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Coordinated single-cell tumor micro-
environment dynamics reinforce pancreatic
cancer subtype

Ki Oh1, Yun Jae Yoo 1, Luke A. Torre-Healy 1, Manisha Rao2,3, Danielle Fassler1,
Pei Wang4, Michael Caponegro5, Mei Gao6, Joseph Kim6, Aaron Sasson7,8,
Georgios Georgakis7,8, Scott Powers3,8 & Richard A. Moffitt 1,9,10

Bulk analyses of pancreatic ductal adenocarcinoma (PDAC) samples are
complicated by the tumor microenvironment (TME), i.e. signals from fibro-
blasts, endocrine, exocrine, and immune cells. Despite this, we andothers have
established tumor and stroma subtypes with prognostic significance. How-
ever, understanding of underlying signals driving distinct immune and stromal
landscapes is still incomplete. Here we integrate 92 single cell RNA-seq sam-
ples from seven independent studies to build a reproducible PDAC atlas with a
focus on tumor-TME interdependence. Patients with activated stroma are
synonymous with higher myofibroblastic and immunogenic fibroblasts, and
furthermore show increased M2-like macrophages and regulatory T-cells.
Contrastingly, patients with ‘normal’ stroma show M1-like recruitment, ele-
vated effector and exhausted T-cells. To aid interoperability of future studies,
we provide a pretrained cell type classifier and an atlas of subtype-based sig-
naling factors that we also validate in mouse data. Ultimately, this work
leverages the heterogeneity among single-cell studies to create a compre-
hensive view of the orchestra of signaling interactions governing PDAC.

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes
of cancer deathwith a 5-year survival rate of only 10%1. Only 1 in4 PDAC
patients are diagnosed early enough for complete surgical resection
and for most patients, chemotherapy eventually becomes the only
option. Molecular analysis of PDAC tumors is often hampered by
limited tumor cellularity and the presence of abundant stroma inter-
mixed with endocrine, exocrine, and immune cells2. To better study
PDAC neoplastic cells, alternative methods such as laser capture
microdissection, organoids, and xenografts have been used3–6. We
previously performed virtual microdissection on bulk RNA-seq sam-
ples establishing prognostic gene signatures for “basal-like” and

“classical” tumor subtypes, highlighting the importance of cancer-
intrinsic heterogeneity across PDAC patients7. Additionally, we
described “normal” and “activated” stromal subtypes, the latter having
worse outcomes. Gene signatures such as these have been important
in preliminary trials aimed at therapeutic decision support8–10.
Exploration of the interplay of these signatures was recently explored
and made accessible online11.

In recent years, the tumor microenvironment (TME) has been of
great interest in the search for alternative therapeutic modalities12.
Advances inmicrofluidics and single-cell RNA sequencing (scRNA-seq)
have enabled high-throughput and high-resolution analysis of the
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cancer TME at an individual cell level13. This allows us to study tumor
heterogeneity, while overcoming the challenges of blind-source
separation14–17. Several single-cell studies of pancreatic tissues have
helped to reveal previously unresolved biology and disease
processes18–20. For example, novel progenitor-like duct cells were dis-
covered that differentiate into mature ductal, acinar, or islet cells21.
Cancer-associated fibroblasts (CAFs), including myofibroblastic CAFs
(myCAFs), immunogenic CAFs (iCAFs), and antigen-presenting CAFs
(apCAFs) were shown to play a role in extracellularmatrix production,
immunosuppression, vasculature remodeling, tumor proliferation and
metastasis22,23. Specifically, these TME phenotypes are facilitated in
part by signaling ligands) that activate or suppress transcriptional
programs. Tumor-derived Interleukin-1 (IL-1), for instance, induces a
cytokine cascade consisting of LIF, IL6, andG-CSF in pancreatic stellate
cells (PSCs) to form iCAF populations through JAK/STAT signaling24.
Furthermore, subgroups of macrophages and lymphocytes have been
described across multiple tumor types, adding to the phenotypic
diversity and transcriptional heterogeneity that ultimately allows for
TME plasticity.

With many new annotated cell types, the focus has shifted
towards unraveling how cell-signaling mechanisms and networks of
features collectively form heterogenous tumors across PDAC patients.
However, stark differences exist between cell type proportions
obtained from different labs. Thus, the reproducibility of these novel
cell types and unique signaling mechanisms that may exist among the
tumor ecosystem and overall patient survival has not been sufficiently
explored.

In this work, we leverage publicly available data sets to overcome
collection and technical biases of individual analyses and create a
single-cell atlas of the PDAC TME to provide a cohesive perspective of
recent high-resolution findings. We demonstrate a close relationship
between stromal and tumor subtypes which correlated with distinct
signaling patterns across multiple cell compartments. We further
highlight subtype-dependent cell-signaling interactions thatmay drive
these distinct tissue phenotypes in hopes that targeting these inter-
actions may lead to new therapeutic approaches.

Results
Integratedmeta-analysis of single-cell PDAC provides a rich and
detailed TME atlas
An integrated pancreas scRNA-seq dataset of normal and PDAC-
derived patients was curated using local and public data sets pro-
cessed through a Seurat pipeline for both discovery and validation sets
(Fig. 1a, S1a, b). Patients across data sets contributed a unique com-
position of cell type subpopulations reflected by the initial study
objectives, patient clinical conditions, and variable tissue processing,
allowing us to observe a more comprehensive set of cell types not
necessarily captured by any one study (Supplementary Data 1). UMAP
representation of the atlas shows the successful integration of cells
across patients and independent data sets (Fig. 1b, S1c) and provides
rich compositional and phenotypic information from the PDAC tissue
biopsies. Visualizing canonical markers identifies the major cell types
(Fig. 1c) which were further refined into distinct subpopulations for
closer analysis (Fig. 1d, S1b). These cell types were additionally verified
to be consistent with previously established labels from the original
studies.

Fibroblastic Stroma: The desmoplastic PDAC TME is commonly
represented by an increase in both activated CAFs and stellate cell
populations. Analysis of differential expression (Figure S1d) between
stromal subclusters identified previously described myofibroblast
CAFs (myCAFs), complement-secreting CAFs (csCAFs), and immuno-
genic CAFs (iCAFs)22,25. Two other previously described pancreatic
stellate cell (PSC) related subpopulations26 named here by smooth
muscle (smPSC) and quiescent (qPSCs) were identified. Small popu-
lations of IL11+ CAFs, Schwann cells, and myocytes were observed

though not present in all patients and excluded from differential gene
expression analysis. Myeloid / Macrophage: We detect 2 major den-
dritic cell (DCs) populations and several myeloid activation states.
(Figure S1e). Two dendritic populations included a Regulatory T-Cell
(T-Reg) recruiting LAMP3 +DC27 and amonocyte-derived conventional
CD1C+ DCs (mo-DCs). Resident macrophages showed complement-
related expression, consistent with previous findings. Classically acti-
vated monocytes were identified by S100A8 expression28. We
observed 3 tumor-associated macrophage (TAM) populations includ-
ing a previously identified SPP1 + TAM that expressed MIF, which has
been associated with alternative activation. SPP1+ TAMs expressed the
highest level of CXCL8, which has been reported at the invasive tumor
front29. An M2-like TAM subpopulation appeared to be monocyte-
derived (APOC1+)30 and expressed granulin (GRN), which contributes
to CD8+ T-cell exclusion in PDAC31. Endothelium: Endothelial cells
were abundant within both PDAC and normal-derived pancreatic tis-
sue.We identified 3major cell subgroups based on previous single-cell
studies, e.g., capillary ‘Tip-like’ EC32, venous EC33, and arterial EC34

(Figure S1f). We identified a ‘regulatory’ endothelial subpopulation
expressing anti-angiogenic markers (JAK/STAT inhibiting - SOCS335,
and SPRY1)36. Lymphocytes: We observe a dynamic landscape of both
tumor-killing and tumor-permissive lymphocyte similarly observed in
other solid malignancies. Collectively we identified B-lymphocytes,
CD4+/CD8+ T-lymphocytes, and transitory populations such as pro-
genitor lymphocytes andproliferating lymphocytes (Figure S1g). CD4+
T-cells included the LEF1+ Naive-CD4 and CTLA4 +T-Regs that
expressed TIGIT. CD8 positivity was shared by early pre-dysfunctional
TSC22D3+37, dysfunctional LAG3+ tumor-infiltrating lymphocytes
(TILs)38 but decreased in the NKG7+ cytotoxic effector CD839

population40. B-lymphocyte populations were comprised of immature
(TCL1A+)41, mature memory B-cells, and plasma cells (MZB1+)42. A full
list of compartment-specific gene expressions is provided in Supple-
mentary Data 1.

Cross-TME analysis of secretome highlights key signaling axes
and surface markers
We then surveyed all differentially expressed transcripts known to be
secreted ligands and receptors across the cell types described above
(Fig. 1e) using statistical criteria of (Minimum cell expression > 20% of
cells, expression difference between groups >10%). Notable findings
include T-cell recruiting CCL2143 expression by qPSCs, IL6 expression
by iCAFs, and INHBA bymyCAFs. CXCL12, another chemotactic factor,
was expressed by immunogenic CAFs and venous-ECs. The corre-
sponding receptor, CXCR4, was highest in early (pre-activation) CD8+
T-cells and memory B-cells. The arterial, capillary, and venous endo-
thelial subpopulations showed upregulation of angiogenic and mito-
genic factors (i.e., VEGF, INSR), and immunomodulatory factors such
as LIFR, CX3CL1, and CCL23. Monocyte-derived DCs expressed CSF2R,
a receptor to CSF2 (GM-CSF) secreted by csCAFs and myCAFs. SPP1+
macrophages expressed MRC1 (M2 marker), and TREM2 which corre-
lates with tumor infiltrating CD8 exhaustion44. LAMP3+ DCs had the
highest expression of LGALS9 (Galectin-9), which promotes M2
polarization in macrophages expressing TIM-3 (HAVCR2)45. Lastly, we
established a pan-TME panel of surface contact markers as a resource
for stably expressed biomarkers that can identify cell types using
orthogonal techniques (Supplementary Data 2, Figure S1i).

Automated single-cell classifier for human and mouse data
To automate basic cell type annotations for pancreatic cancer single-
cell data, we trained a multi-class random forest classifier using
singlecellnet46 with the discovery atlas (Fig. 2a). Testing against our
internal held-out validation set of 99,518 cells, we achieved model
accuracy of 96.4% and AUPRC of 98%. Conversely, we trained a second
random forest model using a validation dataset from three indepen-
dent studies (Fig. 2b). Finally, cross-validation of both models across
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Fig. 1 | Integration of Normal and PDAC Single-Cell RNA-Seq Data. a Graphical
workflow of the single-cell RNA-seq processing pipeline for the discovery set and
atlas. A broad collection of both normal and tumor pancreas scRNA-seq data was
curated by leveraging publicly available data sets. After removal of outlier cells, the
standard Seurat and Harmony processing steps were performed to remove batch
effects. b t-Distributed Stochastic Neighbor Embedding (t-SNE) projection of the
full dataset showed the relative composition of the atlas based on Patients, Con-
dition, Dataset, and Cell Type [Level 1]. c Canonical cell type marker genes were
used to highlight specific expression of EPCAM (Epithelium), AMBP (Normal Duct),
MUC1 (Aberrant Duct), COL1A1 (Fibroblasts), PECAM1 (Endothelium), RGS5

(Pancreatic Stellate Cells), AIF1 (Myeloid), MS4A1 (B-Lymphocytes), and CD3D (T-
Lymphocytes). d Major cell type compartments (Endothelium, Stroma, Myeloid,
Lymphocytes) were processed further to identify cell type [Level 2] subpopula-
tions. e Differential secretome factors (ligands and receptors) expressed by each
cell type subpopulation (Log-Fold Change >0.8). Expression groups are organized
by the broader Cell Type 1 compartments. Color and size of dots represent % of
cells expressing the gene and average expression respectively. Label colors indicate
feature categories (TNF-Pathway, Integrins, EGF domain, Interleukin signaling.
Source data are provided as a Source Data file.
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studies demonstrated high label correspondence (Validation: 92.6%
Training: 95.8%) andprobability of annotationcalls within bothmodels
(Fig. 2c). To allow for compatibility with both human andmouse PDAC
experimental models, we used only common features (homologous
transcripts) for classification, allowing for recognition of broad cell
types in both species (Fig. 2d, e).

Normal and activated stromal signatures reflect a patient-level
gradient between two distinct CAF populations
We sought to better align previously established subtypes with the
more recent single-cell annotations of PDAC. We noticed a broad
overlapof ‘Activated’fibroblast signatureexpression involvingmyCAF,
‘reactive’ stroma, and classical CAFs (cCAFs)9,22,25 (Fig. 3a, S2a). Close
examination of immunogenic subpopulations showed iCAFs and the
recently described csCAFs are indeed distinct groupswith overlapping
signatures (Fig. 3b). Localization of the apCAF-associated CD74
expression appeared to be highest in the Schwann cells (Fig. S2b) but
an isolated group of cells representing the apCAFs was not found. The
remaining cells of the stroma represent 2 PSC groups with CAF1/
CAF2 signatures26 (Fig. 3c). Furthermore, pseudobulk (aggregated)
expression heatmaps of both stroma subtype signatures showed a
gradient from normal stroma to gradually higher activated states.
Consensus clusteringdividedpatients intonormalor activated stroma,
and a mixed intermediate group (Fig. 3d, S2c, d). Stromal subtype
signature scores highlighted the enrichment of the activated pheno-
type within myCAFs whereas the normal signature was found in
PSCs (Fig. 3e).

Cellular composition of PDAC TME is correlated with stromal
subtype
Based on the distinct enrichment of subtype signatures across the CAF
and PSC subpopulations, we hypothesized that differential signaling
based on stromal subtypes eventually leads to distinct TME composi-
tions and tumorigenic phenotypes (Fig. 3f–h).We observed patients of
the predominantly activated stroma phenotype had with a higher
percentage of myCAFs and csCAFs within the stroma while normal
subtype patients had higher PSCs. Similar comparisons in the myeloid
compartment showed higher SPP1+ and GRN+ TAMs, resident mac-
rophages, and mo-DCs with activated stroma while classically acti-
vated monocytes and tumoricidal macrophages (M1-like, CIBERSORT)

were higher in normal subtypes. Lymphocytes of the activated cohort
showed higher proportions of CD4+ T-Regs, and higher exhausted
T-cell signature scores whereas normal patients had higher overall T-
cells, and an increase in CD8+ T (cytotoxic and dysfunctional), naive-
CD4+ T-cells % and effector-related signature scores47.

Stromal subtypes distinguish anti-tumor and pro-tumor phe-
notypes governed by TME signaling
In the activated subtype, myCAFs show expression consistent with
secreted INHBAwhich is involved in the SMAD2/SMAD3pathway in the
epithelium.Additionally, the cancerprogression and chemoresistance-
related OXT/OXTR (oxytocin) genes were highly expressed between
CAFs and the neoplastic cells48. Myofibroblast CAFs (myCAFs) and
endothelial TGFBR1 were identified as a potential targets for TGFB2
from basal-like tumor cells49. IL19-induced profibrotic STAT3 pathway
is shown by IL20RA in activated myCAFs50. Immune checkpoint
molecules PDCD1LG2 (PDL2)51 and TNFSF4 (OX40L)52 were expressed
by myCAFs while CD8+ T-Cells and T-Regs expressed the matching
receptor pair (PD1 and OX40) respectively. Myeloid cells of the acti-
vated TME portrayed M2 polarization marked by the expression of
CD209 in GRN+ TAMs (Fig. 3g). The myCAFs and endothelium,
exhibited upregulation of FGF7/FGFR2 and VEGFC/FLT4 signaling that
facilitates cell migration and lymphatic growth respectively53(Fig. 3f).
The endothelium appeared to facilitate chemotaxis via IL1B signaling
in the activated TME (Figure S2c) and additionally expressed macro-
phage regulating genes including MIF and MARCO.

Overall signaling across cells of the normal stroma cohort showed
a contrasting anti-tumorigenic immune phenotype. In particular, the
recruitment of cytotoxic T-Cells by the endothelium canbe inferred by
the upregulated CXCL1/CXCLR1 axis54. PSCs exhibited recruitment and
differentiation through CCL21/CCR7 with LAMP3 +DC, and CSF1/
CSF1R with both resident macrophages and mo-DCs. Further, we
observed higher expression of NOTCH signaling and adhesion genes
which may regulate TME density thereby modulating macrophage
phenotypes55. Notably, PSCs expressed angiotensin (ANGPT1) that
targets endothelial TIE2 (TEK) and facilitates vessel repair which favors
the TME for drug delivery and immune infiltration56. The normal
endothelium also showed upregulation of myeloid recruiting Frac-
talkine (CX3CL1)54. Endothelial LIFR expression was high in this cohort
but down-regulatedby LIFby iCAFs in the activatedTME57 (FigureS2g).
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Fig. 2 | Automated single-cell classifier produces stable results in human and
mouse scRNA data. a Training schema for the primary classifier trained on 5000
cells per cell type in the discovery set. Model performance for each cell type is
shown on PR curve. b Secondary classifier built on an independent validation set
accurately predicts the same cell type annotations. c Robust cross-validation of the
two classifiers with unseen data are shown in the probability heatmap. d Sankey

diagram of classifier results with mouse pancreatic cancer samples shows con-
cordance between empirical labels and classifier labels in both human and mouse
single-cell data. Width of flow is proportional to total cells in each cell category.
e UMAP plot of mouse scRNA-seq data colored by the original independent
annotations and the automated classifier results exhibit robust results. Source data
are provided as a Source Data file.
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We compared the average expression of our subtype-associated panel
of signaling genes across all patients (including intermediate), showing
a coarse gradient of expression across subtypes (Figure S2h). Fur-
thermore, the expression of this gene set was concordantly expressed
by the stroma and myeloid compartments of the validation cohort
(Figure S2i). An overall model for these interactions, based on
empirical expression data, is shown in Fig. 3i, j.

Tumor subtype signatures segregate PDAC single cells and
correlate with distinct TME activity
Epithelial cells aggregated frombothnormal-derived andPDAC-derived
tissue were subclustered for finer cell type annotation, revealing acinar,
normal duct, inflammatory metaplastic, and neoplastic groups. Split-
ting the data by sample origin (normal or tumor) showed enrichment of
neoplasia and metaplasia in tumor samples (Fig. 4a). UMAP density
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plots show clear localization of canonical genes that correspond with
our cell annotations (Fig. 4b). Notably, the expression of KRT17 (basal)
and TFF3 (classical) markers were strictly isolated to the neoplastic
cluster. Epithelial analysis using pseudobulk identified patients of basal
or classical phenotypes and in some cases, both were detected within
the same patient’s tissue confirming recent PDAC organoids work stu-
dies of subtype dichotomy58 (Fig. 4c). We further analyzed the tumor

epithelia using the top 1,000variable genes andprojected thedata onto
a 3D UMAP space (Fig. 4d). This perspective shows bridging between
metaplasia and neoplasia, possibly highlighting late tumorigenic dif-
ferentiation. Normal duct cells were also observed at the edge of the
metaplastic cluster hinting at fundamental transitions from the major
normal duct cluster (Figure S3a). Themetaplastic cluster presentedwith
early malignancy markers such as MMP759,60 and MUC661 (Figure S3c)

Fig. 3 | Stroma-specific variations across patients highlight distinct phenotypic
groups. a Density enrichment of myCAFs, csCAFs, and reactive stroma signatures
shows overlapping expression. b Enrichment of iCAF and csCAF signatures. Red
circle indicates specific clustering of iCAF cells. c Enrichment of PSC signatures
representing two separate subgroups. d Gene expression heatmap using Normal
and Activated signatures (250 genes) clusters patients into three interpretable
groups (normal, intermediate, activated) Heatmap cell colors are shown as z-score
between −3 to +3. e Overlaying of the Moffitt Normal (blue) /Activated (brown)
signature scores identified two distinct localizations of the prognostic phenotypes.
f Pseudobulk heatmap showing differential secretome factors in the stroma
between stromal subtypes. Sample tracks at the top show percentage of sub-
populations in each patient stroma. g Heatmap showing differential secretome

expression in the myeloid (monocyte/macrophages) between stromal subtypes.
h Differential secretome/cell-contact related gene expression in the lymphocytes
(T-lymphocytes) between stromal subtypes. iGraphical summary of the interaction
networkof TME signaling activities upregulated in the activated stroma.Circles and
crescents represent ligands and paired receptors. Up/Down arrows indicate the
compartmental subpopulation balances observed. Ligands are directional and
activate the compartment and subpopulation where the corresponding receptor is
distinctly expressed. j Graphical interaction network of upregulated signaling
within the normal subtype TME. Reference to DEG: 1Fig. 1e, 2Fig S1e, 3Fig 3f, 5Fig
S2g, 6Fig S1g, 7Fig S3f, 8Fig 3g, 9Fig S1f, 10Fig 3h. Heatmap colors represented by z
score expression −3 to +3. Source data are provided as a Source Data file.
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single-cell in the neoplastic subset. Cells are colored by the originating patient’s
subtype designation which shows distinct basal and classical groups with an
additional density in between (opacity 25%). Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-40895-6

Nature Communications |         (2023) 14:5226 6



and uniquely expressed tumor suppressor genes that point to a
homeostatic mechanism against cellular damage or mutation (Fig. 4f).
Next, we subset the neoplastic subpopulation and scored each single-
cell for basal/classical subtype expression to show that cancer cells
match the patient phenotype accordingly while some patients have an
admixture of both basal and classical as others have observed (Fig. 4g).
Cells of the ‘mixed’ subtype patients represented an intermediate state
rather than merely an admixture of both neoplastic subtypes. This
observation of both “hybrid” tumor patients and “intermediate” sub-
types is consistent with a recent histological study62.

Differential autocrine signal analysis highlights drivers of
subtype-dependent TME phenotypes
Recent analysis of metastatic PDAC revealed how subtype-dependent
autocrine factors can influence the TME phenotype49. Applying this
concept to primary PDAC tissue, we present a list of differentially
expressed secreted factors between basal and classical neoplastic cells
(Figure S3d). We detected known basal-specific factors such as SPP163

and other secreted factors that may orchestrate broader subtype-
dependent changes across the ecosystem. To decrease the contribu-
tion of intermediate patient signals, the 6 intermediate patients were
not included in this comparison. Particularly, factors related to
epithelial-mesenchymal transition, TNFA, and IL6/JAK/STAT signaling
were elevated in basal cancer cells along with signatures for inflam-
matory response and IFNG response.

Given the overlap of tumor and stromal phenotypes in our ana-
lysis, we wanted to outline the potential mechanisms by which tumor
subtypes influence stromal phenotypes (Figure S3e). Classical cancer

patients showed elevation of pancreatic intraepithelial neoplasm
(PanIN) related hedgehog signaling61 genes (SHH, IHH) in their stroma.
Correspondingly, PTCH1 was uniquely expressed in csCAFs and
myCAFs pointing to an interaction between classical tumor-related
desmoplasia64,65. Interestingly IL7, which increases immune effector
cell function is unique to these patients and may lead classical tumors
to have a similar cytotoxic activity seen in the normal subtype66.
Fibroblast growth factor receptor (FGFR2), which promotes cancer
stemness67 was highly expressed in classical epithelium67.

Basal-like patients had increased myCAF and csCAFs proportions
and relatedly, higher activated stroma expression while classical
patients showed higher PSCs. Basal-like patient stroma showed higher
expression of CCL18, a chemokine known to increase T-Regs68 andM2-
like macrophages. This immunosuppressive pattern was observed in
the activated TME and CCL18 may serve as one of many mechanisms
bridging PDAC tumor subtypes with stromal subtypes. BTNL8, known
to stimulate proliferation and cytokine production of naive T-cells was
elevated in the stroma of classical patients and may be connected to
the overall increase in CD3D +T-Cells and decreased naive T-cells in
these patients. Lastly, we provide differentially expressed surface-
related genes for both basal and classical cancer cells to aid future
investigation (Figure S3f).

Cross-compartment-based features correlations across patients
To explore the interconnectedness of the TME, we asked how the
presence of one cell type may associate with phenotypes in other
compartments. Correlation analysis of subpopulation proportions
revealed twomajormodules of correlated features (Fig. 5a, S4b). In the
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first module, both the normal stroma and classical cell type abun-
dances were positively correlated. PSC stromal proportions were also
significantly correlated with Classical epithelial proportions, con-
sistent with our normal subtype observations. Notably, this group also
had positive associations with cytotoxic CD8+ T-cell and the FSIP2+
TAMs. The second module grouped basal and activated signatures
together along with an increase in SPP1+ TAMs, myCAFs, T-Regs, and
immunogenic CAFs.

We furthermore extended this analysis with a list of gene sig-
natures curated from recent publications (Supplementary Data 3)
representing canonical PDAC subtypes, pathways, immunomodula-
tion and metabolic signatures (Fig. 5b, S4c). When looking at
compartment-specific expression signatures instead of cell type pro-
portions, we saw ‘basal-like/activated’ signatures were associated with
evidence of increased epithelial/endothelial TGFB production while
the TGFB response signature was elevated in the stroma. Additionally,
matrix metalloproteinase signatures within the stroma, and IL17 sig-
naling by myeloid cells was observed (Fig. 5b). The other ‘classical/
normal’ TME profile included the classical and normal subtype sig-
natures as well as IFNG response signature elevated in themyeloid and
epithelial compartment. Signatures for acinar to ductal metaplasia,
hedgehog and retinol signaling were included in this module. Meta-
bolic comparisons showed the glycolysis signature group with the
basal module while oxidative phosphorylation associated with the
classical module as previously described69. Lymphocyte signatures
included transendothelialmigration, tumor-infiltrating lymphocytes70,
and PD1 signaling. Lastly, organoid-derived signatures related to
positive chemotherapy response71 were associated with normal/clas-
sical TME. Taken as a whole, this analysis provides a uniting model of
correlated cell type-specific signaling describing two drastically dif-
ferent TMEs in PDAC.

Discussion
This work represents a large effort in leveraging scRNA-seq data to
globally correlate published gene signatures with cell type-specific
tumor composition and TME signaling. Our work indicates that pre-
vious tumor characterizations through molecular, metabolic, or his-
tological approaches should not be viewed individually as
disconnected observations. Prior work has suggested that cells of
origin72 or lineage specifiers may control tumor subtype73. Addition-
ally, recent multiplex immunofluorescence revealed striking subtype
intra-tumoral heterogeneity hinting at intermediate TME landscapes74.
Herewe show co-varyingmodules (basal and activated vs. classical and
normal) appear to orchestrate two distinct cross-compartmental
paradigms, although the causal nature of this phenomenon remains
unclear. While fibroblast growth factors, T-Reg dominance, and TAMs
(SPP1+, GRN+) defined the activated TME, the normal TME hadmarked
T-effector dysfunction, and endothelial transmigration and repair.

Our analysis not only corroborates established PDAC signaling
phenotypes, but also highlights less studied yet interesting mechan-
isms that may open doors to new combination therapies. Identified as
a key immunological receptor in our study, CXCR4 antagonism has
been shown to allows for immune infiltration and synergistically
effects with immune checkpoint inhibitors75–77. Inflammatory M1-like
macrophages, previously shown tobedependent onNAD+ supply, was
associated with the NMNAT3 +TAMs78. CTLA4/TIGIT+ regulatory
T-lymphocytes may point to decreased effector function and
increased immunosuppressive activity of lymphocytes in patients with
greater activated stroma79. We identified IL2RG as a target enriched in
classical tumor epithelium and has previously shown to attenuate
PanIN growth through JAK3 suppression in orthogonally implanted
pancreatic cancer80. Similarly, FGFR2 which promotes tumor stem-
ness, could be targeted to block the FGF7 expressed from CAFs81.
Moreover, the differential secretome signatures established in this
work canbeutilized to assess subtype-dependent secretomeactivity in

single-cell or bulk RNA studies. By providing a pretrained cell type
classifier, our work provides the building blocks of a translational
platform to classify single cells, and construct TME profiles that may
better inform clinicians about potential therapeutic opportunities.

Our approach to cell type labeling was conservative, aiming to
avoid clusters only detectable in single studies. While we took care to
avoid this pitfall, a major limitation was our reliance on batch correc-
tion of the harmony R package.With any batch correction procedures,
there is a riskof introducing artifactual signals. Of note, theminor IL11+
CAFs were not identified across all studies andmay be a product of the
cluster-based approach in the setting of read count sparsity. A minor
‘EHT-EC’ endothelial subpopulation appeared to be low-quality cells
without clear distinguishing markers. In addition, the difficulty in
identifying apCAFs in our stroma meta-analysis may be related to dif-
ferences in tissue pre-processing such as fibroblast disaggregation.
Lastly, the validation cohort in this study was comparatively small but
future studies incorporating more patients will establish the con-
sistency of the TME patterns observed in this study.

While this manuscript derives many conclusions from expres-
sion data alone, targeted validations continue to appear across the
literature. In a recent publication, Zeng et al. showed an in vitro
study and immunofluorescent staining highlighting CCL18 signaling
and NFKb-signaling by tumor-associatedmacrophages (TAMs) as an
activator of stromal cells associated with poor prognosis in breast
cancer patients. Appropriately, in the aggressive activated stroma
concept described here, we describe a GRN + TAM-specific
CCL18 signaling via ACKR1 to induce angiogenesis and endothelial-
mesenchymal transition (Fig. 3j). Furthermore, our signature cor-
relation network for the activated & basal tumor profile highlighted
NFKb-signaling (specifically by lymphocytes) as a strong correlated
TME feature (Fig. 5b). Additionally, Davidson et al. using CRISPR,
shRNA, and flow cytometry in mouse models, showed that the
immune checkpoint PD-L2 (PDCD1LG2) is predominantly found in
the stroma of pancreatic cancer. Although the literature shows a
heavy focus on Programmed Death Ligand expression in the con-
text of tumor cells and lymphocytes, we found preferentially PD-L2
expression by myCAFs of the ‘activated’ TME and proposed a
potential signaling axis with Regulatory T-Cells via PD1 (PDCD1)
(Fig. 3i)82. These recent independent findings support our work,
which we expect to help provide important context to future
molecular studies83–85.

Importantly, combination therapies that target TME mediators
are being investigated to expand treatment options beyond cytotoxic
agents86–88. This is in part due to the increasing knowledge of the
cancer ecosystem and improved methods for high-resolution mole-
cular data acquisition of patient tissues and model systems. However,
our ability to characterize and match patient tumors with optimal
treatments hinders the development of novel therapies89. This study
outlines a basic framework to process a single patient tumor into
compartment-specific analysis that leverages pertinent gene signature
related to molecular subtypes, and pathologic signaling in PDAC and
other solid tumors. For example, the recent failure of a phase II clinical
trial using CSF1R inhibitor, Cabiralizumab90, may have been related to
the ‘normal stroma’ association of the CSF1/CSF1R signaling axis and
non-specific targeting based on the broadly shared expression of
CSF1R seen across myeloid subpopulations91. Future work incorpor-
ating cell-specific expression into therapeutic design may provide
important context that is missing currently.

Methods
Ethics statement
This study was approved by Stony Brook University Human Subjects
Committee (IRB), Board Ref# 2017-4223-F and 2017-4223-R1. The
patients provided informed written consent to perform the com-
parative transcriptomic analysis.
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PDAC tissue single-cell processing. Two PDAC patients (PDAC1 -
female, PDAC2 - male) were included through approved Institutional
Review Board (IRB) study #11006941 at Stony Brook Hospital. Freshly
resected human PDAC tissue was acquired in the grossing room
immediately following resectionviaWhipple or distal pancreatectomy.
Bulk tissue specimen was rapidly dissociated into single-cell suspen-
sion to reduce transcriptional artifacts of handling and time. Sub-
sequent lysis and single-cell prep were performed as detailed
previously17. The primary tumor specimen and the metastatic lesions
were delivered from the surgical pathology core, once the margins
were declared negative, in advanced DMEM/F12 on ice. The specimens
were washed in ice-cold PBS andminced into 5-mm3 sections. For each
tissue section, a small section wasfixed in 10% formalin for histological
studies. Both the tissue specimens were processed simultaneously to
avoid the batch effect. The remainder tissue specimens were minced
into smaller pieces of 0.5–1mm3 and digested for 45min at 37 °C, in a
solution containing 5mg/mL Collagenase Type II (Invitrogen) and
1mg/mL dispase (Invitrogen), in the presence of 2.5% fetal bovine
serum (FBS) (Gemini Bioproducts). The tissues were additionally
digestedwith 1mg/mLDNAse (StemCell Technologies) for 15min. The
digested cells were pelleted and washed two times, and any visible
blood cells were removed using the ACK lysis buffer (Sigma-Aldrich).
These suspensions were filtered separately through a 70-µm cell
strainer to get rid of undigested tissue chunks. If the suspension nee-
ded further declumping, it was digested for aminute in TryPLE express
(Invitrogen), neutralized with 10% FBS, and filtered through a 40-µm
cell strainer. The final cell suspensions were pelleted by centrifuging at
300 g for 5min and resuspended in PBS with 0.1% BSA (Life Technol-
ogies) to a final concentration of 10,00,000 cells/mL. The cell viability
was examined using trypan blue exclusion (Invitrogen). The Cell Ran-
ger Single-Cell Suite 3.01 was used for demultiplexing, barcode
assignment, and raw sequencing processing. The processed and
unprocessed data for these patient samples is now provided as well
under GEO repository (Accession #:GSE231535). Sex or genderwas not
used as criteria during data collection.

Curation of available human scRNA-seq data sets. Publicly available
scRNA-seq data on pancreas was obtained frommultiple sources. Raw
sequencing reads from Peng et al. (GSA: CRA001160) were aligned to
genes using Alevin92 and GRCh38 while all other data sets were inte-
grated beginning with gene x cell count matrices. Additional data sets
were included: Qadir et al. “GSE131886,”, Moncada et al.“GSE111672,”,
Muraro et al. “GSE85241,”, Segerstolpe et al. “EMTAB-5061,”, and Lin
et al. “GSE154778,”.

Processing and integration of human scRNA-seq Data. Seurat
(v3.02 & v4.0) R package and custom scripts were used for single-
cell analysis. 4 independent single-cell RNA-seq data sets were
processed for quality control and preliminary analysis. Default
parameters were used unless specified (min.cell = 10, min.genes =
300, percent.mt <10%). Cells with abnormally high or low feature
counts, percent mitochondrial gene expression >10% were filtered.
Ribosomal and mitochondrial genes were removed from features.
Protein coding mRNA genes were selected as features for isolating
the top 8000 highly variable genes, and the top 30 PCA dimensions
were used for downstream integration. Using Harmony R package93,
technical factors between data sets were corrected to construct a
well-integrated embedding across cell types and patients. Batch-
corrected harmony PCA components were then used as input for
UMAP, tSNE, and FindNeighbor function. The sensitivity for
FindClusters was set to 0.2 using the Louvain method. FindAllMar-
kers was used to annotate the coarse cell type [Level 1]. Subsequent
subpopulation analysis of major cells groups (stroma, epithelium,
lymphocytes, myeloid) was further dissected by applying this vari-
able feature selection, PCA, Harmony, and dimensional reduction

procedure over each cell type. Compartment-specific parameters
are as follows: Myeloid (4000 variable genes, 10 dims), Epithelium
(3000 genes, 8 dims), Tumor-Only subset (600 genes, 5 dims),
Stroma (6000 genes, 20 dims), Endothelial (4000 genes, 12 dims),
Lymphocytes (4000 genes, 18 dims). Visualization of gene expres-
sion and signature scores throughout the study used Seurat’s Fea-
turePlot function and nebulosa R package94.

Curation andprocessing ofmouse scRNA-seq data sets. Curation of
the mouse dataset included publicly available data sets from three
different studies23,95,96. Mouse data sets were transformed and scaled
separately before merging (i.e. Hosein, Elyada, and Gabitova-Cornell)
for normalization using 3000 variable features and scaled the data
sets. We selected 6,000 variable features across all data sets for inte-
gration features. 50 PCA components were used for harmony inte-
gration. UMAP parameters were as follows: assay = ”SCT”,
reduction = “harmony”, dims = 1:10, n.neighbors = 80, n.component =
2, min.dist = 0.3, and negative.sample.rate = 10. Top 10 dimensions
were used to find nearest neighbors and lastly 0.2 for cluster resolu-
tion. Finally, we used the FindAllMarkers function to help annotate
mouse cell clusters.

Streamlined single-cell PDAC classifier. Using the SingleCellNet R
package (v0.4.1), we trained a random forest model on the discovery
atlas dataset46. Default parameters were used with the following
exceptions (nTopGenes=20, nTopGenePairs=40, nTrees=20). For each
cell type group, 5,000 training cells were used to establish top gene
pairs. The remaining 99,518 validation cells were used for internal
performance metrics. For cross-species utilization of the classifier, we
first converted mouse gene names into human gene names trough
“mouse2human” function from the R package “homologene”; if there
were multiple mouse gene names aligned with one human gene name,
we aggregated all into one human gene name. 14,084 commonprotein-
coding genes within the human atlas genes and the mouse genes were
set as the feature search space (original gene counts: 19,554).

Differential secretome analysis of TME. The atlas was down-sampled
to 3000 cells for each of the subpopulations with the exception of
minor cell populations that were not completely resolved (IL11+ CAFs,
EHT-EC). The FindAllMarkers function was run with parameters
(min.pct >0.2, min.diff.pct >0.1, method = ”MAST”). Top 100 differ-
ential genes based on log-fold change were filtered against a cell-
signaling database of known secretome (685 genes), cell-contact (240
genes), ECM (85 genes) added from CellChat v0.0.297,98.

Subtype-dependent pseudobulk analysis of TME cell signaling.
Individual “pseudobulk signatures” of patients’ stroma, myeloid,
endothelium, lymphocytes, and epithelial compartments were calcu-
lated by aggregating all cell expression per compartment. DESeq2 was
used to define differential genes between patients with different
stromal subtypes and tumor subtypes. Cell-signaling genes for sub-
sequent translational analysis were derived once again from the Cell-
Chat v0.0.2 table of ligand/receptor interactions. Generally, candidate
signaling factors activity from subpopulations was mechanistically
associated with the cell type uniquely expressing the corresponding
pair. Intermediate patients were excluded from both stroma and
tumor comparisons. For tumor secretome analysis, intermediate
patients were removed fromanalysis to focus on the strongest basal or
classical samples. Additional code and analysis are available at https://
github.com/rmoffitt/scOh.

Compartment phenotype correlations and networks. Cell type-
specific features were calculated for all patients using an extensively
curated list of gene signatures with a focus on PDAC and immune-
related pathways (Supplementary Data 3). For signatures that did not

Article https://doi.org/10.1038/s41467-023-40895-6

Nature Communications |         (2023) 14:5226 9

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131886
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-5061?accession=E-MTAB-5061
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154778
https://github.com/rmoffitt/scOh
https://github.com/rmoffitt/scOh


have a clear cell type association, the cell type that had the highest
expression across patients was selected. In a second experiment, cell
type percentages were calculated for each compartment for each
patient. This percentage is the fraction of a patient sample’s cell type
(e.g. Stroma) that is made up of a particular cell subpopulation (e.g.
myCAF). For example, the myCAF % feature represents the # of
myCAFs a patient sample contains, divided by the patient’s total # of
stromal cells. Further, Cytotoxic CD8+ T-Cell % is derived by a patient’s
Cytotoxic CD8+ T-Cell count divided by the patient’s total # of lym-
phocytes. Two correlation matrices, for both signature features and
cell type percentages, were produced using corrr R package. Features
were sorted using ‘First Principal Component’ - sorting. Significance
(designated by *) was set to p <0.05. Correlation networks were pro-
duced using ggraph R package with an r >0.6 and r >0.7 filter for
subpopulation % and signature networks, respectively. “kk” was used
as the graph layout.

Statistics and reproducibility. The design of the study was explora-
tory in nature, aimed at investigating the association of tumor sub-
types with individual patients’ microenvironments. No statistical
method was used to predetermine sample size and data sets were
integrated as they became available. To promote reproducibility and
transparency in our research, we havemade all data and code used for
analyses publicly available.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Transcriptomic data from newly sequenced patients are available at
GEO Accession #: GSE231535. Additional publicly available data sets
include Qadir et al. (GSE131886), Moncada et al. (GSE111672), Muraro
et al. (GSE85241), Segerstolpe et al. (EMTAB-5061), and Lin et al.
(GSE154778). Mouse data utilized in the classifier experiments include
Hosen et al. (GSE12558), Elyada et al. (GSE129455), and Gabitov-Cornell
et al. (GSE156210) Source data are provided in this paper.

Code availability
Output of gene expression results, Seurat objects, patient metadata
markdowns in R code, and classifier with vignette documentation can
be found on GitHub: https://github.com/rmoffitt/scOh.
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