Long PC2 0.48 2.0E-248 0.31 3.0E−93 0.59 0 0.21 7.0E−43 0.23 6.0E−51 0.90 5.0E−63 1.2 0.75 0

SD Short PC1 0.35 2.0E-125 0.21 2.0E−43 0.44 3.0E-204 0.09 7.0E−10 0.21 6.0E−45 0.52 2.0E−77 0.8 0.67 0

SD Short PC2 0.42 7.0E-181 0.26 5.0E−67 0.53 0 0.12 7.0E−16 0.22 2.0E−49 0.68 2.0E−78 1.1 0.72 0

SM Accel. M Long PC1 0.43 2.0E-189 0.25 1.0E−63 0.55 0 0.15 6.0E−24 0.21 7.0E−44 0.91 2.0E−52 1.1 0.76 0

M Long PC2 0.43 6.0E-190 0.26 5.0E−66 0.54 0 0.17 3.0E−28 0.21 2.0E−43 0.90 6.0E−58 1.1 0.78 0

M Short PC1 0.38 2.0E-145 0.21 9.0E−45 0.48 7.0E−248 0.11 8.0E−14 0.22 5.0E−49 0.72 9.0E−70 1.1 0.73 0

M Short PC2 0.41 2.0E-171 0.25 2.0E−62 0.51 4.0E−291 0.14 7.0E−20 0.21 2.0E−43 0.78 9.0E−58 1.1 0.78 0

SD Long PC1 0.46 4.0E-229 0.29 3.0E−84 0.55 0 0.15 2.0E−21 0.28 7.0E−79 0.90 6.0E−74 1.3 0.81 0

SD Long PC2 0.45 6.0E-218 0.29 1.0E−81 0.54 0 0.14 2.0E−21 0.27 7.0E−72 0.89 6.0E−89 1.5 0.82 0

SD Short PC1 0.31 2.0E-98 0.19 3.0E−36 0.40 2.0E−162 0.08 8.0E−07 0.19 6.0E−35 0.46 7.0E−78 0.8 0.65 0

SD Short PC2 0.37 4.0E-143 0.24 5.0E−60 0.47 3.0E−239 0.10 2.0E−11 0.20 2.0E−38 0.58 2.0E−73 0.9 0.68 0

For relationships with ALSFRS-R and right-left agreement, p-values for Pearson’s correlation were computed using a Student’s t distribution for a transformation of the correlation (two-tailed test).
Mann–WhitneyU test was used for ALS versus control comparisons (two-sided test) andCohen’s dwas used tomeasure effect size. TheBenjamini–Hochbergmethodwas used to adjust formultiple
comparisons and corrected p-values are reported.
Stat statistic,Durduration,Dirdirection,Distdistance,Vel velocity,Accel acceleration,SMsubmovement,Mmean,SD standarddeviation,AIactivity intensity,PCprincipal component,ALSFRS-RALS
Functional Rating Scale-Revised, ICC intraclass correlation coefficient, r Pearson correlation coefficient, es effect size.
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Fig. 3 | Longitudinal data from each limb. A Agreement in rate of change of the
pairwise model score between right and left ankles, and right and left wrists.
P-values for Pearson’s correlation were computed using a Student’s t distribution
for a transformation of the correlation (two-tailed test). Each point represents an
individual with ALS. Source data are provided as a Source Data file.
B–D Longitudinal trajectories for nine individuals with ALS, with sensor-based

pairwise model scores for each limb shown in the top panel and ALSFRS-R scores
shown in the bottom panel. Individuals were observed to have similar trajectories
for all four limbs (B), similar trajectories for both ankles and both wrists (C), or
divergent trajectories for one or more limbs (D). SD standard deviation, ALSFRS-R
ALS Functional Rating Scale-Revised.
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free, at-home measurement in 42 individuals with ALS using waist-
worn accelerometers, which quantified overall activity levels (e.g.,
activity count, percent of day active)19. Although overall motor activity
is a pertinent outcome in ALS, it is reliant on full-day sensor wear
and is likely more susceptible to day-to-day changes in behavioral

context (e.g., travel, systemic illness, sleep quality), requiring careful
consideration of reliability.

Based on our literature review, limb submovement features have
not been previously studied in ALS. Several studies, however, have
investigated the relationship between muscle strength (a direct cause
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Fig. 4 | Rate of change comparison between sensor-basedmodels and ALSFRS-
R.AMeanpairwisemodel rate of change across four limbs comparedwith ALSFRS-
R total score, gross motor subscore, and fine motor subscore (left) and compared
with themean regressionmodel rate of change (right).BMaximumpairwisemodel
rate of change across four limbs compared with ALSFRS-R total score, gross motor
subscore, and fine motor subscore (left) and compared with the maximum
regression model rate of change (right). P-values for Pearson’s correlation were
computed using a Student’s t distribution for a transformation of the correlation
(two-tailed test). C Violin plot comparing the distributions of ALSFRS-R rate of
change, pairwise model rate of change (using fastest progressing limb), and

regression model rate of change (using fastest progressing limb). Center point is
median; gray line indicates the interquartile range (n = 188 ALS participants and
n = 6 control participants). Rates of change were compared with ‘*’ indicating a
statistically significant comparison (p <0.05, two-sided Mann–Whitney U test):
p =0.007 for pairwise model versus ALSFRS-R (ALS participants), p =0.017 for
regression model versus ALSFRS-R (ALS participants), p =0.0004 for ALS versus
control participants (pairwise model), and p =0.0006 for ALS versus control par-
ticipants (regression model). For A–C, each point represents a participant. SD
standard deviation, ALSFRS-R ALS Functional Rating Scale-Revised. Source data are
provided as a Source Data file.
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of motor impairment in ALS33) and submovement characteristics. In a
heterogeneous population of individuals with motor impairments
(e.g., spinal cord injury, cerebral palsy, stroke), participantswere asked
to perform a computer-based pointing task and a mechanical
dynamometerwas used tomeasure grip strength and pinch strength34.
The authors found that the number of submovements per pointing
movement was negatively correlated with grip strength (the move-
ment was composed of smaller submovements as grip strength
decreased) and that the velocity of movement was directly propor-
tional to grip strength34. In another study of individuals with hemi-
paresis secondary to stroke, it was found that peak arm reaching
velocity was influenced most by shoulder, elbow, and wrist flexor and
extensormuscle strength (58% of variance explained), measured using
a hand-held dynamometer35. In a study of individuals without motor
disability, submovement organization was examined as participants
tracked a small or large dot on a screenwith a pen placed on a digitizer
tablet, while simultaneously recording activity from muscles in the
neck and upper extremity using surface electrodes36. When tracking
the smaller target, extensor and flexor muscles of the forearm
activated more strongly, and submovements were found to have
increased peak velocities36.

These studies support that there is a robust relationship between
muscle strength and submovement features, in particular peak velo-
city. Consistent with these studies, we found that wrist and ankle
submovements from individuals with ALS had smaller velocities,
accelerations, and distances traversed. Submovement peak velocity
was the only highly selected feature in both the right ankle and the
right wrist pairwise models, demonstrating its importance for mea-
suringdiseaseprogressionALS. This supports amodel inwhichmuscle
weakness and decreased muscle activation caused by motor neuron
pathology gives rise to slower and smaller submovements during
everyday limb movement. Further supporting this model, are the
parallels in left-right symmetry observed in the present study with the
left-right symmetry observed in large studies of hand-held dynamo-
metry (HHD)23 and Accurate Test of Limb Isometric Strength (ATLIS)37

inALS. Individual armand legmuscleswere found to correlate strongly
with the identical muscles on the contralateral side, both in terms of
cross-sectional strength measurements (r =0.65–0.90) and also in
terms of rate of change over time (r =0.43–0.82)23. We observed
similar side-to-side cross-sectional and rate of change symmetry in
individual submovement features (cross-sectional r = 0.65–0.97) and
composite models (cross-sectional r = 0.82–0.95; rate of change
r =0.80–0.87). The high degree of correlation between right and left
limbs and the observation that handedness and footedness can change
over time in individuals with ALS, motivated our designation of limbs
as right and left rather than dominant and nondominant. Interestingly,
side-to-side cross-sectional symmetry of the leg was stronger than
side-to-side symmetry of the arm here and in the HHD study. This may
have implications for how ALS disease pathology spreads and high-
lights a potential future application of this technology in characteriz-
ing phenotypic spread across limbs in a continuous and granular
fashion, for example in presymptomatic gene carriers. This also sup-
ports that submovement characteristics may be a suitable proxy for
muscle strength in ALS, and offers an advantage over HHD and ATLIS
of being able to measure strength continuously over multiple days,
during the individual’s own selection of behaviors, and without relying
on participant effort or evaluator training and strength. Thus, it may
produce more reliable, ecologically valid, and scalable measures of
muscle strength and motor function. It may also apply to other neu-
rological conditions that affect muscle strength. A future study that
collects HHD and/or ATLIS measurements along with submovements
from accelerometer data would help clarify the relationship between
strength and submovements in ALS.

As discussed above, strong side-to-side correlations of ankle and
wrist submovement features and composite models were observed.

This is consistent with previously reported strength measurements in
ALS23,37, but also highlights the robustness of the submovement mea-
sures that are generated independently from each limb’s movement
during natural behavior at home. Ankle submovement measures cor-
related strongly with ALSFRS-R gross motor subscore (both cross-
sectional scores and rate of change) andwrist submovementmeasures
correlated strongly with ALSFRS-R fine motor subscores. We found
high test–retest reliability of the sensor-based features and composite
models. Finally, two machine learning models trained based on
different information (pairwise model trained on longitudinal change;
regression model trained on ALSFRS-R) generated composite
scores that had strong agreement in the rate of disease progression
(r =0.92). These properties support that sensor-derived submove-
ments obtained during natural behavior provide highly robust mea-
sures of disease severity for each limb. Since each limb can be reliably
and independentlymeasured, these data support the use of the fastest
progressing limb’s rate of progression in order to obtain a persona-
lized overall measure that is more sensitive for measuring disease
change than ALSFRS-R and which may be more responsive to ther-
apeutic intervention. However, the choice of if and how to combine
severity measures from each limb can be determined based on the
clinical application aswell as on the individual’s prior clinical trajectory
(for example in a run-in period prior to intervention in a clinical trial).
To achieve maximal sensitivity for disease change, these data support
collecting movement information from all four limbs. Given the high
reliability of the sensor-based measures and since each limb is ana-
lyzed independently, it is not necessary to wear all four sensors
simultaneously. An alternative design could be to wear one sensor at a
time and rotate its location on the body in one-week intervals. Thus,
each limb is still measured continuously for one week each month.

Twodifferent supervisedmachine-learning approacheswereused
to create composite measures of overall motor impairment for each
limb based on the collection of sensor-based movement features. One
used the traditional approachof training a regressionmodel to predict
severity as measured by ALSFRS-R. The other approach learned the
trajectory of disease progression (in feature space) from the long-
itudinal data and computed how far the individual had moved along
that trajectory without ever having access to rating scale data (i.e.,
pairwise model). Despite the very different training approaches, both
models were highly consistent in their estimates of progression rate
(r =0.92) and were similarly consistent with ALSFRS-R total’s pro-
gression rate (r =0.69 and r =0.71). The pairwise model was high-
lighted in analysis for three main reasons: (1) it had higher reliability
than the regression models, (2) the consistency with ALSFRS-R in
cross-section and in the rate of changewas striking given that it had no
chance to “overfit” to the clinical score, and (3) the pairwise modeling
approach may be useful for other diseases where the existing clinical
rating scale is less sensitive for capturing disease change. Furthermore,
the pairwisemodeling approach can be extended in a number of ways,
for example by filtering comparisons, changing the type of classifier
used, and aggregating data across multiple disease populations.

The large and longitudinal dataset generated by the ALS TDI
Precision Medicine Program, consisting of 376 individuals with ALS
who wore four sensors for multiple hours and days at home and with
188 participants who wore the four sensors longitudinally over a
minimum of 0.75 years (median of 15 times over 1.5 years), supports
the feasibility of the at-home passive data collection approach from
both a patient and clinical operations perspective. Notably, although
the Actigraph GT3X device was used in the current study, different
devices were used in prior studies in ataxias20,21, and the analytic
approach presented here can likely be applied to any wearable sensor
that captures triaxial accelerometer data at a minimum of 30Hz,
including consumer-grade sensors.

There were some limitations to the study. There was a relatively
small number of controls included in the study and the controls were
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not age matched. However, the size and characteristics of the control
sample do not affect the main conclusions of the study. There was
heterogeneity in the number of hours each participant wore the sen-
sors at home. This was mitigated in part by only including days in
which sensors were worn for at least 3 h. We anticipate higher relia-
bility estimates of all sensor-based measures if participants are expli-
citly asked to wear the sensor throughout the entire day with
exception of bathing (and night if possible). Finally, as expected, the
severity estimates based on limbmovement did not correlate well with
bulbar and respiratory function. These functions are represented in
ALSFRS-R and other digital strategies (e.g., video-based analysis of
facialmovement or speech analysis17,38–40) are needed to quantify these
important motor domains in ALS.

In summary, we have shown that a submovement-based analysis
of natural behavior at home using wearable sensors produces inter-
pretable, reliable, sensitive, and ecologically valid measures of gross
and fine motor function in ALS. This technology has properties
that support its use as an outcome measure in ALS clinical trials
with the potential to reduce the cost and size of future trials. The
use of inexpensive sensors, worn at home with minimal instruction
and no eligibility limitations, could increase access to clinical trials
and support virtual clinical trials in ALS. It may also support the
routine clinical care of individuals with ALS by providing clinicians
and patients with an objective and reliable motor assessment that
can be passively obtained at home with a relatively low burden
and cost.

Methods
This research study was conducted in accordance with the ethical
principles posited in the Declaration of Helsinki - Ethical Principles for
Medical Research Involving Human Subjects. Protocol approval was
provided by the institutional review board (ADVARRA CIRBI). Every
participant consented to participate in this research by signing an IRB
approved informed consent form. There was no participant compen-
sation in this study. Gender of participants was determined based on
self-report and was not explicitly considered in the study design.

Wearable sensor data processing and feature types
Continuous triaxial accelerometer data collected at 30Hz was
obtained from Actigraph GT3X devices (one for each limb). The cost
of a single sensor ranged from $234-433 over the course of the study.
Participants received a different sensor at each time point in the
study. Any repeat use of a device by a participant would have been
coincidental. In prior work, each participant’s wearable sensor data
were manually partitioned into day and night segments based on
changes in each participant’s daily activity level represented in the
accelerometer data20,21,41. However, given the large size of this data-
set, day segments were automatically partitioned to include data
collected between 7:21 am and 11:27 pm, the pooled mean estimates
of sleep offset and sleep onset in the oldest age group (15–18 year
old’s) studied in Galland et al.42, while accounting for each indivi-
dual’s time zone. Visual inspection of random samples of 24-h peri-
ods of accelerometer data from multiple participants demonstrated
that these times produced reasonable day-night segmentations.
Data analysis focused on daytime segments. Gravity and high-
frequency noise were removed from the acceleration time series
using a sixth-order Butterworth filter with cutoff frequencies of 0.1
and 20Hz20,21,41,43.

Several classes of features were extracted fromdaytime ankle and
wrist sensor data as in prior work20,21. These included total power in the
0.1-5 Hz frequency range and features based on the distribution of
activity intensity computed in 1-second time bins. Features were also
extracted from “activity bouts” and from submovements. Supple-
mentary Table 1 provides a description of the 85 features extracted
from ankle and wrist sensor data. Based on prior work, single feature

analysis was performed on a subset of 24 submovement features of
interest as described in the main text.

Severity estimation models
Supervised machine learning approaches were used to create com-
posite severity scores that aggregate over the 85movement features.
Separate models were trained for each limb. The pairwise compar-
ison approach is described in Fig. 2 and themain text. To ensure that
the pairwise model did not inadvertently learn longitudinal changes
resulting from changes in device settings, comparisons were only
allowed between sessions that had the same critical firmware version
(where raw data were collected in an identical way). Five-fold cross-
validation was used: for each fold comparisons from 80% of ALS
participants were used to train a classification model and the
model weights were applied to data from the held-out 20% of parti-
cipants to generate severity scores for each session. Additionally,
we trained linear regression models with L1 regularization (i.e., lasso
regression)22 to predict ALSFRS-R total, ALSFRS-R gross motor sub-
score (ankle sensor data only), and ALSFRS-R fine motor subscore
(wrist sensor data only). Five-fold cross-validation was also used to
evaluate the performance of the regression models. For both the
pairwise models and the regressionmodels, each feature was z-score
transformed prior to model training such that feature value ranges
andmodel weights were comparable. Pearson correlation coefficient
was used to measure performance, with each model compared with
ALSFRS-R.

Statistical analyses
Statistical analyses were completed in MATLAB version R2022a
(Mathworks, Natick, MA). In longitudinal data analysis, each partici-
pant’s progression rate for a givenmeasurewas determined by fitting
a linear regression model to the individual’s longitudinal data for the
measure and using the slope of the curve to represent a progression
over time23. The mean and standard deviation of the slope for each
measurewere computed across all ALS participants. For hypothetical
clinical trial sample size estimates, we used a one-sample model
for a continuous outcome44 as described in Rutkove et al.16 with
the samemodel parameters: 90%power to detect a 30%meanchange
in progression rate, with two-sided P values and a significance
level of 0.05.

The non-parametric Mann–Whitney U test was used to determine
individual feature differences between disease and control groups and
Cohen’s d was used to measure effect size. The Mann–Whitney U test
was also used to determine differences in the rate of change between
different assessments. The Benjamini–Hochberg method was used to
adjust formultiple comparisons and corrected p-values are reported45.
Corrected p-values <0.05 were considered significant. Single-measure
intraclass correlation coefficients (ICCs) were used to determine the
test–retest reliability of features and composite scores. To evaluate the
reliability of sensor-based features, features were computed from data
recorded in first half of the days in the session (e.g., days 1–4)
and the second half of the days in the session (e.g., days 5–8), sepa-
rately, and ICCs were computed using a 2-way mixed effects model46.
Pearson correlation coefficients and p-values were used to evaluate
the relationship between sensor-based features and ALSFRS-R.
As above, the Benjamini–Hochberg method was used to adjust for
multiple comparisons45.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GTX3 accelerometer data and associated ALSFRS-R data are
available upon request because file sizes necessitate coordinated data
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transfer. Access can be obtained by visiting https://www.als.net/arc/
data-commons/ and requesting the dataset by submitting accession
code 06162023. Source data are provided with this paper.

Code availability
The code to train the pairwise model is available in the github repo-
sitory https://github.com/neuropheno-org/Pairwise_model_code.
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