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Long-read whole-genome analysis of human
single cells

Joanna Hård1,2,3 , Jeff E. Mold1, Jesper Eisfeldt4,5, Christian Tellgren-Roth 6,
Susana Häggqvist6, Ignas Bunikis6, Orlando Contreras-Lopez7,
Chen-Shan Chin 8, Jessica Nordlund 9, Carl-Johan Rubin 10, Lars Feuk 6,
Jakob Michaëlsson11 & Adam Ameur 6

Long-read sequencinghas dramatically increasedour understandingof human
genome variation. Here, we demonstrate that long-read technology can give
new insights into the genomic architecture of individual cells. Clonally
expanded CD8+ T-cells from a human donor were subjected to droplet-based
multiple displacement amplification (dMDA) to generate long molecules with
reduced bias. PacBio sequencing generated up to 40% genome coverage per
single-cell, enabling detection of single nucleotide variants (SNVs), structural
variants (SVs), and tandem repeats, also in regions inaccessible by short reads.
28 somatic SNVs were detected, including one case of mitochondrial hetero-
plasmy. 5473 high-confidence SVs/cell were discovered, a sixteen-fold increase
compared to Illumina-based results from clonally related cells. Single-cell de
novo assembly generated a genome size of up to 598Mb and 1762 (12.8%)
complete genemodels. In summary, our work shows the promise of long-read
sequencing toward characterization of the full spectrumof genetic variation in
single cells.

During the last few years, long-read sequencing technologies have
made remarkable progress in terms of throughput and data quality.
Due to their capability to read through repetitive and high GC-content
regions, these technologies are essential for the ambitious plans to
generate reference genomes for virtually all of Earth’s eukaryotic
biodiversity1,2, as well as complete telomere-to-telomere maps of the
human genome3. A further advantage of long-read sequencing is that it
facilitates genotyping of complex structural variation (SVs) and repeat
elements, which can be difficult or impossible to identify with other
genomic sequencing approaches4–6. Although clinical long-read
sequencing is still in its infancy7,8, several studies have already
demonstrated the potential to discover novel disease-causing human

genetic variation9. Long sequencing reads alsoenables thedetectionof
clinically relevant genetic variation in ‘darkDNA’, representing regions
of the human genome that cannot be analyzed with standard short-
read technologies10.

Long-read sequencing holds many promises, but one research
area that remains unexplored is single-cell genomics. Human single-
cell whole-genomesequencing (WGS) emerged about adecade ago11–15,
and has become an active field of researchwith the potential to answer
fundamental questions in several areas of cell biology, such as somatic
genetic variation16, tumor evolution11, de novo mutation rates14,
meiotic recombination of germ cells14,17, or neurogenetics18–20. Until
now, single-cell WGS projects have focused on characterizing genetic
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variation detectable from short-read Illumina sequencing
protocols21–25, including single nucleotide variants (SNVs)19,21,26–31, SVs32,
large-scale copy number variation30,33–35 and retrotransposon
elements12,18,36,37. While multiple methods exist for single-cell short-
read WGS, there are no available technologies to support the identi-
fication of the full extent of genetic variation in individual cells. One
recent report demonstrates the utility of long-read sequencing for
analysis of SVs, but with limited performance in the detection of other
types of genetic variation38.

The lack of methods for single-cell WGS with long-read technolo-
gies can inpart be explainedby the throughputof long-read sequencing
instruments, which until recently has been relativelymodest.Moreover,
single-cell genome sequencing is challenging39 since a diploid cell
contains only two DNA molecules at each locus in the genome, and
every molecule that is lost during sample preparation, or fails to be
sequenced, inevitably leads to allelic dropout and missing data. Fur-
thermore, the long-read sequencing protocols require large amounts,
typically severalmicrograms, of inputDNA. This is about amillion times
more DNA than what is contained within a single human cell, which
implies that substantial DNA amplification is required.

Whole-genome amplification (WGA) has a profound detrimental
effect on the sequencing results and should be avoidedwhen possible.
This is because WGA introduces amplification bias, chimeric mole-
cules, and allelic dropout. Several different amplification protocols
have been developed15,40,41 and it is crucial to choose a method that
minimizes artifacts and biases, while at the same time being compa-
tible with the downstream sequencing technology. Multiple displace-
ment amplification (MDA)41 has the capacity to amplify kilobase-length
molecules and could therefore a suitable approach for long-read
sequencing. With regards to amplification bias, it has been proposed
that a droplet-based MDA (dMDA) reaction, performed on DNA frag-
ments contained within nano- or picoliter droplets, can minimize dif-
ferences in amplification gain among the fragments42–44. Such a
droplet-based amplification could also be an efficient approach to
remove inter-molecular chimeras since MDA artifacts only can be
formed between molecules contained within the same droplet.

Single-cell DNA fragments amplified by MDA are well-suited for
PacBio high-fidelity (HiFi) sequencing45, a protocol that works best for
molecules of up to 20 kb in length. HiFi reads have high accuracy
(>QV20) and allow not only for the identification of complex genetic
variation such as SVs and repeat elements, but also SNVs at a level that
matches the ability of short-read sequencing45. PacBio HiFi sequencing
has also proven to be an excellent method for high-quality genome
assembly46–49, thereby raising the prospect of long-read de novo
assembly of genomic DNA from individual cells50. The potential
applications are not limited to human cells. Long-readWGS could also
potentially generate improved genome information for other sample
sources, such as single-cellular organisms that are difficult to culture.

In this study, we present a new method for long-read whole-gen-
omeanalysis of humansingle cells.Ourworkflowutilizes anautomated
dMDA technique for single-cell WGA coupled with PacBio HiFi WGS.
The method was evaluated on clonally expanded CD8+ T-cells from a
human donor. For comparison, other cells from the same T-cell clones
were sequenced with short-read Illumina WGS. Our results show that
long-read sequencing gives improved performance for the detection
of genetic variation in single cells, in particular for haplotype phasing,
complex structural variation, and tandem repeats (TR). Moreover, we
show that it is possible to reconstruct parts of a human T-cell genome
de novo.

Results
A single-cell WGS workflow compatible with short- and long-
read sequencing
We first aimed to develop a DNA amplification method that preserves
molecule lengths and reduces amplification bias (Fig. 1a). Briefly, one

single cell is isolated by fluorescence-activated cell sorting (FACS) and
placed into a well containing lysis buffer, so that the DNA fragments
are released. The DNA molecules are then encapsulated in ~50,000
droplets, after which a dMDA reaction takes place within each droplet.
The droplets have a diameter of <100 µm and are generated using the
Xdrop system51 (Fig. 1b). Only one or a few DNA fragments will be
located in each droplet, and since the amplification takes place in a
small volume containing limited reagents this prevents molecules
from being heavily over-amplified.Moreover, the risk of forming inter-
molecular chimeras during the dMDA reaction is greatly reduced by
our method. In droplets harboring a single DNA fragment, the risk is
completely eliminated. Once the dMDA reaction is complete, the
amplified DNA can be used for the preparation of short- or long-read
sequencing libraries. For our experiments, two individual CD8+ T cells
(A and B) from the samehuman donorwere clonally expanded in vitro,
and the resulting cell collections were used as starting material for
WGA and sequencing (Fig. 1c). In addition, bulk DNA isolated from
peripheral blood mononuclear cells (PBMC) obtained from the same
individual was analyzed, at over 30× WGS coverage both with short
Illumina reads and long PacBio HiFi reads. Since the bulk datasets
represent millions of cells from the same individual, they should
contain all germline variation detectable by the respective technology
and can therefore be used as germline ‘truth sets’ for both clonal
expansions. A limitation with using PBMCs as ground truth is that
signals from somatic variants present in founder cells of the individual
clonal expansions will be concealed within the bulk data. While such
somatic variants cannot be validated by the bulk sample, they will not
have a noticeable impact on the overall performance statistics given
the lownumber of somatic variants as compared to germline variation.

dMDA increases coverage uniformity
Sixteen single-cell DNA samples from the twoT-cell clones A andBwere
analyzed using IlluminaWGS. Eight of the samples were amplified using
dMDA, while the remaining eight samples were subjected to standard
MDA (MDA). The sequencing resulted in 100–200million readpairs per
sample (Supplementary Table S1), and these were aligned to the
GRCh38 human reference build. Quality control was run on all single-
cell samples and the results are available (supplementary Data 1). To
facilitate direct comparisons between the samples, all Illumina datasets
were randomly subsampled to contain ~100 million read pairs (sup-
plementary Table S2). As expected, the eight dMDA samples displayed a
more uniform coverage across the genome as compared to the eight
MDA samples (Fig. 2a–c). Furthermore, our results revealed that the
uneven coverage in theMDA samples originated froma limited number
of fragments that were amplified to extreme coverage (Fig. 2d). For the
MDA samples, on average 68.9% of the reads aligned to regions with
≥200× coverage, while the corresponding percentage for dMDA was
only 16.0%. In these downsampled datasets, 33.8% of bases were cov-
ered by at least one read in dMDA as compared to 23.4% for MDA
(Fig. 2e. Coverage variation across the genome was further quantified
for the complete single-cell datasets, and the standard deviation was
found to be 2.46 times higher for MDA as compared to dMDA samples
(supplementary Table S3 and supplementary Fig S1). Based on these
results, we conclude that dMDA gives increased sequencing coverage
uniformity as compared to regular MDA, thereby corroborating pre-
vious evaluations of droplet-based MDA methods42,43.

Long-read whole-genome sequencing of individual T-cells
We used five dMDA single-cell samples, two from T-cell clone A and
three from T-cell clone B, for PacBio long-read sequencing (supple-
mentary Table S4). The dMDA reactions generated 1–4μg of amplified
DNA and the fragment size distributions displayed peaks ~9 kb (sup-
plementary Fig S2). We subsequently prepared libraries from the
amplified DNA using a bead-based size selection (see Methods) and
sequenced each library on an individual 8M SMRT cell, generating up
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to 2.75 million reads and 20Gb HiFi data (>QV20) for a single cell
sample (supplementaryTable S5). About 99%of reads could be aligned
to GRCh38 and the average alignment concordance was 98.91% or
higher. On average, 2.7 separate alignments were produced for each
HiFi read, indicating the presence of chimeric artifacts from the dMDA.
These chimeric reads are mainly intramolecular, i.e., formed within
encapsulated DNAmolecules during the dMDA reaction, and they can
be split into non-chimeric parts using bioinformatics tools. The aligned
read length is a good indicator of the non-chimeric part of a read since
it corresponds to the longest subsequence that can be continuously
matched to the GRCh38 reference. The N50 aligned read length was
2.8–3.6 kb for the single cells, and the maximum read alignment was
over 50 kb.

Mitochondrial heteroplasmy in T-cell clone B
mtDNA represents a substantial source of somatic genetic variation52.
However, amplification bias may result in limited read coverage over
mtDNA and prevention to detect mitochondrial variation. Based on
our single-cell Illumina data we found that dMDA outperformsMDA in
terms of mtDNA coverage (Supplementary Fig S3). In the long-read
data, we found that 17% of themtDNA reads covered at least 25%of the
complete mitochondrial genome, thereby opening up the possibility
to phase large parts of the individual mtDNA molecules present in a
single cell. In our long-read datasets, we observed one location
(chrM:16,218) where a C >T nucleotide substitution occurred in
41%–67% for the three single cells from T-cell clone B, while being
completely absent from the reads for T-cell clone A, as well as from the
bulk DNA sample (supplementary Fig S4). By further analyzing the
Illumina data for the two single-cell clones, we validated that the
nucleotide substitution was present in T-cell clone B, but not in T-cell

clone A, consistent with mitochondrial heteroplasmy in T-cell clone B
(supplementary Fig S5).

Detection of SNVs in single-cell long-read data
15.7Gb data was obtained for the PacBio single cells on average, as
compared to 48.7Gb for Illumina (Fig. 3a), and this data was used for
single-cell SNV calling. Between 0.89 and 1.32 million SNVs were
detected in the single-cell PacBio data by the software DeepVariant53

(supplementary Tables S6, S7). An average of 0.88 million SNVs per
single cell were found tobeoverlappingwith SNVs called from thebulk
PacBio HiFi data. Since DeepVariant has been shown to achieve
genome-wide SNV precision and recall rates of at least 99.91% on
PacBio HiFi data45, we consider these overlapping SNVs to be true
(Fig. 3b). For comparison, a similar analysis using Illumina single-cell
dMDA and bulk data resulted in an average of 1.06 million true SNVs
per cell. This implies that a similar number of germline SNVs were
detected using PacBio as compared to Illumina, despite that PacBio
single-cell sequencing only generated 32% of the Illumina data amount
on average. We further estimated the precision and sensitivity of the
SNV calls (Figs. 3c, d). PacBio single-cell SNV calling resulted in higher
precision than what was obtained for Illumina dMDA (0.86 vs 0.74). In
contrast, the sensitivity of PacBio SNVs was somewhat lower than for
Illumina dMDA (0.17 vs 0.24). The overall low sensitivity can be
explained by the high level of allelic dropout in the single cells, in
particular for the PacBio samples where less data is available. A total of
284k high-confidence PacBio SNVs/cell escaped detection in the Illu-
mina bulk sample (supplementary Table S8). Of these variants, 6336
were located in previously reported “dark” genic regions of relevance
for human health10. One such region comprises introns and exons of
NBPF8 (Fig. 3e). Another example is CDC73, where a repeat resolved in
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Fig. 1 | Overview of the single-cell DNA amplification and sequencing experi-
ment. a An individual cell is isolated by fluorescence-activated cell sorting (FACS)
and placed into a well-containing lysis buffer. DNAmolecules from the lysed single
cell are then encapsulated in picoliter droplets using the Xdrop microfluidic sys-
tem, after which dMDA whole-genome amplification takes place inside each dro-
plet. After amplification, the droplets are broken and DNA is released, followed by
librarypreparation andwhole-genome sequencingusing short- (Illumina) and long-
read (PacBio) technologies.b Image showing howdroplets are formed in theXdrop

microfluidic system. An aqueous phase containing lysed DNA and dMDA reagents
encounters an oil layer, resulting in <100 µm diameter droplets where single DNA
fragments are captured. The Xdrop system has the capacity to produce around
50,000 droplets in 45 s. cTwo humanmemoryT cells (cells A and B) from the same
individualwere used as starting points for the experiments. Collections of daughter
cells were obtained by in vitro expansion, and individual cells from clones A and B
were analyzed using Illumina and PacBio whole-genome sequencing.
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the PacBio single-cell data was represented as an alignment gap in the
Illumina bulk data (Fig. 3f). In addition to germline SNVs, 27 somatic
SNVs were identified in the PacBio data (supplementary
Tables S9–S10). The somatic SNVs were present in at least two single
cells from one of the clones, while being absent from the other clone
and from the bulk sample (see Methods). Two examples of somatic
SNVs are shown in Fig. 3g, h. It is important to note that the PacBio data
provides phasing information over several kilobases. This makes it
possible to assign variants detected in the single cells to one of the
haplotypes, which highlights one of the advantages of long-read
sequencing for the identification and analysis of somatic variation at
the single cell level26,27.

Long-read single-cell WGS improves the detection of structural
variants
Structural variants (SVs) were called from the PacBio data using
Sniffles254. This resulted in 3493 deletions, 4636 insertions, 903
duplications, and 19373 inversions per single cell, on average (Fig. 4a,
supplementary Tables S11–S15). The SVs were merged across samples
so that the true SVs, i.e., overlapping with the bulk sample, as well as
the SVs unique to the single cells could be identified. Over 80,000 of
the SVs in the PacBio single cells were not detected in the bulk sample,
and the vast majority of these are likely to originate from chimeric
dMDA molecules. 81.5% of these false SVs were inversions, 9.0%
insertions, 5.0% duplications, and 4.6% deletions, and their lengths
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Fig. 2 | Comparison of MDA and dMDA for whole-genome amplification. These
results are based on IlluminaMDA, dMDA, and bulk sequencing where the datasets
have been randomly downsampled to contain the same number of reads. a The
figuredisplays the average sequencing depth across the human chromosomes. The
dMDA single-cell samples display good uniformity of coverage, whereas the MDA
data show high spikes due to amplification bias. b Plot showing the percentage of
bases in the reference genome (y axis) having a minimal coverage (x axis). On
average the dMDA samples have more bases covered at a range 10–30×, as com-
pared to the single-cell samples subjected to regular MDA. c Circle plots showing
sequencing coverage in 500 kb bins for all of the Illumina single-cell samples, color-
coded from 0× coverage (white) to over 200× coverage (black). Four replicate
samples are included in each of the circle plots, and the chromosomal coordinates

are displayed in the outermost circle. The dMDA samples at the top row display
more even coverage than the MDA samples below, with more of the bins having
average coverage in 4–15× coverage range (green). d Dot plot showing the per-
centage of reads aligning to regions of extreme (≥200×) coverage. Each dot cor-
responds to an individual sample. The rectangles indicate the average values for
different sample/clone combinations (n = 4 cells per group). 68.9 and 16.0 are the
average values for all MDA and dMDA samples (n = 8 cells per group). e Dot plot
showing the percentage of reference bases that are covered by at least one read.
The rectangles indicate the averagevalues for different sample/clone combinations
(n = 4 cells per group). 23.4 and 33.8 are the average values for all MDA and dMDA
samples (n = 8 cells per group). Source data are provided as a Source Data file.
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were usually <5 kb (supplementary Fig S6). An average of 5473 true SVs
were detected per single cell, of which 2510 were deletions and 2957
insertions, but only a handful of true duplications or inversions were
detected (Fig. 4b). For comparison, we performed SV analyses also in
the Illumina samples (supplementary Table S16). In the Illumina dMDA
samples, we detected 327 true SVs on average, which is <1/16 of the
number of true SVs found in PacBio single cells. The precision for
PacBio deletions and insertions was 0.73 and 0.66, respectively, while
their sensitivity was slightly above 0.20 (Fig. 4c, d). Duplication and
inversions had a precision near zero since virtually all such events
originate from chimeric molecules. The true PacBio SVs consisted
mainly of insertions and deletions of up to 1 kb length, with clear peaks
~300bp representing ALU repeat elements (Fig. 4e). However, we also
detected a peak for deletions around 6 kb corresponding to LINE

elements (Fig. 4f). Several of the SVs detected in the single-cell PacBio
data are difficult to identify in Illumina bulk data, e.g., insertion of
710 bp and a deletion of 4891 bp (Fig. 5). The PacBio data not only
allows us to determine the exact breakpoints for these SVs in single
cells, it also enables the reconstruction of the haplotypes through
phasing of nearby heterozygous SNVs. We further searched for
somatic SVs in the long-read data but found no events that differed
between the T-cell clones.

Analysis of TRs in single cells
We hypothesized that the PacBio reads would allow us to study TRs
in single cells. To investigate this, we performed TR calling using
Tandem Genotypes55. We first extracted all TRs that were called
either homo- or heterozygous in the PacBio bulk data and found

Fig. 3 | Analysis of SNVs in short- and long-read single-cell data. a Total data
amount for the Illumina and PacBio single-cell samples. Average values are repre-
sented by black vertical lines. b Number of true positive SNV calls in the Illumina
and PacBio single cells. The true SNVs are defined as those found to be present also
in the correspondingbulk sample. cPrecision of SNV calls in the single-cell samples.
d Sensitivity of SNV calls in the single-cell samples. e Example of a “dark” genic
region (NBPF8) where Illumina data fails to align uniquely, while SNVs can be
identified and phased in the PacBio single-cell data. f Another example of a “dark”
genic region (CDC73), where PacBio reads from the two single cells span across a

repetitive region that lacks coverage in the Illumina bulk sequencing data. g A
somatic SNV in an intron of SORL1. The position of the somatic SNV is indicated by
the red arrow at the top. The PacBio A1 and A2 single-cell samples contain a C >G
variant at this position that is linked to several nearby SNVs in the region. In thebulk
and PacBio B2 samples, the G is absent from the haplotype. This indicates that the
C >G is a somatic variant only present in the T-cells from clone A. h A somatic SNV
in an intergenic region on chromosome 12. This G >C variant is only present in
T cells from clone B. Source data are provided as a Source Data file.
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15,098 such repeat elements. In the single cells, an average of 4770
TR alleles could be correctly genotyped with a repeat size in
agreement with the bulk sample (supplementary Table S17). The
size distribution of these repeat alleles across all single cells is
shown in Fig. 6a. The longest repeat was 662 bp longer than the
reference genome and mainly consisted of dinucleotide AT
sequences, a region that was difficult to resolve in the short read
data (Fig. 6b). We found no clear evidence of clonal somatic varia-
tion of repeat elements in our single-cell long-read data. However, it
should be noted that this analysis does not give information about
all the repeats in the single cells, in particular those of length
>500 bp which were largely missing from our results due to
unsuccessful genotyping. A common reason for failed TR geno-
typing was the presence of >2 repeat lengths in the same sample,
making it difficult to determine the exact TR sizes.

De novo assembly of single-cell genomes from long-read data
PacBio HiFi reads are ideal for generating high-quality assemblies of
human genomes45–49, and we were interested to investigate to what
extent regions of the single-cell genomes could be reconstructed de
novo. We therefore selected the two single cells with the highest
coverage in clone A and B and performed an individual de novo
assembly for each of these single cells. Since assembly of single-cell
PacBio data is challenging due to allelic dropout and chimeric reads,
we developed a filtering method to remove chimeric reads from the
dataset prior to assembly. Because of the dMDA, chimeras are mainly
formed within the same molecule, and by screening each read for
inverted or duplicated elements, chimeric reads could be identified
and removed ab initio (see Methods). For T-cells A1 and B1, 44.2% and
46.6% of PacBio reads, respectively, passed our filtering criteria.
However, this filtering is stringent and while effectively removing
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and PacBio single cells. The true positive events are defined as those overlapping
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are represented by black vertical lines. c Precision of single-cell SV calls for the five
PacBio single cells. Duplications and inversions have a precision of zero since vir-
tually none of these events are detected in the PacBio bulk DNA sample.
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chimeras, it also removes some correct reads harboring repeat ele-
ments. Hifiasm56 generated primary assemblies of size 598.3Mb for
T-cell A1 and 454.1Mb for T-cell B1, corresponding to approximately
19% and 15% of the human reference (supplementary Table S18). The
contig N50 values were 35 kb (T-cell A1) and 42 kb (T-cell B1), and the
largest contig of 578.3 kb was detected in the T-cell B1 assembly. In
addition, ~40Mb of alternative contigs were found in each sample.
These alternative contigs correspond to regions where hifiasm repor-
ted two distinct haplotypes. We further performed an analysis of
BUSCO gene models57 and could conclude that 12.8% of genes
(n = 1762) were completely assembled for T-cell A1, and 9.0% of genes
(n = 1236) for T-cell B1. Complete mitochondrial genomes were
obtained and thesewere identical for T-cells A1 andB1. Detailed quality
assessment results for the two single-cell genome assemblies are
available in supplementary Table S19.

Discussion
By combining methods for automated single-cell processing and
droplet-based WGA with PacBio HiFi sequencing, we were able to
sequence long DNA fragments from single human T-cells. The long
sequencing reads resulted in improved analyses of genetic variants as
compared to short-read technologies, including in “dark” regions of
thehumangenome, andeven enableddenovo assembly of parts of the
single-cell genomes. The single cells used as the starting point for this
study were obtained through in vitro expansion of CD8+ T-cell clones
from a healthy human donor. Studying normal somatic cells isolated
from a healthy human donor is more challenging as compared to cells
from an immortalized cell line, but with the advantage of being more
biologically relevant.

Despite that the yield of the PacBio sequencingwasonly one-third
of the average data amount generated for the single cells on the
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Illumina platform, we detected similar numbers of SNVs in PacBio HiFi
data and Illumina data. The PacBio SNV precision of 0.86 was slightly
higher than what was obtained for Illumina. From the PacBio data, we
found 28 somatic SNVs that distinguish the two in vitro expanded T
cell clones, including one example of mitochondrial heteroplasmy.
This finding demonstrates the utility of our method to detect genetic
mosaicism at the single-cell level. Furthermore, the PacBio HiFi data
enables the identification of genetic alterations that are difficult to
detect in Illumina short-read data. 5473 true positive SVs were found
per single cell, with a precision of 0.66 for insertions and 0.73 for
deletions. We also detected numerous inversions and duplications in
the single cells, but virtually all of thesewere found tobe false positives
caused by chimeric molecules introduced during dMDA. The current
version of thismethod is therefore not suitable for studying inversions
or duplications. TRs are of particular interest since they have not
previously been explored in single cells. On average our method
determined the correct size for 4770 TR elements per single cell,
several of them of length over 100bp.

Although somatic variation in SVs and TRsmay exist, we found no
such evidence in this study. Our results thus indicate that the genetic
differences between the two T-cell clones A and B mainly consist of
SNVs and that more complex structural variation occurs at a lower
frequency. However, more detailed analyses of larger numbers of
single cells from the two T-cell clones would be required to give con-
clusive answers about the full extent of somatic variability in SVs and
repeat elements. Moreover, our study is still limited by the non-
chimeric read lengths generated by the dMDA, and even longer reads
would be required to investigate many of the larger repeats and
complex SVs that may occur in these genomes.

A human cell contains about six picograms of DNA, and this is a
major challenge for PacBio sequencingwhich typically requires several
microgramsof inputmaterial. Thus, substantial amplification of single-
cell genomes is required to obtain sufficient amounts of DNA. Several
approaches for single-cell WGA exist38,58–60. Other methods could
potentially give a much more complete representation of the
genome60 than what we obtained in this study, although the amplifi-
cation resultsmay also differ depending on the cell type. However, the
majority ofWGAmethods are not suited for long-read sequencing due
to limited fragment lengths obtained after amplification. MDA repre-
sents a promising approach for WGA and long-read sequencing since
this method can produce 10–12 kb long fragments. However, MDA is
known for amplification bias which, in turn, limits the complexity of
sequencing libraries so thatonly a small fraction of the genomemaybe
recovered. Here, we take advantage of MDA to produce long frag-
ments while reducing the amplification bias by performing MDA
reactions in individual droplets. In this study, we used the Xdrop sys-
tem for dMDA, but the methodology should be possible to adapt also
to other droplet generator platforms.

Allelic dropout is always a challenge for single-cell WGS, and our
results could be improved by having a higher proportion of DNA
fragments encapsulated and amplified in the droplets. Several factors
could lead to allelic dropout, including failed amplification of DNA
molecules lost in sample preparation, droplet reagent loading, or DNA
fragments that are either too short or too long to be efficiently
encapsulated. Another important challenge is that WGA introduces
chimeras and errors. To some extent, this might be improved by
alternative amplification methods or modified experimental condi-
tions. However, further optimizations may not enable the complete
removal of amplification errors in the resulting reads. An increased
amount of genomic information from single cells may instead be
achieved through the development of new bioinformatics tools, spe-
cifically designed for single-cell long-readWGS data, which can resolve
amplification errors and maximize the utility of the data.

In this project, we opted for PacBio HiFi sequencing since it cur-
rently offers the highest per-read accuracy61. Although nanopore

WGS62 could be an alternative, it would likely be more challenging to
study SNVs and identify chimeric artifacts from nanopore reads
because of their higher error rate. However, there is still an open
question about which sequencing platform would be best suited for
this application in the future. This will depend on factors such as the
sequencing yield, quality, and cost per sample, for coming versions of
instruments. Due to the rapid developments of long-read technolo-
gies, we anticipate that several of these parameters can be radically
improved over the coming years.

In conclusion, we demonstrate that long-read genome analysis
can be performed not only at a species, population, or individual level
but also for single cells. Ultimately, new innovations and technical
advances may in the future enable near-complete genome assemblies
and full haplotype reconstructions from individual cells.

Methods
Single-cell samples
Peripheral blood was collected from a healthy human donor by veni-
puncture. The donor was previously vaccinated with the live, atte-
nuated Yellow Fever Virus (YFV) vaccine (YFV-17D) as part of an
ongoing study to investigate the dynamics of adaptive immunity to
YFV vaccination. Informed consent was obtained from the donor and
the study was approved by the Regional Ethical Review Board in
Stockholm, Sweden: 2008/1881-31/4, 2013/216-32, and 2104/1890-32.
To expand CD8+ T cell clones from single YFV-specific memory CD8
+T-cells, mononuclear cells were isolated from peripheral blood by
density centrifugation and were first stained with HLA-A2/
YFV(LLWNGPMAV)-dextramer FITC (Immudex, Denmark) for 15min at
4 °C, followed by staining with anti-CD8a-BV570 (clone RPA-T8, Bio-
legend), anti-CD3-PE/Cy5 (clone UCHT1), anti-CD14-V500 (clone
MφP9), anti-CD19-V500 (clone HIB19) (all from BD Biosciences), and
LIVE/DEAD™ Fixable Aqua Dead Cell Stain (ThermoFisher) for 20min
at 4 °C. After washing, single live CD14−CD19−CD8+CD3+HLA-A2/YFV-
dextramer+ cells were sorted directly into 96 well U-bottom plates
containing 500 ng/ml HLA-A2/YFV peptide (LLWNGPMAV), 40U/ml
human recombinant IL-2, and 40.000 irradiated (25Gy) CD3-depleted
autologous PBMCs in T-cell media (RPMI1640 with 10% heat-
inactivated human AB sera, 1mM sodium pyruvate, 10mM Hepes,
50μM 2-mercaptoethanol, 1mM L-glutamine, 100U/ml penicillin and
50μg/ml streptomycin) and were cultured for 20 days. Every 7 days
half of the media was replaced with fresh T-cell media containing
50U/ml IL-2, 500ng/ml peptide, and 40,000 irradiated CD3-depleted
autologous PBMCs, and the wells were visually inspected for pro-
liferation. Clonal expansions of single HLA-A2/YFV-specific CD8+

T-cells clones were confirmed by flow cytometry by using the same
staining protocol as described above. Clones with a sufficient number
of clonal progeny were subsequently cryopreserved in fetal bovine
serum with 10% DMSO and stored in liquid nitrogen until sorting for
DNA/RNA sequencing analysis. To isolate single cells from two selec-
ted YFV-specific CD8+ T cell clones (A and B), the clones were thawed,
washed twice in RPMI1640 supplementedwith 10% fetal bovine serum,
and stainedwith the antibodies described above and index-sorted into
96 well PCR plates (Thermo Fisher) or a dMDA cartridge containing
lysis buffer as described in the following sections.

WGA by droplet MDA (dMDA)
The single T-cells were sorted in a FACS instrument equipped with a
custom 3D printed adapter holding a dMDA cartridge (cat# CA20100-
16, Samplix ApS, Herlev, Denmark) and deposited directly into 2.8 µL
lysis buffer (200mM KOH, 5mM EDTA (pH 8) and 40mM 1,4-dithio-
threitol) positioned at the dMDA cartridge’s Inlet site. The lysis buffer
does not contain a fragmenting agent and the protease inhibitor 1,4-
dithiothreitol was included to inhibit enzymes that fragment DNA.
However, at high temperatures and high pH, DNA may be susceptible
to alkaline denaturation. Single cells were lysed for 5min at room
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temperature followed by the addition of 1.4 µL neutralization buffer
(400mM HCl and 600mM Tris HCl (pH 7.5)) and incubated for 5min
at room temperature. Then, 15.8 µL MDA amplification mixture
including polymerase, primers, dNTP, and reaction buffer (Samplix
dMDA kit item#RE20300, Samplix ApS, Herlev, Denmark), was added,
by injecting it into the dMDA cartridge Inlet site using a wide bore
pipette. Finally, 75 µL dMDA oil (Samplix dMDA kit item# RE20300,
Samplix ApS, Herlev, Denmark) was added into the inlet well. The
dMDAcartridgewasmoved into the XdropTM droplet generator (item#
IN00100-SF002 Samplix ApS, Herlev, Denmark) to create single
emulsion dMDAdroplets. Droplets were collected into low bind 0.2ml
PCR vials from the Collection container of the dMDA cartridge and
excess oil was removed from the bottom. The MDA droplets were
incubated in a thermal block at 30 °C for 16 h and thenheat-inactivated
at 65 °C for 10min and then cooled down to 4 °C. Droplets were bro-
kenbyadding 20 µLBreak solution (SamplixdMDAkit item#RE20300,
Samplix ApS, Herlev, Denmark) and the aqueous phase collected
containing the amplified DNA. DNA material from XdropTM droplet
MDA reactions was quantified using Qubit™ Fluorometer (Thermo-
Fisher Inc., Waltham,MA, USA) and the DNA integrity was investigated
using Fragment Analyzer (Agilent Inc., Santa Clara, CA, USA) according
to the manufacturer’s instructions.

WGA by regular MDA
For comparison to the XdropTM droplet MDA process, single T-cells
were sorted in the FACS and singly deposited directly into 2.8 µL lysis
buffer (200mM KOH, 5mM EDTA (pH 8) and 40mM 1.4 DTT) at the
bottomof a0.2mlPCRvial or 96-well plate. Single cellswere lysed, and
DNA denatured for 5min at room temperature followed by the addi-
tion of 1.4 µL neutralization buffer (400mMHCl and 600mMTris HCl
(pH 7.5)) and incubation for 5min at room temperature. The MDA
reactions were prepared using RepliPHI Phi29 DNA polymerase and
Reagent set (Epicentre, Illumina, Madison, WI, USA) according to the
manufacturer’s instructions. The reactions were carried out at 30 °C
for 8–16 h and then heat-inactivated at 65 °C for 10min.

Illumina whole-genome sequencing
Illumina libraries were prepared using an automated version of the
TruSeq DNA PCR-Free kit. Briefly, DNA was quantified using Qubit HS
DNA, and 1μg of DNA was used as input. The samples were then
fragmented using Covaris E220 system, aiming for a fragment size of
350bp. Fragmented DNA was end-repaired, followed by size selection
using Dynabeads MyOne Carboxylic Acid beads. Illumina TruSeq DNA
CD Indexes with sample-specific barcode sequences were ligated and
the final product was cleaned up using AMPure XP beads. Finished
libraries were normalized based on their concentration and sequenced
on NovaSeq6000 (NovaSeq Control Software 1.6.0/RTA v3.4.4) with a
2 × 151 setup using ‘NovaSeqXp’ workflow in ‘S4’ mode flowcell. Bcl to
FastQ conversionwas performed using bcl2fastq_v2.20.0.422 from the
CASAVA software suite (v1.6).

Mapping and variant detection in Illumina data
Illumina data was aligned to GRCh38 using BWAmem (v0.7.17-r1188)63.
The aligned data was sorted using Samtools sort (v1.17)64 and dedu-
plicated using Picard MarkDuplicates (v2.20.4-SNAPSHOT) (https://
broadinstitute.github.io/picard/).Quality controlwas performedusing
Picard CollectGCMetrics and Picard WGSMetrics, as well as Samtools
flagstats. The analysis was performed on the PCR-free bulk WGS and
each of the single-cell samples. The subsequent bam files were sear-
ched for SNVs and SVs. The SNV calling was performed using Bcftools
call (v1.10+htslib-1.10) and the resulting SNVs were decomposed and
normalized using Vt65. SNVs overlapping between single-cell and bulk
samples were detected by BEDtools intersect (v2.29.2)66. SV detection
was performed using TIDDIT (v2.11.0)67 and Manta (v1.6.0)68. The
TIDDIT calls were filtered based on the Filter column—keeping only

PASS variants. Next, the SV calls were combined using SVDB merge
(v2.4.0), combining calls positioned within 200 bp from each other,
and sharing an overlap of at least 10% bases. For Illumina single-cell
samples, the true positive SVs were defined as the set of events that
have an overlap with some SV from the Illumina bulk sample.

Downsampling and quality control of Illumina data
Downsampling to 100M read pairs was performed for each Illumina
dataset using Samtools view. Thereafter, the coverage was analyzed
using TIDDIT cov, computing the coverage in bins sized 5 kbp and
500 kbp across the entiregenome. The 500 kbp analysis was visualized
using Circos (v0.69.9)69, displaying coverage levels as a heatmap. The
5 kbp analysis was used to estimate the fraction of reads within high
(>200×) coverage regions; the fraction of reads in such regions was
computed using Samtools view, searching for reads overlapping high
coverage regions as reported by TIDDIT cov. Quality control was
performed using MultiQC (v1.12)70 on all single-cell data (both from
Illumina and PacBio) and the results are available as Supplementary
Data File S1. The standard deviation of coverage across the genome
was estimated using the function bamqc in Qualimap v2.2.171 with
default parameters.

PacBio whole-genome sequencing
Five dMDA samples, two from clone A and three from clone B, were
chosen for sequencing based on input fragment length and DNA
amount. The samples were fragmented to 10 kb using Megaruptor 2
(Diagenode). For each fragmented sample, SMRTbell constructionwas
performed using the Express Template prep kit 2.0. Incomplete
SMRTbells were removed using the SMRTbell Enzyme Clean up Kit.
SMRTbells were size selected using AMPure beads to remove frag-
ments shorter than 3 kb. The library preparation procedure is descri-
bed in the protocol “Preparing HiFi Libraries from Low DNA Input
Using SMRTbell Express Template Prep Kit 2.0” from PacBio. The
SMRTbell library sizes and profiles were evaluated using the Agilent
DNA 12000 kit on the Bioanalyzer system. A separate SMRTbell library
was prepared from bulk DNA according to Pacbio’s Procedure &
Checklist—Preparing HiFi SMRTbell® Libraries using the SMRTbell
Express Template Prep Kit 2.0. Size selection of the bulk DNA HiFi
library was performed using the SageElf system. PacBio sequencing
was performed on the Sequel II or Sequel IIe instrument with 30 h
movie time. The single-cell libraries were sequenced on one SMRT cell
each, while the bulk DNA library was sequenced across three
SMRT cells generating 32× coverage of the human genome.

Mapping and variant detection in PacBio data
PacBio HiFi reads were generated using the circular consensus
sequencing (CCS) tool in SMRTLink v10.1. The HiFi reads were aligned
to hg38 using version 2.24 of Minimap272. DeepVariant (v1.5.0)53 was
used for SNVs calling and SVs were detected with Sniffles2 (v2.0.7)54.
TRsweredetected through re-alignmentof the rawHiFi datausingLAST
followed by analysis with Tandem Genotypes55 (v1.1.0). Each analysis
was performed individually for the individual T-cells, as well as on the
32× coverage PacBio bulk dataset. SNVs overlappingbetween single-cell
and bulk samples were detected by BEDtools intersect (v2.29.2)66, while
SV overlapping between samples was detected using Sniffles2 multi-
sample SV calling. The commands and parameters for PacBio single-cell
variant analysis are available in Supplementary Methods.

Detection of somatic SNVs in PacBio single-cell data
Candidate somatic SNVs were identified through subsequent steps of
filtering usingBEDtools intersect (v2.29.2)66. First, all SNVs occurring in
at least two single cells originating from the same T-clone were iden-
tified (either A or B). Next, all SNVs that were called in the bulk sample
or from a single cell from the other clone were removed. In order to
exclude SNVs that may occur due to alignment errors, we further
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removed all small insertion/deletion variants as well as SNVs occurring
in highly repetitive regions as defined by the GRCh38 RepeatMasker
track in the UCSC genome browser. The remaining SNVs were manu-
ally inspected in IGV73 to link each somatic variant to its respective
haplotype obtained from the bulk DNA sample.

Analysis of SV events in PacBio single-cell data
A multi-sample VCF file was generated by Sniffles2 (v2.0.7)54, where
each line corresponds to a unique SV event and where the columns
indicate the presence/absence in the different single-cell PacBio sam-
ples and the bulk PacBio sample. We further filtered the multi-sample
VCF so that only the events annotated as “PRECISE” remained, i.e., SVs
with well-defined junctions. This resulting file represents the complete
set of SVs across all the samples, and based on this file we could easily
apply filters to identify SVs that are shared with the bulk sample. To
search for candidate somatic SVs, we filtered out the events occurring
in at least two single cells from the same clone (A or B), but not in any
single cell from the other clone. The somatic SV candidates were then
manually inspected using IGV73 but no event was found to clearly dis-
tinguish between the two T-cell clones.

Analysis of TRs
To facilitate the analysis of TRs, we focused only on the elements that
could be clearly genotyped as either homozygous or heterozygous in
the PacBio bulk DNA samples. We, therefore, required that the TRs in
the bulk sample should have (i) at least five reads for each of the two
alleles for a heterozygous sample, and at least 10 reads for a homo-
zygous sample (ii) no other alleles detected in >2 reads (iii) at least 90%
of reads corresponding to the repeat allele(s) (iv) a total coverage of at
most 50×. This analysis resulted in 15,098TRs,whichwe focusedon for
the analysis of the PacBio single cells data. In eachof the single cells, we
analyzed the TR results at the 15,098 sites. Results were reported for all
TRs that could be genotyped either as heterozygous or homozygous in
the single cells.We further searched for TRs having different lengths in
the single cells as compared to bulk DNA but found no such examples.

Assembly of PacBio single-cell data
The PacBio HiFi reads were first filtered to remove intramolecular
chimeras. This filtering was done by aligning each read to its sequence
using BLAST74 and removing all reads that have a secondary blast hit
against themselves, at an identity higher than 90%. In this way, reads
containing intramolecular chimeras such as inversions and duplica-
tions are efficiently removed. The HiFi reads that pass the chimera
filtering were then assembled using hifiasm56 (v.0.7-dirty-r255). The
quality of the genome assemblies was assessed using QUAST (v5.2)75.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data is deposited on a secure Swedish server and has been
assigned a DOI (10.17044/scilifelab.22730684). Data access requests
may be submitted to the Science for Life Laboratory Data Center
through the DOI. Source data are provided with this paper.
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