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Flight trajectory prediction enabled by time-
frequency wavelet transform

Zheng Zhang 1, Dongyue Guo 2, Shizhong Zhou2, Jianwei Zhang1,2 &
Yi Lin 1,2

Accurate flight trajectory prediction is a crucial and challenging task in air
traffic control, especially for maneuver operations. Modern data-driven
methods are typically formulated as a time series forecasting task and fail to
retain high accuracy. Meantime, as the primary modeling method for time
series forecasting, frequency-domain analysis is underutilized in the flight
trajectory prediction task. In this work, an innovative wavelet transform-based
framework is proposed to perform time-frequency analysis of flight patterns
to support trajectory forecasting. An encoder-decoder neural architecture is
developed to estimate wavelet components, focusing on the effective mod-
eling of global flight trends and local motion details. A real-world dataset is
constructed to validate the proposed approach, and the experimental results
demonstrate that the proposed framework exhibits higher accuracy than
other comparative baselines, obtaining improved prediction performance in
terms of four measurements, especially in the climb and descent phase with
maneuver control. Most importantly, the time-frequency analysis is confirmed
to be effective to achieve the flight trajectory prediction task.

With the continual development of the global economy, the air trans-
portation demand has significantly increased across various industries,
leading to a surge in flight traffic and airspace complexity. To optimize
flight scheduling and improve operational efficiency, the traffic pre-
diction is extensively studied to support air trafficmanagement (ATM),
including flight delay prediction1,2, fuel consumption prediction3,4, and
flight trajectory prediction (FTP)5,6. Thanks to the supportive ability to
the future trajectory-based operation (TBO), the FTP task is attracting
increasing research attention for both the academic and industrial
fields all over the world, including the Single European Sky ATM
Research (SESAR)7 and the Next Generation Air Transportation System
(NextGen)8. The core idea of the TBO is to share future flight trajec-
tories among traffic participants, enabling enhanced air-ground inter-
connection for a safe and effective air traffic control (ATC)9. An
accurate prediction of the four-dimensional (4D) trajectory of aircraft
serves as a fundamental technique to improve the predictability of air
traffic for the TBO10 to achieve downstream tasks, such as estimation of
arrival time11,12, conflict detection13,14 and air traffic flow prediction15–17.

The primary goal of the FTP task is to forecast the motion attri-
butes that describe discrete trajectory points of an aircraft, such as
longitude, latitude, altitude, speed, etc. Typically, the FTP task is
defined as a multivariable time sequence forecasting problem con-
sidering current aircraft states and other operational and environ-
mental factors. In terms of prediction horizons, the FTP task can be
classified into short-term and long-term prediction tasks18. Short-term
prediction task aims to provide accurate positional estimation to infer
immediate traffic situation, primarily by modeling historical flight
trajectories to predict future motion states. As for long-term predic-
tion, additional external factors are required to support airspace
operation planning and assessment, including flight intentions,
meteorological conditions, wind speed, etc.

In this paper, we focus on short-term FTP task within a few min-
utes considering current flight trajectory. Existing approaches can be
categorized into kinetics-and-aerodynamics, state-estimation,
machine-learning, and deep-learning models10. Kinetics-and-
aerodynamics models employ physical rules and handcrafted
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mathematicalmodeling to analyze themotion status of aircraft19–23. For
the state-estimation models, the flight operation is modeled as a state
transition process using state space theory24–28. For adapting to diverse
flight patterns, the machine-learning models are able to learn hidden
motion features from massive trajectory sequences29–31. However,
kinetics-and-aerodynamics and state-estimation models suffer from
insufficient generalization performance and impacts of environmental
uncertainties, resulting in poor prediction accuracy. The prediction
performance is also limited for the machine-learning models when a
more complex maneuver control encountered. Thanks to the suc-
cessful applications in natural language processing (NLP)32, computer
vision (CV)33, automatic speech recognition (ASR)34, and time series
forecasting (TSF)35 domains, the deep-learning models are also incor-
porated into the ATM research works by utilizing ATC operation
data36–39. Currently, with the powerful data-fitting capabilities of neural
networks, deep-learning models are regarded as promising tools to
achieve the FTP task40–42.

As mentioned above, the short-term FTP task is essentially a time
series forecasting problem, implemented by modeling the complex
and non-linear transition patterns of flight trajectory (several inter-
related dynamic attributes at each time instant). Although the tem-
poral modeling has been applied to capture the autoregressive
properties of dynamic attributes43–46, it is still a challenging task to
examine the underlying flight patterns in sufficient details. In general,
the primarydynamics results from the aircraftmaneuvering during the
climb and descent phase, as well as the intention-driven operations.
Considering aircraft safety and passenger comfort, the intensity of
maneuver controls is restricted to obtain limited saliency on the
temporal trajectory sequence, resulting in the inability to capture such
maneuvering patterns for conventional models. A practical resolution
is to leverage frequency-domain information, which enables capturing
informative patterns from time-frequency features to support the FTP
task. In the TSF field, the frequency-domain analysis is applied to break
time series down to promote in-depth inference47–49. Considering the
time series nature of the FTP task, the frequency information is also
involved in the trajectory attributes. For instance, the longitude and
latitude are always changing in a general evolution direction from the
origin to the destination during the flight operation, so the longitude
and latitude components of the trajectory can be considered to illus-
trate global flight trends. Driven by flight intention (turn, climb,

descent, etc.), the time series of longitude, latitude and altitude will
react to the corresponding changes, as the local details of the aircraft
motion. However, the current method primarily focused on modeling
in the time domain, and time-frequency analysis is still a virgin task in
the FTP research, without the delicate decomposition on frequency
details. Therefore, inspired by successful applications in other TSF
tasks, it is believed that time-frequency analysis is a promising solution
to capture the underlying patterns of flight trajectories, allowing us to
achieve the FTP task from a more delicate perspective.

To this end, an innovative framework, i.e., Wavelet Transform-
based Flight Trajectory Prediction (WTFTP), is proposed to perform
wavelet analysis50 to model global flight trends and local aircraft
motion details. The architecture of the proposed framework is illu-
strated in Fig. 1. The wavelet analysis is able to decompose the input
flight trajectory into the wavelet coefficients at different time and
frequency resolutions using discrete wavelet transform (DWT). Inver-
sely, these wavelet coefficients can also be applied to reconstruct the
raw trajectory via an inverse discrete wavelet transform (IDWT) mod-
ule. For the FTP task, the fundamental requirement is to generate the
optimal wavelet coefficients from the input flight trajectory, which has
the ability to support the IDWT reconstruction to predict the next
trajectory point.

To implement this, an encoder-decoder neural architecture is
proposed to learn latent temporal features from the input trajectory
sequence and project these features into the wavelet domain, i.e.,
generating wavelet coefficients of both historical and future trajec-
tories by using different scale-oriented decoders. The estimated
coefficients are further passed through an IDWTmodule to achieve the
FTP task. In this context, wavelet components refer to a set of wavelet
coefficients obtained from decomposed motion attributes. For each
motion attribute, the wavelet components are inferred from different
decomposition paths and located at different scales. In general, high-
frequency components represent local details of the flight trajectory,
while low-frequency ones indicate global trends. To support the
wavelet reconstruction procedure, a wavelet attention module is
innovatively designed to capture discriminative transition patterns by
learning scale-oriented coefficients from input trajectory sequences. In
the training stage, the actual wavelet coefficients are utilized as
supervised information to update neural parameters. The experi-
mental results demonstrate the proposed WTFTP framework achieve
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Fig. 1 | The overall architecture of the proposedwavelet transform-based flight
trajectory prediction framework. The orange dash line denotes the prediction
objective of the proposed framework, i.e., wavelet components, which are applied
to perform the inverse discrete wavelet transform for reconstructing historical
sequence and predicting the next state of the aircraft. From upper to lower, the
historical trajectory sequence is transformed into latent temporal features that are

fed intomultiple decoders to extract scale-oriented features for generatingwavelet
components. The yellow solid line indicates supervision information, i.e., the real
wavelet components (obtained by discrete wavelet transform of the real historical
trajectory sequence and the next-instant trajectory point) serve as supervised
information.
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less than 400-meter three-dimensional deviation error and robust
prediction performance in different flight phases (i.e., cruise, climb
and descent). By incorporating the wavelet analysis into the FTP task, a
time-frequency perspective is provided to perform the pattern
recognition for different time and frequency scales, making it highly
effective for multi-resolution analysis to enhance the FTP perfor-
mance. In addition, the proposed approach also enables us to extract
underlying dynamic properties from these multi-scale components,
providing a more comprehensive representation of flight trajectories
over the traditional time-domain representation.

In this work, the proposed framework contributes the flight tra-
jectory prediction task in the following ways:
(1) A wavelet-based time-frequency framework is innovatively pro-

posed to achieve the FTP task. Compared to previous works, the
proposed framework has greatly improved flight trajectory
prediction by incorporating time-frequency analysis to capture
dynamic characteristics of trajectories.

(2) An encoder-decoder deep-learning architecture is proposed to
generate wavelet coefficients, in which global flight trends and
local motion details at different scales are separately modeled to
support the IDWT procedure for the FTP task.

(3) Awavelet attentionmodule is designed in each decoder to exploit
scale-oriented underlying patterns from historical trajectory
sequences andenhance the learning ability towardsflightpatterns
at different scales to promote the prediction performance.

(4) The proposed approach is validated on real-world data and the
experimental results demonstrate the performance advantages
over other competitive baselines, especially in the climb and
descent phaseswithmaneuver control. All the proposed technical
modules contribute to desired performance improvements. The
results also confirm the effectiveness of the time-frequency
analysis for the FTP task.

Results
Task overview
The FTP task is generally defined as a TSF problem. Given the attribute
vectors of the past M trajectory points
fPi 2 Rd ji=N �M,N �M + 1, � � � ,N � 1g, the primary objective is to
predict the attribute vectors of the future trajectory point PN. Here we
define Pi as follows:

Pi = ½Loni, Lati,Alti,Vxi,Vyi,Vzi�T ð1Þ

where Lon, Lat, Alt, Vx, Vy, Vz correspond to the longitude, latitude,
altitude and velocities along the previous three dimensions, respec-
tively. The superscript T denotes matrix transposition. A non-linear
function f(⋅) is expected to be learned and estimate the next status P̂N :

P̂N = f ðPN�M:N�1Þ ð2Þ

PN�M:N�1 = ½PN�M ,PN�M + 1, � � � ,PN�1� ð3Þ

The proposed WTFTP framework implements the trajectory pre-
diction by performing the IDWT procedure to reconstruct the histor-
ical trajectory sequence and predict the trajectory point for the next
instant, in which the wavelet components are generated by a neural
architecture to consider different frequency scales. Specifically, the
low-frequency components can be considered as global flight trends,
which imply the general orientation of the trajectory, while the high-
frequency components represent the local motion details at different
scales to capture maneuvering patterns of the aircraft. By applying
these wavelet components to supervise the learning procedure, the
WTFTP is able to identify different flight patterns from trajectory
sequence to support the reconstruction and prediction procedure.

Mathematically, the prediction process of theWTFTP can be described
as:

½P̂N�M:N�1, P̂N �=WTFTPðPT
N�M:N�1Þ ð4Þ

More details about the inference procedure of the proposed WTFTP
framework can be found in Supplementary Section 2.2.

Dataset and preprocessing
In this work, the raw flight trajectories are collected by multi-source
Secondary Surveillance Radar (SSR) and Automatic Dependent
Surveillance-Broadcast (ADS-B) froma real-worldATC system inChina.
The flight trajectory dataset is formulated by fusing the multi-source
flight trajectories to validate the proposed approach. In addition, the
preprocessing steps are conducted to enhance the data quality,
including data check, multi-source data parsing, track point and flight
registering,multi-sourcedata alignment, data filtering, and fusion. The
trajectory dataset covers about 45 days. The timestamp, position and
speed attributes in the 3D earth space are parsed from raw binary data
to build our experimental dataset.

The update interval of the trajectory in this dataset is 20 s. The
trajectory attributes are normalized using max-min normalization to
unify data scales and ranges (longitude and latitude: degree, altitude:
10m, speed: kilometers per hour). To evaluate the model perfor-
mance, the trajectories in the first 40 days are selected as the training
dataset, and the following one day is dedicated to fine-tuning hyper-
parameters, and the trajectories of the last four days are formulated as
a test set. More detailed descriptions of the dataset are provided in
Supplementary Section 1.1.

Evaluation metrics
In this work, a total of four measurements are considered to evaluate
theperformanceof predictionmodels, including root ofmeansquared
error (RMSE), mean absolute error (MAE), mean relative error (MRE)
and mean deviation error (MDE). The commonly used metrics in the
FTP task are RMSE, MAE, and MRE, as shown below:

RMSEi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j = 1

ðPi,j � P̂i,jÞ
2

vuut ð5Þ

MAEi =
1
N

XN
j = 1

jPi,j � P̂i,jj ð6Þ

MREi = 100%×
1
N

XN
j = 1

Pi,j � P̂i,j

Pi,j

�����
����� ð7Þ

where N represents the total number of the test set. Pi,j is the i-th
attribute of the real trajectory point for the j-th sample and P̂i,j is the
corresponding predicted value.

As the RMSE, MAE and MRE are useful metrics for assessing pre-
diction performance on a single motion attribute, in this work, the 3D
deviation distance between the predicted and ground-truth trajectory
point is also measured to consider overall model performance. To
resolve the differences inmeasurements and statistical spans between
longitude, latitude, and altitude in the WGS-84 coordinate system, the
MDE metric, based on the Euclidean distance between predicted and
actual points in earth-centered and earth-fixed (ECEF) coordinate
system, is proposed to measure the overall prediction performance of
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the FTP model as shown below:

MDE =
1
N

XN
j = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i

ðposi,j � ^posi,jÞ2
vuut ð8Þ

pos1,j = ðPRðlonjÞ+altjÞ cosðlonjÞ cosðlatjÞ
pos2,j = ðPRðlonjÞ+altjÞ cosðlonjÞ sinðlatjÞ
pos3,j =

b2

a2 PRðlonjÞ+altj
� �

sinðlonjÞ
PRð�Þ= affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� b2

a2

� �
sin2ð�Þ

r

8>>>>>>>><
>>>>>>>>:

ð9Þ

where pos1,j, pos2,j and pos3,j are converted coordinates of the actual
position components (i.e., longitude, latitude and altitude) lonj, latj
and altj, respectively. ^pos1,j , ^pos2,j and ^pos3,j are converted coordinates
of the predicted position components ^lonj,

^latj and âltj by using the
same conversion equations as shown in Eq. (9), respectively.
a = 6378.137 kilometers (km) and b = 6356.752 km are the equatorial
radius and the polar radius of the earth, respectively. PR(⋅) is the dis-
tance from the surface to the line between the north and south poles
along the ellipsoid normal. The predicted and target positions are
converted into the ECEF coordinate system with the same measure-
ment, kilometers, by using Eq. (9). Finally, the MDE can be computed
by their Euclidean distance. Considering that timestamp, longitude,
latitude and altitude serve as crucial attributes in general 4D-FTP tasks,
the prediction performance is primarily investigated on the position
components due to the fixed time interval in this work. The speed is
considered as the auxiliary attributes to learn flight patterns in the
WTFTP framework.

Model configurations
All experiments are built and conducted on PyTorch 1.451. The PyTorch
implementation of wavelet transform52 is utilized to support the pro-
cedure of the DWT and IDWT procedures. The Adam optimizer is
selected to update trainable parameters with a learning rate initialized
as 0.001 and decayed by a rate of 0.5 every 10 epochs. More details
about experiment settings can be found in Supplementary Section 1.2.
The model configurations are optimized by training on the small data
set and fine-tuned by the validation set. More details of configurations
can be found in Supplementary Table 1.

Baselines
To validate the proposed WTFTP framework in the FTP task, several
baseline models with different model architectures and technical

frameworks are selected to compare the model performance on the
test dataset, as shown below:

A1 Vanilla LSTM: This is an RNN-based predictor proposed in43 with
the LSTM networks modeling trajectory points. The input and
output embedding layer with fully connected networks are
employed to implement feature projections.
A2 TCN: This is a sequential modeling architecture proposed in53,
and the causal convolution mechanism can more effectively model
temporal information. The TCN applied in the FTP is recently
studied54 and we also validate its performance in our data set.
A3 CNN LSTM: Based on the vanilla LSTM, the CNNs are applied to
extract the spatial information and further combinedwith the LSTM
networks to achieve the FTP task44.
A4 Transformer: By referring to other works in the CV, TSF, ASR and
NLP fields, the Transformer architecture32 is also selected as the
baseline to achieve the FTP task in a non-autoregressive manner.
A5 FlightBERT: This is a Transformer-based flight predictor
proposed in41, in which the binary encoding representation is
proposed to enhance the feature extraction. This work achieves the
FTP task as a multi-binary classification problem.

Overall performance
The experimental results of the proposed approach and other selec-
tive baselines are reported in Table 1, in terms of the proposed four
measurements. In general, the proposed WTFTP framework outper-
forms other baselines and achieves the best performance in allmetrics
of longitude, latitude and altitude (LLA) except the RMSE of altitude,
which showcases its performance advantages and also confirms the
effectiveness of time-frequency analysis in the FTP task. Thanks to the
ability of time-frequency analysis and in-depth modeling of flight
trends and motion details, the WTFTP framework achieves a relative
reduction of at least 30% MAE and 20% MRE in the longitude and
latitude dimensions compared to the best results of these baselines
(FlightBERT). Furthermore, the practicality of theWTFTP framework is
greatly enhanced since it reduces the MDE by approximately 35%,
achieving less than 400-meter prediction error. The results in theMDE
enable the proposed approach to be a promising solution in real-world
applications, thanks to small deviations of the predicted trajectory
points. From the experimental results, the following conclusions can
also be drawn to understand the proposed approach:
(1) As a basic deep-learning model only considering the temporal

modeling in the FTP task, A1 suffers from the largest prediction
errors, i.e., 0.9472 km in the MDE metric, which makes it
challenging to support delicate trajectory operation manage-
ment. To improve the prediction accuracy, in A2, the causal
convolution mechanism is applied to effectively establish long-
range time-series relationships of historical trajectory, resulting in

Table 1 | The overall performance evaluation

Models MAE↓ MRE(%)↓ RMSE↓ MDE↓

Lon Lat Alt Lon Lat Alt Lon Lat Alt

A1 0.0056 0.0059 1.36 0.0030 0.0110 0.25 0.0163 0.0142 8.55 0.9472

A2 0.0052 0.0054 1.32 0.0049 0.0194 0.27 0.0151 0.0138 8.13 0.8794

A3 0.0051 0.0050 1.36 0.0048 0.0177 0.27 0.0164 0.0139 8.91 0.8299

A4 0.0049 0.0047 1.21 0.0046 0.0169 0.24 0.0148 0.0128 8.17 0.8003

A5 0.0039 0.0033 1.36 0.0029 0.0103 0.30 0.0558 0.0486 10.59 0.5910

WTFTP 0.0025 0.0022 1.14 0.0023 0.0078 0.23 0.0148 0.0125 8.91 0.3855

A1–A5 represent the baselines: Vanilla LSTM, TCN, CNN LSTM, Transformer and FlightBERT, respectively.
The Lon, Lat and Alt stand for longitude, latitude and altitude, respectively.
In the MAE and RMSE metrics, the Lon and Lat are measured in degrees, and the Alt is measured in 10m. The MDE is measured in kilometers.
The bold ones denote the best performance on the corresponding metric.
↓ represents minimization indicators.
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slightly better regression results compared to those of vanilla
LSTM. Considering that only the temporal modeling in the FTP
task fails to obtain desired accuracy, the results confirm that both
spatial and temporal features are required for modeling the
trajectory sequences to achieve a high-confidence FTP task.

(2) Considering the requirements of the spatial and temporal mod-
eling, in A3, the convolution mechanism and recurrent inference
are combined to achieve the FTP task, resulting in slight perfor-
mance improvement due to the temporal-spatial modeling
capability. However, this model also fails to capture intrinsic
flight patterns at different scales and provide the desired
prediction performance, without in-depth feature extraction
towards global trends and local details of the trajectory sequence.

(3) To enhance the learning capability for flight patterns, the self-
attention mechanism in A4 is designed to correlate historical
trajectory points and extract semantic representations of the
sequence, resulting in more desirable prediction results. Mean-
while, it is also noted that A4 is able to provide a robust prediction
in terms of the RMSE metrics on all the LLA dimensions. The
results can be attributed that the self-attention mechanism
highlights the trajectory characteristic at significant historical
steps, further enhancing the prediction accuracy.

(4) In order to explore effective high-dimensional trajectory features
and further promote the overall capability of Transformer, the
binary encoding representation and attribute correlation atten-
tion in A5 (FlightBERT) are proposed to achieve the FTP task,
which provides significant performance improvements in the
MAE and MRE metrics for all attributes (except altitude) over A1-
A4 baselines, and over 26% in theMDEmetric. As demonstrated in
the original paper, the inferior performance on the altitude
dimension is also caused by the high-bit prediction error of the
binary encoding. Although sequential inference and feature
characterization contribute considerable performance improve-
ments, the Transformer-based models A4 and A5 suffer from
limited prediction accuracy. This is due to the deficiency of time-
frequency analysis, resulting in inadequate learning ability
towards the underlying flight patterns.
Fortunately, in the proposed WTFTP framework, the time-

frequency representations of wavelet components (WTCs) enable it
to sufficiently examine the slow and fast dynamic properties of the
flight trajectory and thus harvest the best performance over other
models. To be specific, the improvement of the RMSE metric is rela-
tively smaller compared to other models. It is primarily because the
modeling of high-frequency components inevitably includes the esti-
mation noise, and thus has an impact on prediction stability. More-
over, the RMSE of altitude is higher in theWTFTP than that in selected
baselines. The performance reduction is also caused by the over-
modeling towards fast dynamics on the altitude dimension, since the
flight cruise is the primary phase in the civil aviation operation process
with relatively littlemaneuver control over altitude (i.e., abundant slow
dynamics on the altitude dimension). However, the prediction gap in
altitude is still under 10 meters, and the MAE and MRE of altitude still
outperform other models, which also validates the modeling of the
ability of the proposed approach. In summary, the proposed WTFTP
framework harvests the highest performance and confirms the effec-
tivenessof time-frequencyanalysis in the FTP task,which also supports
the motivation of this work.

To further evaluate the performance of the WTFTP framework
and baselines, experiments in different flight phases (including cruise,
climb and descent) are also investigated and the results are summar-
ized in Table 2. In general, the proposed WTFTP framework has the
ability to provide a robust prediction performance in all flight phases.
From the results, the following conclusions can be drawn:
(1) In the cruise phase, it can be seen that the WTFTP outperforms

baselines in most metrics, in which the altitude prediction is

affected by the same problem as discussed above. Although the
RMSE of longitude is also impacted by prediction noise (about a
0.001-degree gap from the best baseline), the WTFTP framework
is still able to achieve a satisfactory overall performance in the
MDE metric.

(2) In the climb and descent phases, compared to their metrics in the
cruise phase, a common phenomenon can be observed that the
comparative baselines suffer from severe performance gap in the
comprehensive MDE metrics due to the situations of intention
change and maneuver control. Thanks to the capability of time-
frequency analysis and in-depth feature extraction towards global
flight trends and local motion details, the proposed WTFTP
approach is capable of effectively capturing intrinsic evolution
patterns of trajectory to provide a robust prediction performance
and can still guarantee prediction accuracy in such
complex situations (0.3405 km of the MDE in the cruise phase
v.s. 0.4846 km and 0.3753 km in the climb and descent phase).
As we know, the climb and descent in the terminal airspace is the

performance bottleneck of the FTP task, which is also the primary
focus of current FTP methods. This work contributes a high-
confidence predictive stability to advance the FTP application into
the real-world industrial level, which further confirms the effectiveness
and clarifies the necessity of the proposedWTFTP and time-frequency
analysis in the FTP task.

Ablation study
To further study the performance contributors of the proposed
approach, including different levels ofwavelet analysis and thewavelet
attention module, and verify the effectiveness of time-frequency ana-
lysis in the FTP task, the following configurations are considered as the
ablation experiments, as shown below:

B1 2-level WTFTP: In this case, we study the prediction performance
based on a higher level of wavelet analysis, and other hyper-
parameters are the same as the WTFTP.
B2 3-level WTFTP: Similar to B1, we set the level of wavelet analysis
to 3 in this case.
C1WTFTPwithoutWAtt: In this case,we remove theWAttmodule to
study performance improvements of the WAtt module and the
effectiveness of time-frequency analysis in the FTP task. This model
relies on an autoregressive inference to generate WTCs.
C2 2-level WTFTP without WAtt: Similar to C1 with 2-level wavelet
analysis.
C3 3-level WTFTP without WAtt: Similar to C1 with 3-level wavelet
analysis.

The experimental results of the ablation studies are reported in
Table 3 and the following conclusions can be drawn:
(1) For the levels of thewavelet analysis,wecan see that the proposed

approach has the ability to obtain comparable performance
among the experiments, i.e., 2-level of wavelet analysis indeed
improves the final FTP performance, but performance degrada-
tion will be encountered for the 3-level wavelet analysis.
Specifically, compared to the WTFTP framework, B1 exhibits
enhanced performance for most performance indicators due to
its higher level of wavelet analysis. The higher level of wavelet
analysis also results in the performance improvement of C2 over
C1 by removing the WAtt modules. The B1 outperforms the
WTFTP primarily because a higher level of wavelet analysis
provides more detailed dynamic characteristics, i.e., more high-
frequency WTCs, about the flight trajectory, which allows
decoders to finely model the motion properties of the aircraft.
However, the performance of B2 is inferior to the WTFTP
framework, except the MAE and RMSE metrics on the altitude
dimension. Similarly, C3 suffers from performance reduction
caused by an excessively high level of wavelet analysis after
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removing the WAtt modules. The primary reason for the
performance degradation is the over-short length of WTCs in B2
and C3, which undermines the temporal modeling of the WTFTP
framework. As demonstrated in Eqs. (19)–(21), the shortest length
ofWTCs is 2 in B2 andC3, thereby impacting the decoders to learn
the evolution patterns of the flight trajectory.

(2) As to the beneficial effects of the WAtt module, all experimental
results confirm the effectiveness of the proposedWAtt module in
capturing scale-oriented features and enhancing the contextual
representation of trajectory sequences at different scales to
precisely predictWTCs. Specifically, in the cases of the same level,
by incorporating the WAtt module into the proposed approach,
lower prediction errors are obtained for all metrics. The
performance reduction of 3-level wavelet analysis in B2 can also
be attributed to deteriorated temporal modeling caused by the

over-short length of WTCs. Thanks to the capability of the WAtt
module to improve particular correlations between historical
trajectory points and future motion properties in certain
corresponding scales, the WTFTP framework is able to provide
required trajectory patterns and therefore outperforms C2 for all
position components in terms of the proposed metrics.

(3) In addition, it can also be seen that, even without the WAtt
module, the proposed wavelet framework (implemented by a
simple encoder-decoder structure in C1–C3) also harvests better
performance over other baselines, particularly in terms of
latitude and longitude metrics as well as the MDE, as shown in
Tables 1 and 3. The improvement primarily results from the
capability of time-frequency analysis to capture diverse flight
patterns of global trends and local details, whereby the WTFTP
framework achieves the extraction of in-depth features related

Table 2 | Performance comparison in different flight phases

Phases Models MAE↓ MRE(%)↓ RMSE↓ MDE↓

Lon Lat Alt Lon Lat Alt Lon Lat Alt

Cruise A1 0.0043 0.0050 0.58 0.0041 0.0180 0.07 0.0166 0.0142 5.90 0.7789

A2 0.0043 0.0044 0.59 0.0040 0.0159 0.07 0.0155 0.0136 5.47 0.7173

A3 0.0041 0.0042 0.62 0.0038 0.0152 0.07 0.0169 0.0144 6.38 0.6837

A4 0.0045 0.0050 0.56 0.0042 0.0173 0.06 0.0155 0.0140 5.58 0.7954

A5 0.0042 0.0033 0.09 0.0041 0.0133 0.01 0.0612 0.0458 1.90 0.5479

WTFTP 0.0022 0.0019 0.36 0.0020 0.0070 0.04 0.0164 0.0136 6.35 0.3405

Climb A1 0.0084 0.0079 3.16 0.0079 0.0277 0.57 0.0118 0.0111 4.42 1.3473

A2 0.0079 0.0087 3.12 0.0075 0.0306 0.57 0.0116 0.0118 4.46 1.3701

A3 0.0070 0.0067 3.12 0.0066 0.0234 0.57 0.0104 0.0092 4.30 1.1225

A4 0.0060 0.0070 3.00 0.0057 0.0245 0.56 0.0084 0.0094 4.18 1.0802

A5 0.0046 0.0040 7.46 0.0044 0.0144 1.45 0.0521 0.0512 28.08 0.9032

WTFTP 0.0030 0.0028 3.01 0.0028 0.0098 0.55 0.0043 0.0038 4.16 0.4846

Descent A1 0.0066 0.0060 1.94 0.0062 0.0211 0.55 0.0097 0.0085 2.89 1.0363

A2 0.0061 0.0062 1.91 0.0057 0.0222 0.54 0.0086 0.0086 2.82 1.0128

A3 0.0060 0.0052 2.00 0.0056 0.0183 0.56 0.0088 0.0073 2.95 0.9196

A4 0.0050 0.0060 2.09 0.0047 0.0211 0.63 0.0075 0.0080 2.95 0.9175

A5 0.0041 0.0047 3.94 0.0040 0.0127 0.92 0.0504 0.0726 18.85 0.7996

WTFTP 0.0024 0.0021 1.81 0.0023 0.0074 0.50 0.0040 0.0030 2.73 0.3753

A1–A5 represent the baselines: Vanilla LSTM, TCN, CNN LSTM, Transformer and FlightBERT, respectively.
The Lon, Lat and Alt stand for longitude, latitude and altitude, respectively.
In the MAE and RMSE metrics, the Lon and Lat are measured in degrees, and the Alt is measured in 10m. The MDE is measured in kilometers.
The bold ones denote the best performance on the corresponding metric.
↓ represents minimization indicators.

Table 3 | Experimental results of ablation studys

Models WAtt MAE↓ MRE(%)↓ RMSE↓ MDE↓

Lon Lat Alt Lon Lat Alt Lon Lat Alt

WTFTP w/ 0.0025 0.0022 1.14 0.0023 0.0078 0.23 0.0148 0.0125 8.91 0.3855

B1 0.0024 0.0021 1.15 0.0022 0.0075 0.24 0.0134 0.0117 8.90 0.3727

B2 0.0032 0.0032 1.12 0.0030 0.0113 0.24 0.0140 0.0123 8.59 0.5271

C1 w/o 0.0032 0.0029 1.17 0.0030 0.0105 0.24 0.0159 0.0131 8.93 0.5090

C2 0.0028 0.0028 1.26 0.0026 0.0099 0.26 0.0140 0.0122 9.07 0.4642

C3 0.0032 0.0031 1.25 0.0030 0.0110 0.25 0.0140 0.0119 8.95 0.5186

B1 and B2 represent 2- and 3-level WTFTP with wavelet attention module, respectively. C1–C3 represent 1-, 2-, and 3-level WTFTP without wavelet attention module.
The Lon, Lat and Alt stand for longitude, latitude and altitude, respectively.
In the MAE and RMSE metrics, the Lon and Lat are measured in degrees, and the Alt is measured in 10m. The MDE is measured in kilometers.
Notaion w/ and w/o indicate the WAtt module is included in the decoder or not.
The bold ones denote the best performance on the corresponding metric.
↓ represents minimization indicators.
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to multi-resolution aircraft motion properties. As demonstrated
by the MDE metric in Table 3, the time-frequency analysis-based
models accurately predict flight trajectory with smaller devia-
tions, which validates their robustness and practical perfor-
mance and further confirms the effectiveness of time-frequency
analysis in the FTP task.
To provide a more comprehensive understanding of interpret-

ability for theWAtt module, attention scores for theWTFTP and B1 are
visualized in Fig. 2a–c. Specifically, Fig. 2a, b display the attention
scores of WTC0 and WTC1 in the decoders of the WTFTP framework,
respectively, while Fig. 2c–e illustrate the attention scores of WTC0,
WTC1, andWTC2 in the decoders of B1. The detailed explanation of the
subscripts of the WTC can be found in Section Time-frequency fea-
tures of flight trajectory, which represents different scales. From
Fig. 2a, c, attention scores for generating WTC0 assign higher weights
at the end of the historical trajectory, which confirms intuitive patterns
of the flight trajectory, i.e., the trend of the next trajectory point highly
correlates with the last historical trajectory. In addition, Fig. 2b reveals
that WTC1 learns higher attention to the last two historical trajectory
points of the high-frequency component, in which two neighbor
points can reflect local change details of the flight trajectory. Figure 2e

further demonstrates that WTC2 can provide the highest frequency
activations for more significant latter motion details of historical tra-
jectory. However, due to the 2-level wavelet analysis in B1, two sets of
attention scores for high-frequency patterns are entirely distinct from
Fig. 2b. In particular, some earlier steps of the trajectory are assigned
to prominent attention scores in Fig. 2d, e.Most importantly, although
bothWTC1 andWTC2 are to capturedetailed local patterns of the flight
trajectory, their distributions of attention scores are complementary
with each other. Therefore, it is believed that additional abstract
representations in the frequency domain examine fine-grained
dynamic detail features at earlier time steps, ultimately extracting
more in-depth flight patterns to enhance the prediction performance.

Case study of complex airspace scene
To study the prediction performance in complex scenes, a repre-
sentative flight path is selected to implement visualization. The spe-
cific flight journey is from the location with the longitude and latitude
coordinates of around (104.15, 30.50) and to (102.19, 27.84), where a
flying circle of the approach phase is caused due to traffic flow control
near the arrival airport, as presented in Fig. 3a. The 3D visualization is
also provided to support the evaluation in Fig. 3b and shows that the

b

c

d

e

Fig. 2 | Attention scores obtained in decoders of one-level and two-level
WTFTP. a Attention scores of one-level WTFTP for generating WTC0. b Attention
scores of one-level WTFTP for generating WTC1. c Attention scores of two-level

WTFTP for generatingWTC0. dAttention scores of two-level WTFTP for generating
WTC1. e Attention scores of two-level WTFTP for generatingWTC2. All score values
are provided as a source data file.

a b

Fig. 3 | Visualization of the selective flight trajectory. a The longitude-latitude
plot of the case. A flying circle of the approach phase is caused due to traffic flow
control near the arrival airport. A zoom-in local view is provided to show flight

trajectory predictions for the approach phase in complex airspace. b Visualization
in the 3D grid illustrates that the selected trajectory contains climb, cruise, turn,
descent and approach phases.
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selected trajectory contains climb, cruise, turn, descent and approach
phases. To obtain a more intuitive understanding of the differences
between the models, the absolute error of the LLA and 3D deviation
error are displayed in Fig. 4a–d. It is clear that the WTFTP framework
achieves the desired prediction performance, whereas inferior results
are obtained in baselines under time-varying flight patterns (various
stages of the flight journey).

Specifically, A1–A3 can only reach the comparable performance
during the cruise phase but fail to retain the prediction stability in the
whole flight journey, subjecting to the intention changes as evident
from Fig. 4d. In A4, the self-attention mechanism represents a lower
prediction error and outperforms A1–A3. However, the performance is
sharply dropped in the complex flight scenarios, particularly in the
approach scene (flying circle), where traffic congestion and flow con-
trol result in the inability to accurately capture trajectory evolution
patterns. Figure 3a provides the details of trajectory prediction in the
approach area, indicating that the predicted trajectories of
A1–A3 seriously deviate from the actual trajectory, and A4 also has a
large prediction error. Meanwhile, when a left-turn intention is mani-
fested in the historical trajectory, only the FlightBERT and WTFTP
capture this motion detail and achieve a desired intention-driven
response, providing a more accurate prediction. Although FlightBERT
in A5 can perform comparable prediction accuracy, the high-bit pre-
diction error also causes an unaccepted estimate error on the latitude
dimension near the location of (102.06, 27.77). The high-bit errors of
A5 are also indicated by red ellipses in Fig. 4a–c.

Thanks to wavelet-based time-frequency analysis for capturing
flight trends andmotion details, theWTFTP framework can capture in-
depth flight patterns and achieve desirable FTP throughout the entire
flight journey. Even in the approach area, the proposed WTFTP
method is also able to harvest desired performance advantages com-
pared to modern methods. During the approach phase, the baseline
models suffer from large prediction errors due to the traffic control
maneuver, especially for the MDE measurement. To quantitatively
evaluate the performance in complex airspace (flying circle), the MDE
and dynamic timewarping (DTW)55metrics are calculated to clarify the
performance improvements of the WTFTP in the approach phase:
(1) TheMDEof theWTFTP framework is only 0.5003 km,while A1–A5

are specifically 3.6798, 2.1887, 2.1481, 1.2102 and 0.7873 km,
respectively.

(2) As to the DTW metric, the proposed WTFTP framework is only
15.00 km,while A1–A5 are 94.60, 57.42, 56.91, 30.18 and 23.45 km,
respectively.

Compared to the best baseline (FlightBERT), the WTFTP frame-
work achieves over 36% relative reduction of both the MDE and DTW
metrics. The results indicate the highest similarity between the pre-
diction trajectory of the WTFTP framework and the ground truth,
confirming that the proposed approach is able to provide excellent
performance and is a promising FTP solution in complex airspace
situations.

Case study of multi-resolution features
To clarify the effects of multi-resolution features in the proposed
WTFTP framework, a case study is conducted to investigate the
learned flight trends and motion details by distinct WTCs for des-
cending and turning right intentions. Figure 5j illustrates the flight
profile, and 3 × 3 subgraphs in Fig. 5a–i show the estimated and
ground-truth values of the LLA reconstructed using different WTCs.
The subgraphs in the column represent the LLA, and each row indi-
cates the involvedWTCof the IDWT procedure (Not involved ones will
be replaced by zeros) in the proposed WTFTP framework. For the
1-level wavelet analysis, the WTFTP yields two WTCs. There are thus a
total of 3 cases for the IDWT: only WTC0 involved (case 1), only WTC1

involved (case 2), and all WTCs involved (case 3). Note that results in

case 3 can also be obtained by the sum of which in case 1 and 2. By
analytical investigation and comparison of the mentioned three cases,
the following conclusions can be made from the experimental results:
1. The WTCs are capable of implementing the time-frequency

characterization. As can be seen from Fig. 5a–f, all position
components of the trajectory present wave-like forms due to the
absence of frequency information, which limits the ability to
convert the trajectory fully into the time domain. In addition, the
position components in case 2 exhibit larger fluctuations
compared to those in case 1, resulting from that WTC0 and
WTC1 capture low- and high-frequency features, respectively.

2. In general, WTC0 primarily characterizes the global flight trends
of the trajectory.With respect to theoverall prediction results, the
LLA in case 1 can roughly match the time-domain trajectory,
indicating that WTC0 retains the trend patterns of the trajectory
sequence.Moreover, Fig. 5i depicts a zero rate of climb or descent
(ROCD)of the aircraft between the time stamps 2 to 5, implyingno
local motions along the altitude during this period. Therefore,
even without fast dynamic features (i.e., WTC1), the altitude
component in case 1 can closely reflect the time-domain altitude.

3. Compared to the WTC0, the more local motion details of the
trajectory sequence are represented by WTC1. From the time
stamp0–7, the aircraftmaintains itsmotion states along a straight
flight without turning (i.e., heading changes), which results in
fixed amplitudes in both the longitude and latitude components.
At time stamp 8, the aircraft performs a right turn intention,
causing prominent dynamics in the longitude dimension and
slighter variance in the latitude dimension. Consequently, as
shown in Fig. 5d, e, the corresponding changes in amplitude are
concerned from time stamp 7–9. Compared to case 1, the altitude
in case 2 is around zero between the time stamps 2–5, attributing
to the zero ROCD and the absence of fast dynamics in this period.
By learning time-frequency features from both WTC0 and WTC1,

the WTFTP framework achieves a comprehensive understanding of
both global flight trends and local motion details in a given trajectory
sequence, reaching the desired performance improvement in pre-
dicting the future trajectory. The IDWT procedure on all WTCs yields
the time-domain trajectory in case 3. Even in such complex flight
transitions, i.e., descending and turning, the WTFTP framework is still
able to accurately reconstruct the raw flight trajectory, as well as
predict the next trajectory position, which enhances the explainability
of the proposed time-frequency analysis approach.

Discussion
In this work, a time-frequency analysis framework is proposed to
achieve flight trajectory prediction, providing a more dedicate per-
spective to promote the modeling capability of trajectory patterns.
The proposed wavelet-transform based flight trajectory prediction
(WTFTP) framework focuses on studying the virgin work of time-
frequency analysis in the FTP research and addressing the disability of
capturing both the global and local trajectory patterns in conventional
methods. Firstly, inspired by frequency-domain analysis in other TSF
tasks, the general time-frequency framework implemented by discrete
wavelet transform is presented to optimize wavelet coefficients and
support historical trajectory reconstruction and future state predic-
tion. Secondly, the wavelet coefficients are generated by an encoder-
decoder neural architecture from historical trajectory sequences,
which are further fed into the IDWT procedure to achieve trajectory
prediction. Finally, a wavelet attention module is introduced in the
neural architecture to learn scale-oriented features and enhance the
learning ability of the proposed model.

Experimental results have demonstrated that the WTFTP frame-
work achieves a satisfactory performance improvement over selected
competitive baselines on a real-world dataset. The results also indicate
that each wavelet component contributes to the expected ability to
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d

Fig. 4 | Absolute error and deviation error of trajectory prediction with the
WTFTP framework andbaselines.The red ellipses highlight abnormal predictions
of the FlightBERT caused by high-bit errors. a The absolute error of longitude.

bThe absolute error of latitude. cThe absolute error of altitude.dThe 3Ddeviation
error. The error data is provided as a source data file.
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learn trajectory patterns at different scales, which confirms the effec-
tiveness of time-frequency analysis in the FTP task. Furthermore, the
WTFTP framework can achieve robust predictive stability for complex
airspace situations, especially in the climb, descent and approach
phases with maneuver control, which addresses the technical bottle-
necks for conventional methods to retain high accuracy. Such per-
formance improvements can be attributed that time-frequency
analysis allows for an in-depth feature extraction toward global flight
trends and local motion details. Meanwhile, the absence of time-
frequency modeling poses a challenge for modern methods in
promptly responding to maneuver control, which consequently limits
the practicality in complex airspace.

Even though the WTFTP framework achieves significant perfor-
mance improvement over comparative baselines, the following topics
deserve to be further explored in our future works.
(1) It is required to enhance the prediction accuracy on the altitude

dimension, especially in the cruise phase. As illustrated in Table 2,
during the cruise phase, the improvement of the WTFTP frame-
work in altitude is limited, and the three metrics are not com-
parable to other baseline models. Only during the climb and
descent phases can the advantage of the WTFTP framework on
the altitude dimension be achieved. As the major phase of the
flight operation, the altitude dimension during the cruise phase is
with limited maneuver control, the WTFTP framework may over-
model the fast dynamics of the altitude changes, resulting in
unnecessary estimation noise to degrade the prediction perfor-
mance. In the future, we plan to control the convergence of
different wavelet components and reduce the influence of high-
frequency noise from the perspective of the loss function.

(2) The multi-step prediction of the proposed framework is a
significant topic in future works. As shown in Supplementary
Fig. 4, the mean deviation errors of the WTFTP framework and
other baseline models at different prediction steps. Although the
WTFTP framework maintains a higher performance within 80-
second prediction horizons, it fails to outperform FlightBERT for
longer prediction horizons. Given the ability of modeling local
motion details by wavelet analysis, the WTFTP framework is
sensitive to historical deviations in the iterative prediction
procedure. Thedetailedmulti-step prediction analysis is provided
in Supplementary Section 3. In the future, we plan to incorporate
the non-autoregressive mechanism into a multi-step prediction

framework based on time-frequency analysis, which is expected
to predict the aircraft state for future periods and avoid the
accumulated impacts caused by pseudo labels.

Nevertheless, the proposed framework achieves higher perfor-
mance over competitive baselines, which provides a time-frequency
perspective to solve the FTP task bymodeling local motion details and
global flight trends. In addition, the proposed framework harvests
pleasing results for maneuvering control, which addresses the tech-
nical bottlenecks of the time-domain methods.

Methods
Time-frequency features of flight trajectory
In this work, discrete wavelet transform is utilized to perform time-
frequency analysis in the proposed framework. The globalflight trends
and local motion details of the flight trajectory can be accurately illu-
strated, benefiting from the filter bank obtained by wavelet transform.
The preliminaries concerning wavelet analysis are provided in Sup-
plementary Section 2.1. Specifically, the wavelet coefficients of each
leaf node in the filter bank are defined as a wavelet component (WTC).
These WTCs are sorted in ascending order of frequency. Without loss
of generality, for the 3-level DWT, WTC0 represents level-3 approxi-
mated coefficients and fWTC4�igi2ð0,3�\i2Z represents level-i detail
coefficients, as shown in Supplementary Fig. 2. By employing multi-
resolution analysis of wavelet, WTC0 is capable of illustrating the
tendency of time series characterized by slow dynamics, while
fWTC4�igi2ð0,3�\i2Z present the local details of the series with fast
dynamics56. Thanks to the ability of describing both the global and
detailed dynamics by wavelet analysis, the wavelet-based time-fre-
quency features of trajectories can be utilized to capture in-depth
flight dynamic properties. Inspired by this, the WTFTP framework is
proposed to learn global flight trends and local motion details from a
time-frequency perspective, providing a more effective identification
of flight patterns to further improve prediction accuracy.

The proposed neural architecture
For the FTP task, the primary idea of the WTFTP framework is to
predict the wavelet coefficients to implement the IDWT procedure,
which reconstructs the input trajectory sequence and also predicts the
trajectory point at the next time step. To this end, an encoder-decoder
neural architecture is designed to implement the WTFTP framework,

a b c

d e f

g h i

j

Fig. 5 | The contributions of differentWTCs for the FTP task. a–i The target and
predicted trajectoryobtainedby the IDWTprocedureof differentWTCs, inwhich x-
axis represents time stamps and y-axis represents the position component. The
subgraphs in the column represent the longitude, latitude and altitude. Each row

indicates the involved WTC of the IDWT procedure (Not involved ones will be
replaced by zeros) in the proposed WTFTP framework. j The selected trajectory in
the 3D grid. All relevant coefficients and trajectory are provided as a source
data file.
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as shown in Fig. 6, including an input embedding network, an encoder,
multiple decoders corresponding to all WTCs, and an IDWT module.
Unlike conventional FTP methods, the proposed WTFTP framework
has the ability to predict the trajectory point at the next time step and
also reconstruct the historical trajectory sequence, which enables it to
fully learn multi-resolution characteristics of flight patterns and thus
enhances the prediction accuracy.

In the proposed neural architecture, each historical trajectory
point is firstly transformed into a high-dimensional vector via a fully
connected network. The resulting high-dimensional vectors are fed
into anRNN-based encoder to furthermodel and extract the trajectory
embeddings H as shown in Eq. (10). These embeddings capture the
temporal features of the trajectory to support subsequent prediction
steps for learning diverse flight patterns.

H=EncoderðInputEmbeddingðPT
N�M:N�1ÞÞ ð10Þ

In succession,multiple decoders are designed to achieve in-depth
feature learningofflight patterns at different scales. For L-level wavelet
analysis, each decoder is dedicated to generating a certain sub-band of
time-frequency characteristics of the trajectory sequence, i.e., Qi

representingWTCi as shown in Eq. (11). To enhance the learning ability,
a wavelet attentionmodule is innovatively proposed in the decoder to
combine the historical trajectory embeddings for generating scale-
oriented features, which are then fed into an RNN-based block to learn
the temporal dependence.

Qi =DecoderiðHÞ, i=0, 1, � � � , L ð11Þ

Finally, the required attributes of the predicted trajectory point
P̂N can be obtained by the IDWT procedure of stacked WTCs from
multiple decoders as shown in Eq. (12).

½P̂N�M:N�1, P̂N �= IDWTðQ0,Q1, � � � ,QLÞ ð12Þ

The MSE loss performed on the wavelet components is intro-
duced toupdate themodel parameters,whichmeasures thedifference
between the predicted and actual wavelet component values to refine
the MRA capability and reach the model convergence.

Input embedding network
Each trajectory point represents a unique low-dimensional vector in
the three-dimensional (3D) earth space via its positions and velocities.
To fully extract implicit trajectory features for the subsequent net-
works, it is required to map the low-dimensional vector into a high-
dimensional abstract feature space. Therefore, a linearmapping-based
input embedding network is designed to boost the representational
capability of the trajectory sequence, as shown below:

I= σðσðPT
N�M:N�1 �Wi1Þ �Wi2Þ ð13Þ

where I 2 RM ×D serves as high-dimensional abstract features of the
input trajectory sequence PN�M:N�1 2 Rd ×M . Wi1 2 Rd × ðD==2Þ and
Wi2 2 RðD==2Þ× ðDÞ are weight matrices to linearly transform low-
dimensional attribute vectors of trajectory points into high-
dimensional abstract feature space. σ(⋅) is the ReLU activation function
to enhance non-linear modeling ability. M is the number of historical
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Fig. 6 | The proposed neural architecture. The network is cascaded by an input
embedding network, an encoder, multiple decoders corresponding to all wavelet
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details. An orthodox inverse discretewavelet procedure further transformswavelet
components into flight trajectory sequenceof the past period and next instant. The
mean squared error of generatedwavelet components serves as the loss function to
update the trainable parameters of the neural networks.
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trajectory points and D denotes the dimension of feature space.
Operator // is the floor division.

Encoder
The input embedding network is able to capture the intuitive features
of the trajectory points, such as the relationship among dynamic
attributes of a single point. However, high-level abstract semantic
features are highly required to achieve the FTP task within a certain
trajectory sequence. To this end, an RNN-based encoder is utilized to
build the temporal dependence to obtain trajectory embeddings with
task-oriented dynamic characteristics, which enables a fine-grained
analysis towards the intercorrelation of the trajectory sequence.

In this work, the LSTM block is selected to achieve the temporal
modeling in the encoder. The generated high-dimensional features of
the input embedding network are fed into the encoder, in which the
produced hidden states will be considered as trajectory embeddings,
as shown below:

H, ðhe, ceÞ=LSTMðI,h0, c0Þ ð14Þ

where h0, c0 2 RS1 ×D are zero-initialized hidden state and cell state,
respectively. I 2 RM ×D is the input of the LSTM block. The output of
the LSTM block consists of two components. H 2 RM ×D saves all
hidden states from the last layer of the LSTM block as the output
features. The tuple of ðhe 2 RS1 ×D, ce 2 RS1 ×DÞ denotes the hidden
state representing short-term memory and the cell state representing
long-term memory at the last time step, respectively. S1 is the number
of recurrent layers.

Decoder
The encoder leverages the LSTM block to extract high-level abstract
trajectory embeddings with rich temporal features, providing a robust
characterization of the input trajectory sequence. For achieving the
FTP in the proposed approach, the primary requirement is to predict
the wavelet coefficients required for performing the IDWT procedure.
It is believed that relying only on wavelet feature engineering, i.e.,
decomposing the sequence and feeding components into the predic-
tionmodel, is hard to fullyprovide the potential of themulti-resolution
representation offered by wavelet analysis like in refs. 57, 58.

As time-frequency representations of flight patterns, WTCs pro-
vide diverse multi-resolution dynamic features. In order to implicitly
dissect trajectory embeddings and achieve an in-depth analysis of
global trends and local details of flight patterns, a wavelet attention
(WAtt) module is innovatively designed to learn scale-oriented fea-
tures. The architecture of theWAttmodule is illustrated in Fig. 7, which
consists of two stages: enhancement process and convolution

operation. Specifically, trajectory embeddings obtained from the
encoder are further weighted by attention scores to yield enhanced
scale-oriented features of the corresponding time-frequency repre-
sentation, i.e., enhanced trajectory embeddings. The WAtt module
further performs convolution operations on the enhanced trajectory
embeddings to generate contextual embeddings of WTCs. Mathema-
tically, the enhancement process of the WAtt module can be repre-
sented as follows:

Hp = σðH �Wp1Þ �Wp2 ð15Þ

E = γðWs2 � σðWs1 �HpÞÞ ð16Þ

Hh =H+DiagðEÞ �H ð17Þ

where Wp1 2 RD× ðD==2Þ and Wp2 2 RðD==2Þ× 1 are weight matrices to
linearly transform trajectory embeddings into pooled features
Hp 2 RM × 1. Ws1 2 RðM==2Þ×M ,Ws2 2 RM × ðM==2Þ are weight matrices to
exploit feature importance of trajectory embeddings. σ denotes the
ReLU activation function, and γ denotes the Sigmoid activation func-
tion. E 2 RM × 1 activated by the Sigmoid function serves as attention
scores to determine the importance of historical trajectory points with
respect to the future trajectory point. The enhanced trajectory
embeddings Hh 2 RM ×D are inferred by combining the original tra-
jectory embeddings and the weighted trajectory embeddings by
E 2 RM × 1. The operator Diag(⋅) returns thematrixwith the elements of
input as the diagonal.

After obtaining the enhanced trajectory embeddings, the next
step is to transform them into the contextual embeddings of the
WTCs. To this end, the WAtt module utilizes one-dimensional con-
volution operations and expertly aligns the enhanced trajectory
embeddings, which formulates highly correlated contextual embed-
dings C 2 Rh×D with the same temporal dimension h as the corre-
sponding WTC. This step can be illustrated as follows mathematically:

C= σðConv1dðHhÞÞ ð18Þ

To determine the temporal dimension of C, the length of L-level
WTC obtained by the DWT is reduced to about 1/2L of the original
sequence length, due to the downsampling operations. In addition, the
DWT in practice usually shifts the wavelet function to perform con-
volution operations on the time sequence. With the approaching of
filters to the edges of afinite signal, the convolution operations require
values beyond the signal boundaries through signal extension59.
Therefore, the exact length of the WTC is determined by both the

Trajectory Embeddings

...

...

Enhanced Trajectory Embeddings

...

Conv ...Conv Conv

Contextual Embeddings

...

Fig. 7 | Implementation details of wavelet attention module. Conv denotes the
convolution operation. The first stage is the enhancement process, in which the
trajectoryembeddingsobtained fromtheencoder areweightedby attention scores
to yield enhanced scale-oriented features, i.e., enhanced trajectory embeddings.
The attention scores (scorei, i = 0, 1,⋯ ,M − 1) are calculated from the trajectory

embeddings to determine the importance of historical trajectory points. Further,
the second stage is the convolution process, in which the enhanced trajectory
embeddings are extracted into the contextual embeddings for generating wavelet
components and aligned into the same temporal dimension as the corresponding
wavelet components.
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wavelet and signal extension mode. The symmetric extension, as a
general extension mode60, is selected to ensure continuity at the
boundary of the signal. In this way, the length of theWTCs over L-level
DWT in a convolution-based algorithm can be inferred through the
following equations:

h0 =
M
2

� �
+ l ð19Þ

hi =
hi�1 � 1

2

� �
+ l, i= 1, � � � , L� 1 ð20Þ

hL =hL�1 ð21Þ

where L is the level of wavelet analysis, and l is half of the length of the
selected wavelet filter in the DWT procedure. M is the number of his-
torical trajectory points. fhigi2½0,LÞ\i2Z represents temporal length of
high-frequency WTCL−i. hL represents temporal length of low-
frequency WTC0. Operator ⌊ ⋅ ⌋ gives the largest integer less than or
equal to the input.

After obtaining the contextual embeddings from the WAtt mod-
ule, the LSTM block in the decoder further model the contextual
embeddings to yield the wavelet embeddings, which are further
mapped by a linear transformation to produce WTCs:

ci = ½ce½�1, :�,OT
1 �

T ð22Þ

Hw, ðhd , cdÞ=LSTMðC,O2, ciÞ ð23Þ

Q =FCðLNðHwÞÞ ð24Þ

where Eq. (22) employs last-layer cell states ce½�1, :� 2 RD passed from
the encoder to initialize the first-layer cell states of the LSTM block
with remaining cell states zeroed by O1 2 RðS2�1Þ×D, while the hidden
state O2 2 RS2 ×D is zero-initialized. S2 is the number of recurrent
layers. The long-term memory from the encoder is retrieved here to
initialize the LSTM block with a prior memory of the historical
trajectory sequence, strengthening its ability to exploit scale-oriented
features. The output features Hw 2 Rh×D serve as the wavelet
embeddings and pass through the LayerNorm layer LNð�Þ and the
linear projection layer FC(⋅). The desired WTC, Q 2 Rh×d , are finally
obtained.

IDWT module and loss function
The IDWT module inversely transforms WTCs of each attribute and
thus reconstructs the input historical trajectory sequence and also
predict trajectory attributes of the next instant. The reconstruction
filters are pre-defined and transform the coefficient matrix set
fQi 2 RhL�i ×dgi2½0,L�\i2Z into the trajectory attributes series of the size
d × (M + 1). Specifically, in each attribute, the reconstruction filters
iteratively combine pairs of both low- and high-frequency coefficients
until a sequence of attributes in the time domain is recovered. Math-
ematically, for j-th attribute, the temporal sequence is obtained by:

P̂N�M:N ½j � 1, :�=TrimðIDWTðQ0½: , j � 1�,Q1½: , j � 1�, � � �,QL½: , j � 1�ÞÞ, j = 1, 2, � � � , 6
ð25Þ

where dimensional indices of all matrices are starting from zero.
Trimð�Þ is applied to crop out the redundant segments at the end of the
time series due to the signal extension, i.e., only thefirstM + 1 elements
on the time dimension retained. Specifically, the first M elements
represent the reconstructed historical trajectory sequence and the

following element represents the predicted aircraft state at the next
instant.

In order to facilitate different decoders to learn corresponding
time-frequency representations of trajectory attributes at diverse
scales, the wavelet loss function, i.e., the sum of the mean squared
error of generated WTCs, is designed to update the network para-
meters as shown below:

L=
XL
k =0

Lk
wavelet ð26Þ

Lk
wavelet =

1
hL�k � d

XhL�k

i= 1

Xd
j = 1

cki,j � ĉki,j
� �2

ð27Þ

where L is the level ofwavelet analysis,hL−k represents the length of the
WTCk andd = 6 is the number of attributes in thiswork. In Eq. (27), ĉki,j is
the estimated value of the i-th element for WTCk of the j-th attribute
output by the (k + 1)-th decoder, while cki,j serves as the corresponding
ground truth.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We are not authorized to publicly release the whole dataset used
during the current study concerning safety-critical issues. None-
theless, the processed example samples are available on https://
zenodo.org/record/8238768 (ref. 61). Source data for all figures,
except Fig. 3, are provided as Source data file. The trajectory sequence
in Fig. 3 spans a wide range of locations, thus it cannot be made
publicly available for the safety of China civil aviation. Source data are
provided with this paper.

Code availability
The PyTorch version of the WTFTP framework is publicly available on
https://zenodo.org/record/8238768 (ref. 61).
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