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Two-photon nanoprobes based on bioor-
ganic nanoarchitectonics with a photo-
oxidation enhanced emission mechanism

Shukun Li 1,2, Rui Chang 1, Luyang Zhao 1, Ruirui Xing 1,3 ,
Jan C. M. van Hest 2 & Xuehai Yan 1,3,4

Two-photon absorption (TPA) fluorescence imaging holds great promise in
diagnostics and biomedicine owing to its unparalleled spatiotemporal reso-
lution. However, the adaptability and applicability of currently available TPA
probes, which act as a critical element for determining the imaging contrast
effect, is severely challenged by limited photo-luminescence in vivo. This is
particularly a result of uncontrollable aggregation that causes fluorescence
quenching, and inevitable photo-oxidation in harsh physiological milieu,
which normally leads to bleaching of the dye. Herein, we describe the
remarkably enhanced TPA fluorescence imaging capacity of self-assembling
near-infrared (NIR) cyanine dye-based nanoprobes (NPs), which can be
explained by a photo-oxidation enhanced emission mechanism. Singlet oxy-
gen generated during photo-oxidation enables chromophore dimerization to
form TPA intermediates responsible for enhanced TPA fluorescence emission.
The resulting NPs possess uniform size distribution, excellent stability, more
favorable TPA cross-section and anti-bleaching ability than a popular TPA
probe rhodamine B (RhB). These properties of cyanine dye-based TPA NPs
promote their applications in visualizing blood circulation and tumoral accu-
mulation in real-time, even to cellular imaging in vivo. The photo-oxidation
enhanced emission mechanism observed in these near-infrared cyanine dye-
based nanoaggregates opens an avenue for design and development of more
advanced TPA fluorescence probes.

Two-photon absorption (TPA) fluorescence imaging has gained
increasing prominence in the diagnostic field due to its intrinsically
high spatiotemporal resolution, reduced out-of-focus photo-bleach-
ing, diminished auto-fluorescence, and deeper tissue penetration1–7.
Critical to the success of TPA fluorescence imaging is to apply TPA
probes with robust luminescence and excellent biosafety, in order to
be able to visualize biological processes at cellular levels, tissues and
even organisms in real-time8–11. To meet these requirements, much

effort has been put over the years in the optimization of the chemical
structure of chromophores and the assembly of TPA probes in well-
defined nanostructures. Both approaches have improved the photo-
luminescence and biocompatibility to some extent12–15. Nevertheless,
the clinical application of TPA probes is still limited because of the
following reasons. First and foremost, sustainable luminescence of
organic TPA molecular probes or nanoprobes (NPs) is compromised
by oxidation during photo-irradiation, which diminishes their contrast
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effect16. Second, since most TPA molecules are based on extended
conjugated compoundsmodifiedwith donor and/or acceptor couples,
they are prone to aggregation-caused quenching (ACQ) due to their
propensity to stack, even when encapsulated in nanocarriers17–21.
Luminogens with aggregation-induced emission (AIEgens), as the
emerging chromophores for TPA fluorescence imaging, showed
enhanced fluorescence upon aggregation owing to the restriction of
intramolecular motions, which circumvented the ACQ effect22–24.
Nonetheless, both types of chromophores require complex chemical
modifications to increase their two-photon absorption cross-
sections (TPACSs). It should be noted that their biosafety remains a
significant challenge. Not only these organic molecular probes require
tedious synthetic routes, but also the potential toxicity (such as
unclear metabolism) of inorganic NPs raises safe concerns for in vivo
applications25–29. Hence, significant efforts should be undertaken to
engineer biologically benign TPA probes with superior photo-
luminescence that remains unaffected by photo-oxidation and aggre-
gation, particularly for in vivo TPA fluorescence imaging applications.

Organic near-infrared (NIR) cyanine dyes, such as indocyanine
green (ICG), possess high molar extinction coefficients. Therefore,
they are applicable for clinical imaging applications30,31. Generally, NIR
cyanine molecules contain two aromatic nitrogen-containing hetero-
cyclic ring systems linkedbyapolymethinebridge. Thepositive charge
on one nitrogen atom is involved in resonance delocalization with the
second nitrogen, rendering extensive charge delocalization and thus
giving a polar character to the entiremolecule32,33, whichmay reflect its
nonlinear optical behavior. Herein, we demonstrate that amino acid
derivative-facilitated self-assembly of NIR cyanine dyes leads to a class
of bioorganic TPA NPs capable of two-photon absorption enhance-
ment. Intriguingly, singlet oxygen (1O2) generated in the process of
photo-oxidation mediates cyanine chromophore dimerization, which

enhances the electron delocalization and enlarges the nonlinear
absorption of TPA NPs. The resulting TPA NPs possess unique photo-
oxidation enhanced emission and considerable stability. More impor-
tantly, the TPACS and antiphoto-bleaching ability of cyanine-based
TPA NPs are significantly improved when compared with the com-
monly used rhodamine B (RhB)34, therefore, high contrast imaging of
visualizing blood circulation and tumoral accumulation of TPA NPs in
real-time, even to cellular endocytosis in vivo can be achieved (Fig. 1).
In comparison to the currently available TPA probes, our engineered
NPs encompass the advantages of biosafety and unique photo-
oxidation enhanced emission properties, which therefore provides a
rationale for expanding the imaging modality of cyanine dyes and
opens an avenue for design and development of more advanced TPA
fluorescence probes.

Results
TPA NPs preparation and characterization
Supramolecular self-assembly has been extensively used as a method
to assemble NPswith novel optical properties35,36. In this regard, amino
acid derivatives are versatile building blocks due to their ease of
synthesis and wide variety of physicochemical features, and have thus
attracted increasing attention for the design of these NPs37. In this
study, the histidine (His) derivative Z-His-Obzl (ZHO) (Supplementary
Fig. 1), was chosen as the template amino acid derivative to induce NIR
cyanine dye ICG co-assembly due to its amphiphilic and positively
charged nature. After mixing ICG aqueous solution with the ZHO
dimethyl sulfoxide (DMSO) solution, an immediate turbid solution
occurred. The stoichiometry of ICG and ZHOwas selected as0.125mM
and 2.020mM, respectively, to achieve optimized encapsulation effi-
ciency (EE, 96.9%) and loading efficiency (LE, 11.2%) of ICG molecules
(Supplementary Tab. 1). However, transmission electron microscopy
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Fig. 1 | Schematic illustration of fabrication, applicability and mechanism of
TPA NPs. a Amino acid derivatives and NIR cyanine dyes co-assembled into sphe-
rical NDs. The introduction of Zn2+ increased the structural stability to form NPs.
TPA NPs are applicable for tumor imaging. Processes of NPs circulation, accumu-
lation in tumor tissue and even single tumor cell endocytosis can be visualized.
b Principle of two-photon excited fluorescence of chromophores. c Upon photo-

oxidation, the NPs showed the enhanced TPA fluorescence emission, which was
governed by the dye-1O2-dye intermediates. That is to say, 1O2-dimerized
chromophore intermediates enhanced electron delocalization to simulta-
neously absorb two photons, and therefore enhanced the fluorescence
emission.
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(TEM) image showed the turbid solution consisted of nanodroplets
(NDs), termed as ICG NDs, that were kinetically-trapped unstable
aggregates38 (Supplementary Fig. 2), further evidenced by the pre-
sence of crystalline precipitates after aging for 24 h (Supplementary
Fig. 3). To stabilize the assemblednanostructures, zinc ions (Zn2+) were
introduced to coordinate with the nitrogen atom of the imidazole
groupofZHO toobtainmore thermodynamically favorable ICGNPs, as
evidenced by the Fourier transform infrared spectroscopy (FTIR)
spectra result (Supplementary Fig. 4). Compared to the ZHO and ICG,
the vibration of imidazole groups in ICG NPs shifted from 1693 cm−1 to
1718 cm−1, indicating the coordination of Zn2+ with imidazole39. As
expected, the colloidal stability of the resulting ICG NPs was enhanced
after aging for 24h (Supplementary Fig. 3) and the concentration of
Zn2+ was determined to be 0.438mM. In addition, there was little dif-
ference between the ICG NDs and the ICG NPs in terms of spectral
features, indicating a similar arrangement of the ICG molecules (Sup-
plementary Fig. 5). The enhanced absorbance intensity of the ICG NPs
further suggested that Zn2+ coordination improves structural
robustness40 (Supplementary Fig. 5). The obtained ICG NPs possess
average hydrated diameters of 159.8 ± 48.1 nm (Fig. 2a and Supple-
mentary Tab. 2), as determined by dynamic light scattering (DLS). To
demonstrate the universality, other NIR cyanine dyes, including IR 140
and IR 806 were co-assembled by the samemethod. The average sizes
of IR 140 NPs and IR 806 NPs were found to be 132.2 ± 42.1 nm (Fig. 2b
and Supplementary Tab. 2) and 123.5 ± 56.7 nm (Fig. 2c and Supple-
mentary Tab. 2), respectively. TEM images further confirmed the
spherical morphologies of ICG NPs, IR 140 NPs and IR 806 NPs
(Fig. 2d–f), with sizes that were nearly identical to their DLS data.

Subsequently, the organization of the chromophores within the
nanoparticles was investigated. Compared with their free state, NIR
cyanine dye-based NPs showed a broadened and large red-shift in the
absorption spectra (Fig. 3a), which can be attributed to the electron
delocalization promoted by noncovalent interactions41. Of note, such
intermolecular interactions significantly decreased their one-photon
absorption (OPA) fluorescence intensity (810–900nm), where the
calculated fluorescence quenching efficiency of ICG NPs, IR 140 NPs

and IR 806 NPs was 93.8%, 93.4% and 92.2%, respectively (Fig. 3b). As
another main pathway of photo-activated NIR cyanine dyes42, photo-
thermal relaxation of NPs was inferior than the corresponding free
dyes as well (Supplementary Fig. 6). Remarkably, in response to fem-
tosecond (fs) Ti: Sapphire oscillator 808 nm laser irradiation, NIR
cyanine dye-based NPs exhibited drastically enhanced TPA fluores-
cence emission (400–650 nm) (Fig. 3c). Similar behaviorwas observed
for all three investigatedNIR cyaninemolecules, but not for other dyes
including porphyrins (protoporphyrin IX (PpIX), tetraphenylporphyrin
tetrasulfonic acid (TPPS)) and phthalocyanines (nickel(II)
phthalocyanine-tetrasulfonic acid tetrasodium salt (NiTSPc), naph-
thalocyanine (NaPc)) (Supplementary Fig. 7). All NPs were prepared
with the samemethod and their TPA fluorescencewas quenchedwhen
comparing with their free state. These comparative results suggested
that the enhancedTPA fluorescencemight be a unique property of NIR
cyanine dyes. To understand the increased fluorescence upon TPA,
this process was investigated in more detail. By changing the power
energy, the TPA fluorescence spectra of free NIR cyanine dye-based
NPs and the corresponding free dyes were recorded (Supplementary
Fig. 8). The fluorescence of free NIR cyanine dyes displayed quadratic
emission intensity as a function of increased incident power energy
(Fig. 3d and supplementary Tab. 3), suggesting that the resonance
structure of the cyanine dyes promoted the inherent push-pull elec-
tron transfer for TPA. Importantly, once NPs were formed, the TPA
fluorescence intensity increased at least one order of magnitude when
compared with free NIR cyanine dyes (Supplementary Fig. 8 and
Fig. 3d), implying that the aggregated state enhanced the TPA fluor-
escence emission. Moreover, the TPA fluorescence emission was
observed by employing a confocal laser scanning microscope (CLSM)
equipped with a fs Ti: Sapphire oscillator laser at the wavelength of
808 nm and an emission channel of 495-540 nm, which covered the
spectral emission ranging from 400 to 650nm of the NIR cyanine dye-
based NPs (Fig. 3e: i-iii). To demonstrate the importance of the
aggregated state in the observation of the improved TPA and the
broad applicability of this concept, we constructed a series of different
NIR dye aggregates and compared them to the free state (Fig. 3e: iv).
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NPs, b, e IR 140 NPs and c, f IR 806 NPs. The inserts indicate respective chemical

structures of NIR cyanine dye molecules and optical pictures of TPA NPs. The
concentration of ICG, IR 140 and IR 806 was kept the same at 125 µM.
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Besides, we obtained the dye complexes with proteins and polypep-
tides: ICG/bovine serum albumin (BSA) complex (Supplementary
Figs. 9a and 10a), IR140/BSANPs (Supplementary Figs. 9b and 10b) and
ICG/poly(L-lysine) (PLL) NPs (Supplementary Figs. 9c and 10c). All
assemblies showed enhanced TPA fluorescence, confirming that the
aggregated state is a crucial feature to facilitate enhanced TPA fluor-
escence emission of cyanine dyes.

Due to the positive effect of nanostructures in keeping the sta-
bility of emitted fluorescence43,44, photo-bleaching damage was sig-
nificantly alleviated. Taking ICG NPs as an example, superior anti-
photo-bleaching stability, rather than rapid degradation as observed
for free ICG, was observed (Fig. 3f). Also, the introduction of Zn2+

increased the TPA fluorescence stability (Supplementary Fig. 11). These
results were mainly ascribed to structural protection associated with
the formation of stable nanoarchitectonics. To gain a deeper insight
into the highly unusual TPA optical properties of NIR cyanine dye-
based nano-assemblies, comparative results of ICG with the organic
fluorescent dye RhB (Supplementary Fig. 12a), commonly used as TPA
fluorophore, were obtained. Prepared in the same way as the ICG NPs,
RhB NPs possessed a uniform spherical morphology with an average
diameter of 136.5 ± 51.3 nm (Supplementary Fig. 12b and c) and showed
a broadened absorption peak with spectroscopy that was indicative of
assembly formation (Supplementary Fig. 12d). Furthermore, a
quenching effect in OPA fluorescence (Supplementary Fig. 12e) was
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observed. The TPA fluorescence spectra of RhB with variable excita-
tion wavelength showed that the TPA fluorescence emission of RhB
was located in the range of around 520–680nm when simultaneously
absorbing two photons and was independent of the excitation wave-
length used. This observation indicated that a little bit energy loss was
inevitable in the process of energy transition from excited state to
ground state, thus leading to the deviationof the emitted photon from
the theoretical energy with 2-fold frequency1 (Supplementary Fig. 12f).
When subject to the excitation wavelength of 808 nm, it was found
that the assembled RhB NPs showed a little red-shifted emission and
slightly decreased intensity in comparison with free RhB (Supple-
mentary Fig. 12g and h). This can be contributed to the ACQ effect of
RhB, different from the observed phenomenon of enhanced TPA
fluorescence in NIR cyanine dye. Further, the TPACS (δ), as the most
commonly used parameter with a unit of Goeppert-Mayer (GM, 1
GM= 10−50 cm4·s photon−1) for characterizing TPA chromophores45,
was quantitatively measured. ICG NPs showed a wavelength-
dependent behavior and gave a maximum of 286.45 GM upon
808 nm laser excitation (Fig. 3g), which is 2.36-fold and 2.87-fold
higher than free RhB and RhB NPs, respectively. Importantly, the
TPACS of ICG NPs was 35.90-fold larger than free ICG (Fig. 3h and

supplementary Tab. S4), indicating that ICGNPs aremoreuseful inTPA
fluorescence imaging in comparison to free ICG.

Photo-oxidation enhanced emission mechanism of TPA NPs
Further studies were conducted to uncover the underlyingmechanism
governing the enhanced TPA fluorescence emission. Intriguingly, the
fluorescence emission of ICG NPs and free ICG showed different
behavior upon photo-oxidation (Fig. 4a). The fluorescence intensity
upon laser irradiation of ICGNPs was enhanced,ΔFL/FLinitial = 7.67%, in
aqueous solution saturated with O2 (dissolved oxygen concentration
of 11.5mgmL−1), while this change was opposite in aqueous solution
saturated with Ar (dissolved oxygen concentration of 3.6mgmL−1)
with ΔFL/FLinitial = −3.66% (Fig. 4b-i). In contrast, only photo-
degradation was observed when free ICG was irradiated under these
different oxygen-containing conditions (In O2-rich condition: ΔFL/
FLinitial = −7.75%; In Ar-rich condition: ΔFL/FLinitial = −4.93%) (Fig. 4c-i).
In absorption spectroscopy, a color change of free ICG from green to
yellow was observed and the loss in absorbance was proportional to
the dissolved oxygen concentration: the ΔAbs/Absinitial of free
ICG in Ar-rich condition is −17.00% while its ΔAbs/Absinitial in air con-
dition and O2-rich condition is −34.15% and −41.26%, respectively
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(Fig. 4c-ii and d), confirming the photo-degradation phenomenon.
A similar tendency in absorption spectrawas observed for ICGNPs: the
ΔAbs/Absinitial of ICGNPs inAr-rich condition is −23.42%while itsΔAbs/
Absinitial in air condition and O2-rich condition is −32.66% and −47.81%,
respectively (Fig. 4b-ii and d), which thus differed from their fluores-
cence intensity enhancement. The inconsistency between fluores-
cence and absorbance motivated us to conjecture that the enhanced
fluorescence emission is mediated by short-lived unstable inter-
mediates. Alternatively, the TPA fluorescence can be easily controlled
by other means, including addition of an O2 scavenger (glutathione,
GSH) aswell as elevating oxygen levels (addition of H2O2), that showed
little influence on the assembled nanostructures (Fig. 4e). As displayed
in Fig. 4f, the fluorescence emission of ICG NPs was diminished when
GSH depleted dissolved oxygen or related active species, and their
ΔFL/FLinitial was changed to −63.05% as the GSH volume increased up
to 500μL. Not surprisingly, the fluorescenceemission showedoxygen-
dependent photo-oxidation enhancement to some extent upon addi-
tion of H2O2. When the volume of H2O2 was below 300μL, the
ΔFL/FLinitial of ICG NPs changed as 24.55% while when the volume of
H2O2 exceeded 300μL to 500μL, i.e., when excessive photo-oxidation
was induced, chromophores in the ICG NPs degraded as well because
their ΔFL/FLinitial decreased from 24.55% to 12.26% (Fig. 4g). These
results again demonstrated the existence of oxygen-dependent
unstable intermediates, which enhanced the TPA fluorescence.

In order to clarify the properties and structure of the inter-
mediates, the fluorescence changes of ICG NPs were classified into
initial, enhanced and decomposed stages according to the photo-
oxidation process. The initial stage (termed as stage I) refers to the ICG
NPs without laser irradiation. The enhanced stage (termed as stage II)
refers to when ICG NPs were irradiated by laser (1.5Wcm−2, 10min) to
show the enhanced fluorescence. The decomposed stage (termed as
stage III) means when no fluorescence of ICG NPs was detected after
laser irradiation (1.5Wcm−2, 60min) (Fig. 5a). In terms of morphology
characterizedby scanning electronmicroscope (SEM) (Fig. 5b) andTEM
(Fig. 5c), spherical nanostructures with uniform size distribution were
observed in stage I. Once photo-oxidation occurred and accompanied
with enhanced TPA fluorescence emission, NPs seemed more adherent
and crossed together. Additionally, in stage II, the structures evolved
from spherical to core-shell. In stage III (excessive photo-oxidation),
crossing between NPs further increased and core-shell structures dis-
appeared. Based on the observed morphology changes in the photo-
oxidation process, it can be inferred that degradation proceeded gra-
dually from the outside to the inside of ICG NPs, and unstable inter-
mediates responsible for enhanced TPA fluorescence emission may be
generated as well. Obviously, oxygen is crucial in the photo-oxidation
enhanced fluorescence emission and determines the structure of
intermediates of ICGNPs. Therefore, the functional formof oxygenwas
detected by electron paramagnetic resonance (EPR). The 1O2 detector
probe 2,2,6,6-tetramethyl-piperidin (TEMP), was used to react with
1O2 to form a stable nitroxide radical product 2,2,6,6-tetra-
methylpiperidine-1-oxyl (TEMPO), which can be recorded by EPR46. As
shown in Fig. 5d, compared with the generation of TEMPO signal in the
pure TEMP group, the intensity of TEMPO signal significantly increased
in stage II. This suggested that the presence of 1O2 in ICGNPs promoted
the formation of TEMPO. Importantly, the TEMPO signal intensity in
stage II was higher than that in the stage III, implying that 1O2 indeed
participated in the photo-oxidation mediated the enhancement of TPA
fluorescence emission. Furthermore, FTIR spectra (Fig. 5e) and elec-
trospray ionization mass spectra (ESI-MS) (Fig. 5f–h) of ICG NPs at dif-
ferent stages were recorded. The signal of the C =C stretching vibration
of ICG molecules47 diminished from stage I to stage III, implying that
C =C bonds were attacked by photo-oxidation. The bands corre-
sponding to the C-N stretching vibration can be detected in three
stages, suggesting that C-Nbondswere not affectedbyphoto-oxidation
(Fig. 5e). In ESI-MS, a characteristic m/z of 1532 peak that was not

observed in the stage I, appeared in stage II and was almost extinct in
stage III (Fig. 5f and g). The m/z peaks, such as 398 and 424, which
indicated fragment products by 1O2-mediated photo-degradation of
ICG molecules at different C =C bonds48, were observed (Fig. 5h).
Hence, the molecules corresponding to m/z = 1532 are intermediates
that govern the enhancedfluorescence emission. Based on this analysis,
a possible structure of these intermediates is listed in Fig. 5g, where two
ICG molecules are linked by 1O2 and the linking sites are located at the
C=C bond. This 1O2-containing intermediate contributed to photo-
oxidation enhanced TPA fluorescence of ICG NPs, a unique character-
istic of ICG NPs, quite different from the ICG dimer without connection
by oxygen49. Molecular dynamics (MD) simulation results (Supple-
mentary Fig. 13) supported our hypothesis: ZHO mediated self-
assembly of ICG resulted in closer distance between neighboring
ICGs. The ICG molecules exhibited a minimum intermolecular distance
of approximately 3.3 Å, which facilitated electrondelocalization for TPA
fluorescence emission50 and paved the way for 1O2 to link their C =C
bonds. Upon laser irradiation, ICGmolecules that were excited to the T1

state transfer their energy to 3O2 by forming 1O2. Then, 1O2 inter-
molecularly conjugated theC=Cbonds to form intermediates (dye-1O2-
dye) within ICG NPs, further enlarging electron delocalization for TPA
absorption and finally leading to enhanced fluorescence emission
(Fig. 5i). This mechanism provides a plausible explanation for the
observed enhancement of TPA fluorescence emission.

Imaging application of TPA NPs
Given the fact that stability of NPs is important and has been a for-
midable challenge in biomedical imaging51, the stability of ICG NPs was
investigated. In absorption spectroscopy (Supplementary Fig. 14), upon
storage, the absorption peak of ICG NPs showed little alteration during
15 days of aging (normalized 16.44% decrease in intensity). By contrast,
free ICG molecules underwent rapid degradation (normalized 54.51%
decrease in intensity). Additionally, a red-shift appeared on the 15th day,
suggesting the free ICG was unstable and formed large aggregates52.
These comparative results demonstrated that themultiple noncovalent
interactions endowed the ICGNPswith colloidal stability. In addition, by
creating 10-fold (v/v) dilutions of their suspensions with 10% fetal
bovine serum (FBS) and incubating the suspensions at 37 °C for 24 h,
the morphology of the ICG NPs showed no discernible change instead
of a little size increase assigned to serum protein adsorption (Supple-
mentary Fig. 15 and supplementary Tab. 5), suggesting excellent phy-
siological stability. Considering the acidicmicroenvironmentof tumors,
stability test in mimicking tumoral acid-microenvironment was con-
ducted as well. The absorption spectra of ICG NPs and RhB NPs were
recorded in different pH conditions to monitor their stability (Supple-
mentary Fig. 16). Apart from a slight absorption decrease, no band shift
was observed in ICG NPs when decreasing pH value from 7 to 5. But a
considerable turbidity decrease and a blue-shift were observed in RhB
NPs, indicating their disassembly53. The disassembly propensity of RhB
NPs can be attributed to pH-susceptibility of RhB-based dyes54. By
contrast, the less susceptibility of ICG NPs to pH variation highlighted
their advantages in tumor imaging application.

Next, the in vitro and in vivo application potentials of ICG NPs
were assessed by comparing to free ICG, RhB NPs and free RhB. A
standard 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide
(MTT) cell survival assay regarding cytotoxicity of four different for-
mulations was conducted (Supplementary Fig. 17). Cell viability was
not affected when incubating the cells with NPs at the concentration
range from0 µM to 200 µM.Moreover, no significant difference of cell
viability was observed between NPs group and their free state group.
These results indicated their appreciable biocompatibility, paving the
way for their biological application. After incubating cells with free
dyes and NPs for 24 h, CLSM images (Fig. 6a and b) demonstrated that
the dyes were most likely endocytosed in the cytoplasm, and the NPs
(ICGNPs and RhBNPs) showed themuch higher fluorescence intensity
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than free dyes (free ICG and free RhB), suggesting that nanostructures
increased the endocytosis efficiency of dyes. By comparison, the
fluorescence intensity of RhB NPs in the cytoplasm was inferior to ICG
NPs, which was attributed to their lower δ value and reduced stability
in acidic conditions. Furthermore, the photo-bleaching test regarding
ICG NPs and RhB NPs was conducted as well. Human breast cancer

MCF-7 cells were continuously excited and their average gray was
recorded at 0min, 2min and 5min to indicate the fluorescence
intensity. During continuous photo-bleaching, ICG NPs in the cellular
cytoplasm maintained robust photo-luminescence even after being
irradiated up to 5min (Fig. 6c), which can bemainly attributed to their
photo-oxidation enhanced fluorescence emission and physiological
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stability. In contrast, RhB NPs showed distinct behaviors as they were
gradually bleached over excitation time (Fig. 6d). As the in vitro
experiments showed robust TPA fluorescence emission and superior
anti-photo-bleaching capbility, ICG NPs served as excellent candidates
for the imaging implementation in vivo.

The in vivo imaging was performed in tumor-bearing mice. When
the tumor volume reached 150mm3, NPs (ICG NPs, RhB NPs) and their
free state formulations (free ICG and free RhB) with the same dye
dosage (250 µM, 200 µL)were intravenously injected intomice. At 24 h
post-injection, the mouse was anesthetized and the tumor site was
imaged. From the focal plane, lower and upper sections were scanned
along the Z axis (Fig. 6e). As shown in Fig. 6f, the fluorescence signal
obtained at the cellular level can be obtained, where the upper panel
showed the three-dimensional reconstruction images of tumor section
with Z depth of 20 µm, and the lower plane showed the focal plane
images. Cell entities can be identified in groups of ICG NPs and RhB

NPs, but not in free ICG and free RhB groups, suggesting that NPs
accumulated in tumor sites while free dyes may be quickly cleared
from mice body55. Importantly, the imaging of ICG NPs within tumor
cells was clearer than that of RhB NPs, verifying the intense fluores-
cence emission in vivo of ICG NPs. Also, the TPA fluorescence imaging
of ICG NPs has been demonstrated in other three kinds of mice
xenograft tumor models including mouse breast carcinoma cell line
4T1, mouse colorectal carcinoma cell line CT26 and human cervical
cancer cell line Hela (Supplementary Fig. 18), indicating pervasive
application of ICG NPs to other types of tumors. Moreover, the max-
imum signal-to-background ratio (SBRmax) cross cell axis, to represent
imaging contrast, was analyzed. The SBRmax of ICG NPs was calculated
as 4.61, which is 1.96-fold higher than the counterpart value of RhBNPs
(SBRmax = 2.35) (Fig. 6g). Besides, the three-dimensional scanning
enabled the visualization of the distribution of ICG NPs in tumor tissue
(Fig. 6h and supplementary Mov. 1), where the length along the Z-axis
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reached around 300 µm. Intriguingly, a real-time readout of the pre-
sence of ICG NPs within tumor vascular circulation was realized
(Fig. 6i). Blood vessels in tumor tissue showed a relatively dark state
about 15min after intravenous injection. Over time, however, ICG NPs
circulated to the tumor vascular sites and accumulated at the tumor
vascular walls, which indicated an enhanced permeability and reten-
tion (EPR) effect. Further, ex vivo imaging of tumor biopsies (Supple-
mentary Fig. 19), demonstrated that ICG NPs were endocytosed by
cellswithout damaging theirmorphology, predicting that ICGNPsmay
be safe. Finally, OPA fluorescence imaging was conducted to compare
the property of TPA fluorescence. Information regarding the dis-
tribution of NPs in different intact tissues at 24 h postinjection can be
collected, which also confirmed that the ICG NPs possessed EPR effect
within tumor (Supplementary Fig. 20). More detailed information,
such as the cellular distribution within tumor tissue, cannot be pro-
vided by OPA fluorescence imaging technique. The comparisons
emphasized the advantages of ICG NPs-based TPA fluorescence ima-
ging: (i) The chromophores only at the focus point can be excited in
TPAfluorescence imaging, which is the inherent nature of TPA imaging
technique and guaranteed high imaging resolution; (ii) The high con-
trast imaging at the cellular level in vivo can be obtained owing to their
high TPA cross-section, excellent stability, considerable anti-photo-
bleaching capability and outstanding SBR of ICG NPs.

Discussion
We have demonstrated that NIR cyanine dye-based nanoarchitectonics
formed by amino acid derivative-facilitated self-assembly represents a
versatile class of bioorganic TPA NPs with a photo-oxidation enhanced
emission mechanism, which has not been previously reported. Singlet
oxygen generated during photo-oxidation mediated chromophore
dimerization, enhanced electron delocalization and enlarged nonlinear
absorption of the TPANPs, which are responsible for the enhanced TPA
fluorescence emission. The resulting TPA NPs showed considerable
colloidal stability and outstanding in vivo stability and compatibility,
andmore importantly, their TPAcross-section and anti-bleaching ability
are more favorable than the benchmark dye RhB. These NPs show
outstanding imaging performance both in vitro and in vivo.

Compared to the existing TPA probes, which are challenged by
potential biotoxicity and limited photo-luminescence resulting from
uncontrollable aggregation and inevitable photo-oxidation in harsh
physiological milieu, the advantages of NIR cyanine dyes-based NPs are
multifaceted (Supplementary Tab. 6): (i) The NPs successfully circum-
vent the impediments of ACQ and photo-degradation during biological
imaging. That is, different from the chemically synthesized probes that
were challenged by ACQ effect, the cyanine dye NPs showed enhanced
TPA fluorescence in an aggregated state. Further, the photo-oxidation
enhanced TPA fluorescence mechanism enabled NPs to emit robust
fluorescence during photo-irradiation, thereby achieving high imaging
contrast. (ii) The NPs, started from the amino acid derivative and
broadly used cyanine dyes, have been demonstrated to possess out-
standing biosafety, while the widely studied TPA probes (such as poly-
mers and AIEgens) to some extent suffered from potential toxicity
presumably due to the complex chemical modification to the chro-
mophores. (iii) The employed fabrication strategy, avoiding the tedious
chemical synthesis, is simple and versatile. Taken together, the resulting
NPsnot only repurposed cyanine dyes as TPA imagingNPs but also hold
much potential in the field of clinical diagnosis.

Methods
Materials
ZHO was purchased from Bachem UK Ltd. ICG, IR 806, IR 140, RhB,
ZnCl2, methanol were purchased from Sigma-Aldrich Inc. BSA was
purchased from Solarbio Biotechnology Co. Ltd. MCF-7 cells (catalog
number SCSP-669S), 4T1 cells (catalog number SCSP-5056), CT26 cells
(catalog number TCM37) and Hela cells (catalog number SCSP-504)

were provided by the National Collection of Authenticated Cell Cul-
tures. Dulbecco’s Modified Eagle’s Medium (DMEM), Roswell Park
Memorial Institute 1640 (RPMI 1640), heat-inactivated fetal bovine
serum (FBS), Dulbecco’s phosphate-buffered saline (PBS), trypsin-
EDTA, and penicillin-streptomycin were purchased from BioLegend
Co. Other materials were purchased from Beijing Chemical Co. Ltd.
unless otherwise noted.

Preparation of NPs
ICGNPswere typically prepared as follows: 10 µLDMSO solution of ZHO
(264mM) was mixed with 985 µL aqueous solution of ICG (0.131mM),
followed by the addition of 5 µL ZnCl2 solution (100mM) solution into
the above mixed solution. The concentration of ZHO, ICG and Zn2+ was
2.640mM, 0.129mM and 0.500mM, respectively. Based on the opa-
lescenceof the samples, nanostructures formed immediately and thepH
value was 7, approximately. The obtained ICGNPs were stored at 4 °C in
the dark for 24h. The agedNPswere centrifugedwith a centrifugal force
(RCF) of 9391 g for 10min and were dispersed in pure water.

RhB NPs, IR 806 NPs, TPPS NPs and NiTSPc NPs were prepared
with the same abovemethod. The concentration of all dyes in the final
prepared NPs was kept same.

IR 140 NPs were prepared as follows: 10 µL DMSO solution of ZHO
(264mM) wasmixed with 10 µL DMSO solution of IR 140 (13.100mM),
then 975 µL pure water and 5 µL Zn2+ (100mM) solution were added to
the stirred solution to obtain IR 140 NPs with a pH value around 7. The
concentration of ZHO, IR 140 and Zn2+ was 2.640mM, 0.129mM and
0.500mM, respectively. The aging and washing procedures of IR 140
NPs were same to ICG NPs.

PpIX NPs were prepared following the protocol same to IR 140
NPs. The concentration of PpIX in the formation of NPs was kept same
to that of IR 140 NPs.

NaPc NPs were prepared as follows: 10 µL tetrahydrofuran (THF)
solution of ZHO (264mM) was mixed with 10 µL THF solution of NaPc
(13.100mM), then 975 µL pure water and 5 µL Zn2+ (100mM) solution
were added to the stirred solution to obtain NaPc NPs with a pH value
around 7. The aging andwashingprocedures ofNaPcNPswere same to
ICG NPs.

Morphological and spectral characterization
An aliquot of a suspension of TPA NPs was spread on a silica plate and
totally dried in vacuum at room temperature. S-4800 (Hitachi, Japan)
with 10 kV accelerating voltage was used for SEM measurements. TEM
was performed by a JEM-1011 (JEOL, Japan) at 100 kV with a drop of
sample carefully applied to a carbon-coated copper grid and dried in
vacuum. The size distribution and zeta potential were determined using
a Zetasizer Nano (Malvern, England). CLSM images were acquired by an
FV500 confocal laser scanning microscope (Olympus, Japan) equipped
with a Ti: Sapphire oscillator laser (Mai Tai, USA). TPA NPs were excited
by the adjustable Ti: Sapphire oscillator laser and the signal channels
used were 495–540nm and 575–630nm. The absorption spectra were
recorded using a UV-2600 spectrophotometer (Shimadzu, Japan) with a
quartz cuvette of 1mm path length. The F-4500 fluorescence spectro-
meter (Hitachi, Japan) equipped with Xenon lamp as excitation source
was used tomeasure theOPA fluorescence spectra of the sampleswith a
quartz cuvette of 1.0 cm. The TPA fluorescence spectra were measured
on a home-made optical platform. For excitation, an adjustable fs Ti:
Sapphire oscillator laser (100 fs, SP-5W, Spectra physics, America)
equipped with a short-pass filter (730nm) was applied onto the sample
in a 1.0 cm quartz cuvette, and spectra were recorded by an Omni-λ300
monochromator/spectrograph (Zolix, China) equipped with a PMTH-
S1C1-CR131 photomultiplier tube. EPR measurements were conducted
on the ESP-300 spectrometer (Bruker, America), which equipped with
808nm laser at room temperature. TEMP agent was added into the
samples to capture the singlet oxygen signal. FTIR spectra were recor-
ded by the TENSOR 27 FTIR spectrometer (Bruker, America), with the
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samples prepared using the KBr pellet method. The molecular weight
mass charge ratio (m/z) of ICG NPs were determined by the SolariX ESI-
MS (Bruker, America). For photothermal relaxation test, the tempera-
ture increase was recorded every 60 s with the UT320 digital thermo-
meter (UNI-T, China), and samples were irradiated by 808nm laser with
a power density of 1.5Wcm−2.

Quantitative component analysis of ICG NPs
To determine the concentration of ICG and ZHO, the suspension solu-
tion of ICG NPs was centrifuged at a RCF of 9391 g for 20min, and the
precipitatewas suspended inmethanol. The absorption intensity of ICG
was measured by absorption spectroscopy and the corresponded
concentration of ICG molecules was determined by calibration
absorption curveswith a range of known standard concentrations. ZHO
concentration were analyzed by Ultimate3000 high-pressure liquid
chromatography (HPLC, Thermo Fisher Scientific, America) using cali-
bration absorption curves with a range of known standard ZHO con-
centrations. To determine the concentration of Zn2+, the suspension
solution of ICG NPs was centrifuged at a RCF of 9391 g for 20min, and
the precipitate was re-suspended by pure water and centrifuged again
to remove free Zn2+ not participated in the assembly. The obtained
precipitates were dissolved in 1% nitric acid solution. Then, the con-
centration of Zn2+ was measured by inductively coupled plasma-optical
emission spectroscopy (ICP-OES, Leeman, America) and the corre-
sponded concentration of Zn2+ was determined by calibration absorp-
tion curves with a range of known standard concentrations. The drug
encapsulation efficiency (EE) and loading efficiency (LE)were calculated
according to the following formula (1) and (2), respectively:

EE =
weight of ICG in theprecipitate

weight of ICGadded
× 100% ð1Þ

LE =
weight of ICG in theprecipitate

weight of theprecipitate
× 100% ð2Þ

TPACS measurement
TPACSweremeasuredwith RhB inmethanol as a reference56. The fs Ti:
Sapphire oscillator laser was used. The TPA fluorescence spectra were
recorded in a 1.0 cm quartz cuvette, where the ICG NPs concentration
was kept as 20μM in methanol (sample) and RhB NPs concentration
was kept as 2μM in methanol. The experimental fluorescence excita-
tion and detection wavelengths (400 nm–700 nm) of samples and
references were kept constant. The TPACS (δ) of the probes was cal-
culated at each wavelength according to the following formula (3):

δsample = δreference

+ðreferenceÞIðsampleÞCðreferenceÞη
2
ðsampleÞP

2
ðreferenceÞ

+ðsampleÞIðreferenceÞCðsampleÞη
2
ðreferenceÞP

2
ðsampleÞ

ð3Þ

Where I is the integrated fluorescence intensity,C is the concentration,
η is the refractive index, ∅ is the quantum yield, and P is the incident
power on the sample, subscript “reference” indicates reference and
“sample” indicates sample, respectively.

Mechanism demonstration of photo-oxidation enhanced
emission
A suspension of ICG NPs with a concentration of 25 µMwas added to a
1.0 cm quartz cuvette with a sealed cap. The solution was saturated
with high-purified argon (Ar) or oxygen (O2) gas. The JPBJ-608portable
apparatus (INASE Scientific Instrument, China) was used to detect the
dissolved oxygen concentration. ICG NPs solution in air atmosphere
was used as control. Alternatively, GSH (5mM), H2O2 and H2O were
added to the ICG NPs solution to mimic the oxygen-depleted, oxygen-
saturated, and control groups, respectively.

Computational simulation
MD simulation and energy analysis were performed using Gromacs
(Version 5.1.4)package57. The forcefieldof smallmolecles including ICG
and ZHO were constructed by antechamber program in Ambertools16
package58 and acpype.py program59. The atomic charges of these
molecules were fitted by DFT calculation under the restrained elec-
trostatic potential (RESP) formalism. Water was modeled using the
tip3p potential. The binary system for MD simulation consisted of 12
ICG and 120 ZHO that were randomly distributed in a water box sized
11 × 11 × 11 nm3, which was charge-neutralized by Na+ ions. The system
was firstly minimized utilizing the conjugate-gradient algorithm, and
then equilibrated through running for 100psNVTandNPT simulations
sequentially. Production runs in the NPT ensemble at 298K were run
60ns employing the leapfrog algorithm with a time step of 2 fs to
integrate the equations of motion. The electrostatic forces were trea-
ted with the particle-mesh Ewald (PME) approach. Both the cutoff
values of van der Waals forces and electrostatic forces were set to be
1.2 nm. The LINCS algorithm was utilized to preserve bonds.

Stability and biocompatibility
The physiological stability test was conducted by incubating ICG NPs
at 37 °C for 24 h in 10-fold (v/v) dilutions of ICG NPs suspensions with
FBS. Morphological changes were characterized by TEM and DLS. The
anti-acidic stability of NPs was conducted as follows. The NPs were
respectively put in pH 5 and pH 7 solutions, then their absorption
spectra were recorded.

Biocompatibility of NPs was verified by a standard MTT cell sur-
vival assay. MCF-7 cells were seeded in 96-well plates (1 × 104 cells
well−1) and incubated for 24 h. Then, the media were replaced with
200μL of DMEM containing different concentrations of ICG NPs, RhB
NPs, free ICG and free RhB. After incubation for another 24 h, the cells
were washed three times with PBS, infused with fresh media and the
cell viability was examined.

In vitro TPA fluorescence imaging
In vitro TPA fluorescence imagingwas conducted as follows.MCF-7 cells
were cultured in DMEM containing 10% FBS. They were seeded onto
Petri dishes (5 × 103 cells well−1) and incubated for 24h at 37 °C in
humidified ambiance of 5% CO2. Then, the medium was replaced with
2mL of DMEMmedium containing ICG NPs, free ICG, RhB NPs and free
RhB (dye concentration: 25μM). Then MCF-7 cells were incubated for
24h at 37 °C. The intracellular localization of ICG was determined using
an Olympus two-photon confocal laser scanning microscope (FVMPE-
RS, Japan). All NPs (ICG NPs and RhB NPs) and their corresponding free
states (free ICG and free RhB) were excited at 808nm. The signal
channel of ICG NPs and free ICG was located in 495–540nm, while the
signal channel of RhB NPs and free RhB was located in 575–645nm.

In vivo TPA fluorescence imaging
Animal procedures were approved by the Ethics Committee of the
Institute of process engineering, Chinese Academy of Sciences (permit
number: IPEAECA2018061). Female BALB/c-nude mice (6-8 weeks
old, Beijing HFK Bioscience Co. Ltd., China) were housed in an envir-
onmentally controlled animal facility (temperature 23 °C, humidity
55 ± 5%) with regular 12/12 cycle. MCF-7 cells were collected and sus-
pended in PBSwith a concentration of 6 × 107 cellsmL−1. Eachmousewas
injected with 100 µL cellular suspension in the right sub-dermal dorsal
area. The tumor dimensions were measured using a caliper every day.
The tumor volume was determined using the following formula (4):

Tumor volume=
length ×width ×width

2
ð4Þ

Approximately 1 week after inoculation, the tumors approxi-
mately grew to the volume of 150± 30mm3, themice xenograft MCF-7
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tumor models were established. Other three kinds of mice xenograft
tumor models including 4T1 tumor, CT26 tumor and Hela tumor were
established with the same above method.

For in vivo TPA imaging, 200μL 5% glucose solution of ICG NPs,
free ICG, RhB NPs and free RhB (dye concentration: 250 µM) were
intravenously injected into the tumor bearing mice via the tail vein.
After injection, the mice were anesthetized with 4% (w/w) chloral
hydrate (10mLkg−1 body) and the skin of tumor was peeled off. All
fluorescence of NPs (ICG NPs and RhB NPs) and their corresponding
free states (free ICG and free RhB) was determined using the Olympus
two-photon confocal laser scanning microscope and excited at
808 nm. The signal channel of ICG NPs and free ICG was located in
495–540nm, while the signal channel of RhB NPs and free RhB was
located in 575–645 nm. For cellular imaging in vivo, an area of 300 ×
300 µmwas randomly selected as site of interest to perform the Z axis
analysis and focal plane analysis. For imaging depth measurement to
determine the spatial distribution of ICG NPs, the Z axis crosscutting
was continued until the signal disappeared. For flow and accumulation
of ICG NPs in tumor tissue, a blood vessel included-area around 430 ×
430 µm was selected as site of interest to image at different time
intervals. All obtained imageswere analyzedby the equipped software.
ForOPAfluorescence imaging,micewereanesthetized and scannedby
an in vivo IVIS spectrum imaging system (PerkinElmer, America) at 24 h
post-injection of ICG NPs. The signal of ICG was collected.

Histological analysis
Tumor tissues were excised from the mice after imaging of ICG NPs
accumulation after 24 h. The frozen tissue was sliced into 20 µm slices
which were analyzed by Olympus two-photon confocal laser scanning
microscope.

Statistical Analysis
Statistical significance was determined using one-way analysis of var-
iance (ANOVA)method. Thedata are presented asmean values +/− S.D.,
and P values are calculated by one-way ANOVA *P<0.05.

Statistics and Reproducibility
Each experiment was repeated 3 times independently with similar
results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Source data for main and supplementary figures generated in this
study have been deposited in Figshare (https://figshare.com/s/
15318812234a7e3721ba). The full image dataset is available from the
corresponding author upon request. The remaining data are available
within the Article, Supplementary Information or Source data file.
Source data are provided with this paper.
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