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Biology-guided deep learning predicts prog-
nosis and cancer immunotherapy response

Yuming Jiang1,2,10, Zhicheng Zhang 2,9,10, Wei Wang 3,10, Weicai Huang 1,10,
Chuanli Chen4, Sujuan Xi5, M. Usman Ahmad 6, Yulan Ren2, Shengtian Sang2,
Jingjing Xie7, Jen-Yeu Wang 2, Wenjun Xiong8, Tuanjie Li1, Zhen Han1,
QingyuYuan4, Yikai Xu 4, Lei Xing 2, GeorgeA. Poultsides6, Guoxin Li 1,11 &
Ruijiang Li 2,11

Substantial progress has been made in using deep learning for cancer
detection and diagnosis in medical images. Yet, there is limited success on
prediction of treatment response and outcomes, which has important
implications for personalized treatment strategies. A significant hurdle for
clinical translation of current data-driven deep learning models is lack of
interpretability, often attributable to a disconnect from the underlying
pathobiology. Here, we present a biology-guided deep learning approach
that enables simultaneous prediction of the tumor immune and stromal
microenvironment status as well as treatment outcomes from medical
images. We validate the model for predicting prognosis of gastric cancer
and the benefit from adjuvant chemotherapy in amulti-center international
study. Further, the model predicts response to immune checkpoint inhi-
bitors and complements clinically approved biomarkers. Importantly, our
model identifies a subset of mismatch repair-deficient tumors that are non-
responsive to immunotherapy and may inform the selection of patients for
combination treatments.

Artificial intelligence, includingmachine learning and deep learning, is
increasingly used to extract information and discover novel patterns
frombiomedical data1,2. These approaches hold an enormous potential
for advancing cancer research and clinical care3. One of the most
successful applications of deep learning is cancer screening for early
detection and diagnosis in medical images4–8. However, progress has
been slower in using deep learning to predict treatment response and

outcomes, which has important implications for personalized treat-
ment strategies9.

Interpretability is of paramount importance for high-stake clinical
applications such as treatment decision-making2. Currently the field of
deep learning is dominated by a data-driven paradigm,which results in
models without intuitive understanding or clear reasoning behind
their predictions. This is exacerbated by the fact that prior knowledge
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about disease biology is ignored during model development. The
disconnect from biology leads to models lacking interpretability – a
significant hurdle for clinical translation10. There is a critical need to
incorporate pathobiology into the design of deep learning models to
enhance interpretability.

The tumormicroenvironment (TME) consists ofmultiple immune
and stromal cell types, which closely interact with each other and
contribute to tumor control or progression11,12. The prognostic rele-
vance of TME and its impact on treatment response is well established
across human cancers13–16. In particular, lymphocyte infiltration is
associated with favorable outcome and response to
immunotherapy;17,18 while tumor stroma promotes invasion, metas-
tasis, and confers treatment resistance and worse survival19–22. Thus,
assessment of TME can bring valuable prognostic and predictive
information. However, current tissue-based histopathology approach
is prone to sampling bias. Imaging, on the other hand, allows the

noninvasive characterization of the entire tumor and can be per-
formed repeatedly throughout treatment. Quantitative imaging ana-
lysis may reveal the link between radiological phenotypes and the
underlying pathobiology23.

In this work, we propose a biology-guided deep learning frame-
work in which a multi-task model is trained to simultaneously predict
TME status and treatment outcomes from radiology images. We per-
form international validation for prognosis prediction in gastric can-
cer, one of themost common and lethalmalignancies worldwide24. We
further evaluate the model for predicting survival benefit from che-
motherapy and response to immunotherapy.

Results
Study design and patient characteristics
The overall study design is shown in Fig. 1. We trained and indepen-
dently validated a deep learningmodel that used diagnostic CT images
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Fig. 1 | Study design for the development and validation of a deep learning
model to predict TME classes and disease-free survival. Patients in the training
(SMU-1) cohort and internal validation (SMU-2, 3) cohorts were recruited from
SouthernMedical University, Guangzhou, China. Patients in the external validation
cohorts were recruited from Sun Yat-sen University Cancer Center (SYSUCC-1, 2),
Guangzhou, China and StanfordUniversityMedical Center, Palo Alto, USA. Patients
in the immunotherapy cohort were recruited from Southern Medical University,
Guangzhou, China and Guangdong Provincial Hospital of Chinese Medicine,

Guangzhou, China. Both CT images and IHC-stained slides were available for
patients in the SMU-1 training cohort, SMU-2 and SYSUCC-1 validation cohorts,
which were used for evaluating the model’s accuracy for TME prediction. All
patients had preoperative CT scans and outcomes available, which were used for
testing the model’s prognostic and predictive value. CT: computer tomography;
IHC: immunohistochemistry. SMU: SouthernMedical University; SYSUCC: Sun Yat-
sen University Cancer Center. TME: tumor microenvironment. Chemo:
Chemotherapy.
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to classify TME and predict prognosis of patients with gastric cancer.
The rationale for combining TME and outcome prediction in a single
model is that they are closely related and inter-connected tasks given
the establishedmechanistic link between the two.Wehypothesize that
this approach could lead to improved generalizability with the added
benefit of enhanced interpretability. We tested themodel for its ability
to predict benefit from adjuvant chemotherapy in non-metastatic
disease as well as to predict immunotherapy response in advanced
gastric cancer.

We recruited patients in four academic medical centers from
China andUnited States (Supplementary Fig 1). A total of 2799 patients
met inclusion criteria andwere divided into in 7 cohorts. Among these,
2496 patients in 6 cohorts were treated with surgery with or without
adjuvant chemotherapy, and the clinicopathological characteristics
are listed in Supplementary Data 1. The majority of these patients
(n = 1806, 72.36%) had stage II or III disease, and 928 (51.38%) patients

received adjuvant chemotherapy. In the 7th cohort, we included 303
patients who received anti-PD-1 immunotherapy (Supplementary
Data 2). All patients had stage IV gastric cancer, andmost (94%) tumors
were mismatch repair deficient (dMMR) or MSI-H.

Development of the biology-guided deep learning (BgDL)model
We trained a multi-task deep convolutional neural network model
based on CT image to simultaneously classify TME status and predict
prognosis (Fig. 2A). Here, four TME classes are defined based on
immunohistochemistry (IHC) evaluation of established immune and
stromal markers (see Methods and Supplementary Table 1); and pri-
mary clinical endpoint is disease-free survival. The implementation of
the deep learning model is available at: https://github.com/zzc623/
ClassGastric.

Figure. 2B shows the CT images and corresponding feature maps
along with the predicted TME classes and survival scores for four
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Fig. 2 | Proposed deep learning model and visualization, prediction for repre-
sentative cases. A Architecture of the proposed multi-task deep convolutional
neural network to simultaneously classify TME and predict prognosis from CT
image; (B) CT images and corresponding feature maps along with the predicted

TME classes and survival scores for four representative cases, where each row
corresponds to a patient with TME classes 1–4 defined by IHC. TME classes were
correctly predicted for all four cases; predicted survival scoreswere also consistent
with the actual patient outcome. TME tumor microenvironment.
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representative cases. Visually the featuremaps appear to be related to
tumor heterogeneity and imaging characteristics of the invasive mar-
gin. To understand what type of information the feature maps repre-
sent, we computed radiomics features based on the feature maps in
the 15th channel using the PyRadiomics package25. We observed sig-
nificant differences in the texture feature values among the four TME
classes. Features that measure heterogeneity generally show increas-
ing patterns from TME class 1 through 4, while those measuring
homogeneity show decreasing patterns (Supplementary Fig 2). This
indicates that the deep learning model may capture important infor-
mation related to intratumor heterogeneity. Our result is consistent
with previous findings that tumor heterogeneity is associated with a
worse prognosis26.

The relationships between the deep learning model predicted
TME classes, survival score and clinicopathological variables are
summarized in Supplementary Data 3–10. Themodel predictions were
statistically associated with certain risk factors,most notably pT stage.
However, there was no clear-cut relation between the two, and sub-
stantial overlap exists in predicted survival scores across stage sub-
groups. The magnitude of correlation between survival score and
tumor size was low (Pearson correlation coefficients 0.14–0.17).

BgDLmodel accurately classifies the tumor immune and stroma
microenvironment
The proposed deep learning model achieved a high accuracy for
classifying the four TME classes in the training cohort (Fig. 3A). This
model showed similarly high levels of discrimination, with AUCs of
0.94–0.96 and 0.94–0.97 in the internal and external validation

cohorts, respectively (Fig. 3A). The specificity and negative predictive
value were above 90%, while the sensitivity and positive predictive
value varied from 70–93% to 80–88% in the validation cohorts (Sup-
plementary Table 2). Consistently, the confusion matrix showed that
the model predictions agreed well with the actual TME classes defined
by IHC (Fig. 3B). The overall accuracy for the four TME classes was
around 0.810 (95% CI: 0.769–0.851), 0.832 (0.780–0.884) and 0.840
(0.776–0.904) in the training and two validation cohorts.

Given theprognostic relevanceof TME,wefirst confirmed that the
four TME classes defined according to IHC were associated with dis-
tinct prognoses including DFS and OS (Supplementary Fig 3). We then
assessed the relation between the model predicted TME classes and
prognosis. Indeed, the same pattern was observed across the training
and all validation cohorts (Supplementary Fig 4).

BgDL model predicts prognosis independently of clin-
icopathologic factors
Based on the BgDL model-predicted survival scores, we divided
patients into two risk groups by using the medium value (−0.50) in
the training cohort and applied the same cutoff point to all valida-
tion cohorts. We observed a significant difference in both DFS and
OS between patients with low vs. high score in the training cohort
(P < 0.0001; Fig. 4A). The 5-year DFS and OS rates for high-risk
patients were 19.83% and 20.66%, and for low-risk patients were
43.61% and 54.63%, respectively (Fig. 4A). The same pattern
between model-predicted survival scores and prognosis was
observed consistently across all 5 independent validation cohorts
(all P < 0.0001; Fig. 4B–F).
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We compared the discrimination performance of the proposed
deep learning model with traditional clinicopathologic risk factors in
terms of AUC for prognosis prediction. Our deep learning survival
score (DLS) showed superior discriminability to almost all risk factors
including pT, pN, pM stage, tumor size, differentiation, Lauren his-
tology, serum CEA and CA199 levels (Fig. 5A). The only exception was
overall pathologic stage, which had a similar performance with the
deep learning model for prediction of 5-year DFS (AUC: 0.72 vs. 0.71).

We thenperformedmultivariate Cox regression analysis adjusting
for clinicopathologic factors. The DLS model remained an indepen-
dent prognostic factor for both DFS and OS in the training cohort and
validation cohorts (all P < 0.0001; Supplementary Data 11; Supple-
mentary Tables 3–8). We also assessed the relative contribution of
individual variables for prognosis prediction. Among the clin-
icopathologic risk factors, pT, pM, and pN stage were the most
important variables. However, when DLS was added to the model, it
became the most important parameter for prognosis prediction

(Fig. 5B). For patients with stage II or stage III disease, DLS was the
dominant variable for prognosis prediction, accounting for 76.5% and
49.6% in relative contribution (Fig. 5B). Similar results were also
observed for OS (Supplementary Fig 5).

We further assessed the prognostic value of the deep learn-
ing model in each subgroup of patients with the same clin-
icopathologic risk factors. DLS significantly stratified patients for
DFS in all stage subgroups (Fig. 5C). Strikingly, stage II patients
with high DLS had an even better overall survival compared with
stage I patients with low DLS, HR = 0.921 (0.856–0.991), P = 0.028
(Supplementary Fig 6); a similar trend exists for DFS, HR = 0.943
(0.880–1.101), P = 0.101. DLS also stratified patients for DFS and
OS within each subgroup of T stage, N stage, tumor size, grade,
histologic subtype, etc (Supplementary Figs. 7–8). Although the
training cohort consists of only Asian patients, DLS significantly
stratified for DFS and OS among patients with non-Asian ethnicity
in the Stanford cohort (Supplementary Fig 9).
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BgDL model improves risk stratification when integrated with
clinicopathologic factors
Since the imaging-based deep learning model demonstrated com-
plementary prognostic value to clinicopathologic risk factors, we
combined these multi-modal data to build an integrated model for
individualized assessment of prognosis in the training cohort (Sup-
plementary Fig. 10). Compared with a model consisting of only clin-
icopathologic factors, the integratedmodel significantly increased the
AUC (0.77 vs. 0.73, P < 0.001) for prognosis prediction in the validation
cohorts (Fig. 5A). In addition, we calculated the C-index for the deep

learning model, clinicopathologic variables, and integrated models.
The results show similar patterns when comparing different variables
andmodels (Supplementary Fig. 11). Remarkably, the integratedmodel
can stratify patients into 8 different risk groups, each with a distinct
prognosis (Fig. 5D and Supplementary Fig. 12). The calibration curves
at 1, 3, or 5 years showed good agreement between the model esti-
mations and the actual observations for probabilities of DFS (Supple-
mentary Fig. 13). Consistently, the corresponding prediction error
curves showed a lower prediction error for the integrated model
comparedwith stage, clinicopathologicmodel, and the imagingmodel
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(Supplementary Fig. 14). Similar results were obtained for integrated
Brier score (IBS) with lower values indicating better performance
(Supplementary Table 9).

We then quantified the relative improvement in survival predic-
tion accuracy for the integrated model vs. clinicopathologic model.
This analysis led to a net reclassification improvement (NRI) of 0.156
(0.005–0.286; P = 0.030) and 0.156 (0.005–0.286; P =0.010) for DFS
and OS in the internal validation cohort; NRI of 0.187 (0.064–0.272;
P <0.001) and 0.187 (0.068–0.277; P <0.001) for DFS and OS in the
external validation cohort, respectively (Supplementary Table 10).
Similar resultswere also found in comparing the integratedmodelwith
the imaging model alone (Supplementary Table 10).

BgDL model outperforms traditional deep learning approach
We compared the proposed multi-task deep learning model for
simultaneous TME classification and survival prediction with the tra-
ditional approach, in which two deep learning models (with the same
network architecture) were trained separately for the two different
tasks. In both validation cohorts, the proposed biology-guided deep
learning significantly improved the performance of prognosis predic-
tion with AUCs 0.716–0.754 vs. 0.670–0.672 compared with the tra-
ditional biology-naïve approach (Supplementary Fig. 15B).
Importantly, multi-task deep learning also achieved superior perfor-
mance in survival prediction than models solely based on the esti-
mated TME with AUCs 0.658–0.677 (Supplementary Fig. 16),
suggesting that the model captures prognostically relevant informa-
tion beyond TME. In addition, multi-task learning also improved the
performance of TME classification with overall accuracy 0.832–0.840
vs. 0.757–0.760 (Supplementary Fig. 15A).

BgDL model predicts survival benefit from adjuvant
chemotherapy
After validating the deep learning model for TME classification and
prognosis prediction, we further evaluated its relation to survival
outcomes in patients who either received or did not receive adjuvant
chemotherapy. This analysis was performed in patients with stage II
and III disease, for which an individualized decision of chemotherapy
would be most beneficial. To mitigate potential selection bias in our
retrospectively data, we performed 1:1 propensity score matching
within each TME class between patients who were treated with and
without chemotherapy. After matching, most clinicopathological
characteristics were similar between the two groups (Supplementary
Data 12–13).

For patients in the predicted TME class 1 group, chemotherapy
was associated with significantly improved DFS, HR =0.258
(0.172–0.388), P < 0.001 (Fig. 6A). For patients in the predicted TME
class 2 group, chemotherapy was also associated with improved DFS
although with a smaller effect (HR =0.691 (0.552–0.914), P = 0.009,
Fig. 6A). By contrast, chemotherapy was associated with worse DFS in
the predicted TME class 4 group (HR = 1.669 (1.363–2.043), P <0.001).
Chemotherapy did not appear to have any effect on DFS in the pre-
dicted TME class 3 group (HR =0.831 (0.656–1.053), P =0.120).

Considering the modest effect size of chemotherapy in predicted
TME classes 2 and 3, we incorporated the information about prognosis
to further assess their relation to chemotherapy benefit.We found that
for patients with low DLS score, chemotherapy was associated with
significant improvement in DFS in both TME classes 2 and 3 groups
(Fig. 7A, B). On the other hand, for patients with high DLS score, che-
motherapy did not have any impact on DFS in either group (Fig. 7A, B).
We performed a formal statistical interaction test between the model
predictions and chemotherapy, which confirmed a significant inter-
action (P <0.05) regarding the impact on DFS and OS in TME classes 2
and 3 group (Fig. 7A, B and Supplementary Fig 17). Further, we per-
formed multivariate logistic regression analysis and confirm that the
imaging based TME class is indeed an independent factor for

predicting the benefit of adjuvant chemotherapy in gastric cancer
(Supplementary Table 11).

The effects of chemotherapy in different subgroups of patients
are summarized in Fig. 6B and Fig. 7C. This analysis shows a clear
survival benefit from chemotherapy in patients with predicted TME
class 1 aswell as TMEclasses 2 and 3with lowDLS score. Our result also
indicates a lack of benefit from chemotherapy in patients with pre-
dicted TME class 4. We repeated the above analyses using all the
patients without propensity score matching and obtained similar
results (Supplementary Figs. 18–19). These data suggest that the deep
learning model may be predictive of the benefit of adjuvant che-
motherapy in stage II and III disease.

BgDL model predicts response to anti-PD-1 immunotherapy
We finally investigated relations between the deep learning model (in
particular, predicted TME classes) and response to anti-PD-1 immu-
notherapy in advanced gastric cancer. In a cohort of 303 0patients, the
overall objective response rates were 34.7%. For patients in the pre-
dicted TME classes 1 and 2 groups, the objective response rates were
substantially higher (69.0% and 53.3%, respectively) compared with
those in the predicted TME classes 3 and 4 groups (18.4% and 17.2%,
respectively) (Fig. 8A). For all patients, the median progression-free
survival (PFS) was 8.5 months. Kaplan–Meier analysis showed that the
predicted TME classes were significantly associated with PFS
(P < 0.001; Fig. 8B). The median PFS was 25.0, 18.0, 7.0, 5.0 months in
patients with predicted TME classes 1, 2, 3, 4, respectively.

Combined Positive Score (CPS) of PD-L1 expression, which is an
approved biomarker of immunotherapy response, was also sig-
nificantly associated objective response (Supplementary Fig. 20).
However, the predictive accuracy for CPS was quite modest (AUC:
0.646 (95% CI 0.580–0.713); Fig. 8C, D). In comparison, the predicted
TME classes showed a higher accuracy for predicting objective
response (AUC: 0.753 (0.692–0.814); Fig. 8C). Consistently, TME clas-
ses had a stronger effect on objective response than CPS in multi-
variate regression analysis (Fig. 8E). Further, TME classes can
distinguish patients with differential response within the CPS moder-
ate and high subgroups (Supplementary Fig. 21), suggesting a com-
plementary relation between the two.

Since these parameters reflect different aspects of tumor biology,
we developed an integrative decision tree model (Fig. 8F) that com-
bined CPS and TME classes, which significantly improved the response
prediction accuracy (AUC: 0.806 (0.753–0.859); Fig. 8D) compared
with CPS. Of note, for patients with high CPS, as much as 80% of
patients with TME class 1 had an objective response. In comparison,
only one third of patients with TME class 3 and 4 responded to
immunotherapy, which means that two thirds of patients did not
respond despite having high CPS. On the other hand, patients with low
CPS generally had a low response rate (as low as 10% in TME class 3 and
4). However, over 40% of patients with TME class 1 still responded to
immunotherapy despite having low CPS (Fig. 8F).

Finally, it is important to evaluate the predictive values of the TME
classes in different therapeutic settings. We therefore analyzed sepa-
rately 68 patients treated with single-agent immunotherapy and 235
patients treated with combination chemoimmunotherapy. Our ana-
lyses show that the TME classes achieved similarly good predictive
value in either therapeutic setting, and integration with CPS further
improved the accuracy for predicting treatment response (Supple-
mentary Fig. 22, 23).

Discussion
In this work, we developed a biology-guided deep learning approach
that allows the simultaneous prediction of the immune and stromal
tumor microenvironment (TME) status as well as prognosis from
radiology images. We extensively validated the model for prognosis
prediction in an internationalmulti-center cohortof 2799patientswith
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gastric cancer. Importantly, the model could identify a subset of
patients who would derive survival benefit from adjuvant che-
motherapy. Further, we showed the model could predict response to
immunotherapy and combination with an existing biomarker led to a
significant improvement in prediction accuracy.

Despite the success and enormous potential of deep learning,
interpretability remains one of the most significant challenges for

clinical translation. This is particularly true for high-stake applications
such as treatment decision-making. Unfortunately, current deep
learning models are purely data-driven and do not take into account
prior knowledge about the disease pathobiology. The lack of inter-
pretability diminishes trust and may contribute to limited reproduci-
bility and generalizability. To address this issue, we propose a
approach to incorporate biological knowledge into themodel ab initio,
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via multi-task learning for the simultaneous prediction of prognosis
and tumor microenvironment. This contrasts with previous models
that attempt to perform ‘post hoc’ explanation via saliency or attention
maps27. We show that incorporation of biological domain knowledge
as integral components of deep learning not only improved general-
izability compared with the traditional approach but also enhanced
interpretability of the model.

Our work builds on extensive evidence for the well-established
role of TME in disease progression and impact on treatment response
and resistance13–16. The radiological approach provides a noninvasive
means to the evaluation of immune and stroma TME, which may
complement histological evaluation based on tissue specimen. While
histological assessment remains the gold standard, this approach is
limited by an insufficient amount of tissue practically available (espe-
cially in small biopsies) and is prone to samplingbias due to intratumor
spatial heterogeneity28. On the other hand, radiological imaging allows
noninvasive, unbiased evaluation of the entire tumor, and can be
acquired repeatedly throughout the treatment. Since TME is dynamic
and may evolve with disease progression or treatment, this approach
also opens the door for longitudinal monitoring of TME.

Several groups including ours have developed radiomic sig-
natures of immune biomarkers that were subsequently correlated
with treatment response and outcomes29–33. Here, we included
both lymphoid/myeloid immune cells and stromal components to
capture the complexity and heterogeneity of TME across patients.
Instead of using a sequential design31,32, we propose a multi-task
deep learning strategy for concurrent prediction of treatment
outcome and TME status. By incorporating domain knowledge as
integral components of the network and learning shared repre-
sentations, this approach has the dual advantages of using biol-
ogy to guide outcome prediction and enabling more data-
efficient training. Since the model is trained to simultaneously
predict outcome, the model captures prognostically relevant
information beyond TME. Indeed, as shown in our results, this led
to improved performance over TME-based prognosis prediction.

The imaging-based deep learning model outperformed indi-
vidual clinicopathologic factors and achieved a prognostication
accuracy that is on par with the overall disease stage. Given its
complementary value, the model may be used to refine current
staging system and improve risk stratification of gastric cancer.
One strength of our work is that the prognostic model was vali-
dated in broad populations from different geographic locations
including East Asia and North America and is generalizable across
racial groups. Given the wide availability and relatively low cost of
CT, the imaging-based model may have a broad clinical impact,
especially on underserved populations.

Our results indicate a predictive effect of the deep learning
model for the benefit of adjuvant chemotherapy in gastric cancer.
Patients with the predicted high immune/low stroma TME would
clearly derive survival benefit from chemotherapy. On the other
hand, patients with predicted low immune/high stroma TME
would not benefit and may even be harmed by chemotherapy.
Interestingly, for patients with alternative TME classes, the effect
of chemotherapy depends on their predicted prognosis: only

patients with predicted worse prognosis seem to benefit while
others do not benefit from chemotherapy. For these patients,
more intensive therapies will be needed to overcome treatment
resistance and improve their outcomes34,35.

We showed that the deep learning model of TME classes
could predict response to anti-PD-1 immunotherapy in advanced
gastric cancer. Specifically, tumors with high stroma TME had
poor response to immunotherapy regardless of the immune sta-
tus. On the other hand, tumors with high immune TME showed
good response in the context of low stroma TME. This is generally
consistent with previous findings based on molecular approaches
to TME evaluation36. The deep learning model of TME had a
stronger effect than PD-L1 expression, an approved biomarker of
immunotherapy response. Importantly, a simple and inter-
pretable model that combines TME classes with PD-L1 expression
achieved a significantly higher accuracy for response prediction.
Of note, our analysis revealed that a specific group of patients
with dMMR/MSI-H tumors remain unresponsive to anti-PD-1
immunotherapy. This finding has clinical implications since
these patients are recommended to receive immunotherapy
under current treatment guidelines, and novel combination
therapies will be necessary to improve response rates.

Our study is mainly limited by the retrospective nature and
potential selection bias. To mitigate this problem, we performed rig-
orous validation in a large international dataset and adjusted for clin-
icopathologic factors in our analysis. At present, manual delineation of
the tumor is required for the best model performance. This is mainly
becausewith current deep learning it is challenging to reliably segment
gastric cancer due to the inherent nature of these tumors, such as
irregular shapes and indistinct boundary present in the CT images. In
future, development of more advanced methods for automated or
semi- automated tumor segmentation can help facilitate practical
implementation of this approach.

Although we focused on specific aspects of the tumor micro-
environment in this work, the proposed framework is general in
that any relevant information about cancer biology can be incor-
porated to design knowledge-guided deep learning models for
prediction of treatment response and outcomes. As an alternative
approach to deep learning, radiomics that are based on user-
defined computational image features may offer some degree of
interpretability26,37–39. In future work, it may be beneficial to com-
bine the two complementary approaches to further enhancemodel
performance and interpretability40.

In conclusion, we present a biology-guided deep learning model
that improves the prediction of treatment response and outcomes in
gastric cancer using radiology images. The proposed concept is
broadly applicable to other tumor types andmay afford a noninvasive
approach for evaluation of the tumor microenvironment to inform
personalized cancer therapy.

Methods
Patients and data collection
This study was approved by the Institutional Review Board at four
academic medical centers, including Nanfang Hospital of Southern

Fig. 8 | Performance of the deep learning model in predicting response and
outcomes in patients treated with anti-PD-1 immunotherapy. A Response rates
in patients of four TME classes predicted by the deep learning model; (B),
Progression-free survival in patients of four predicted TME classes; (C), Receiver
operator characteristic (ROC) curves of the predicted TME classes, CPS and com-
posite models combining TME classes and CPS for predicting immunotherapy
response (n = 296); (D), AUC values of the predicted TME classes, CPS and com-
posite models combining TME classes and CPS for predicting immunotherapy
response (n = 296); (E), Forest plot for the multivariate logistic regression analysis

for objective response; (F), Decision tree combining the predicted TME classes and
CPS. Comparisons of the survival curves were performed with a two-sided log-rank
test. Comparisons of thebarplotwereperformedwith a two-sided t (unpaired) test.
P values reported in (E) are two-tailed from logistic regression analyses. Blue dot
represents the HR value. Error bars in (D) and (E) represent the 95% confidence
intervals. TME tumor microenvironment, AUC area under the receiver operator
characteristic curve, CPS combinedpositive scoreof PDL1 expression, ORobjective
response (complete and partial response), SD stable disease, PD progressive dis-
ease. Source data are provided as a Source Data file.
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Medical University, Sun Yat-sen University Cancer Center, Guangdong
Provincial Hospital of Chinese Medicine, and Stanford University
School of Medicine. Informed consent was waived for this retro-
spective study. We reviewed data for 5133 patients with gastric ade-
nocarcinoma who underwent surgical resection or immunotherapy.
The inclusion criteria for the surgical cohorts were: histologically
confirmed diagnosis of GC; at least 15 lymph nodes harvested; pre-
operative contrast-enhanced abdominal CT available; and complete
clinicopathological and follow-up data available. We excluded patients
whose primary tumor could not be identified on CT, who received
neoadjuvant chemotherapy or had other synchronous malignant
neoplasms. For the immunotherapy cohort, the inclusion criteria were:
pretreatment contrast-enhanced abdominal CT available, and clin-
icopathological and follow-up data available.

A total of 2799 patients in seven independent cohorts were
enrolled in this study (Supplementary Fig. 1). In the Nanfang Hos-
pital cohort, we divided patients into training and validation
cohorts by the time of surgery. The training cohort and two internal
validation cohorts included 348, 202, and 636 patients who were
consecutively treated at Nanfang Hospital of Southern Medical
University (Guangzhou, China) from January 1, 2005 to December
31, 2008, from January 1, 2009 to June 30, 2012, and from July 1,
2012 to December 31, 2016 respectively. Of note, the training
cohort contains patients with complete data available that are
necessary for model development.

The two external validation cohorts included 125 and 1062
patients consecutively treated at Sun Yat-sen University Cancer Center
(SYSUCC) between June 1, 2007 and June 30, 2013. Another interna-
tional external validation cohort included 123 patients treated at
Stanford University Medical Center between August 1, 2000 and May
31, 2013. Additionally, we enrolled advanced GC patients treated with
anti-PD1 immunotherapy at two institutions between January 1, 2019
and July 31, 2021.

Clinicopathologic data including age, gender, tumor and lymph
node status, tumor differentiation, Lauren histology type, carcinoem-
bryonic antigen (CEA), and cancer antigen 19-9 (CA19-9) were col-
lected. D2 lymph node dissection was performed in most patients
(>90%) in accordance with the Japanese guidelines41. All patients were
restaged according to the eighth edition of the American Joint Com-
mittee on Cancer (AJCC) staging criteria. In the training cohort, inter-
nal validation cohorts 1 and 2 from Nanfang Hospital, there were 173
(49.70%), 92 (45.5%), and 373 (58.6%) patients who received 5-
fluorouracil–based chemotherapy, respectively. In the external vali-
dation cohort from SYSUCC, 559 (47.9%) patients received 5-
fluorouracil–based chemotherapy.

The immunotherapy cohort consists of 303 patients with
advanced GC treated at Nanfang Hospital and Guangdong Provincial
Hospital of Chinese Medicine. Anti-PD-1 drugs include: Nivolumab,
Pembrolizumab, and Toripalimab. Clinical data, including patient
demographics, treatment information, laboratory & pathologic
examinations, and computed tomography (CT) scans were acquired.
Microsatellite instability (MSI) status was assessed by either IHC or
DNA sequencing.

Definition of TME classes
We defined four TME classes using two previously validated immune
and stromal biomarkers in gastric cancer, i.e., the ImmunoScore of
Gastric Cancer (ISGC)

42 and protein expression of periostin (POSTN).
The ISGC score consists of several important immune cell types and is
calculated as: ISGC = (0.149*CD3invasivemargin) + (0.021*CD3center of tumor) +
(0.044*CD8invasive margin) + (0.096*CD45ROcenter of tumor) – (0.173*
CD66binvasive margin). On the other hand, periostin is an extracellular
matrix protein secreted predominantly by stromal cells, which reg-
ulates cancer cell migration, invasion, metastatic dissemination, and

chemoresistance43–45. These biomarkers represent two major axes of
the TME and therefore were used to define TME classes in this study
(Fig. 1). Specifically, both the ISGC score andPOSTNwere dichotomized
into low vs. high expression according to their medium values in the
training cohort. By doing so, we further divided patients into 4 classes
as follows: TME class 1 (high ISGC/low POSTN), TME class 2 (high ISGC/
high POSTN), TME class 3 (low ISGC/low POSTN), TME class 4 (low ISGC/
high POSTN). The assessment of these two biomarkers were described
in the following section.

Immunohistochemistry assessment of TME biomarkers
Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples were
processed for immunohistochemistry (IHC) staining. The samples
were incubated with antibodies against human CD3, CD8, CD45RO,
CD66b, and POSTN (Supplementary Table 3). Prior to staining, sec-
tionswere blockedwith endogenous peroxidase (prepared in 1%H2O2/
methanol solution) for 10min and then microwaved for 30min in
10mM citrate buffer, pH 6.0. The sections were blocked using 10%
normal rabbit serum for 30min. All slides were stained with the same
concentrations of primary antibody for each antibody and incubated
with monoclonal primary antibody overnight at 4 °C, followed by
incubation with an amplification system with a labeled polymer/HRP
(EnVision™, DakoCytomation, Denmark) at 37 °C for 30min. The sec-
tions were developed with 0.05% 3, 3´-diaminobenzidine tetra-
hydrochloride (DAB) and counterstained with modified Harris
hematoxylin. Every staining run contained a slide treated with phos-
phate buffer saline buffer in placeof theprimary antibody as a negative
control.

IHC evaluation was independently performed by two gastro-
enterology pathologists (T.L. and S.X. with 5 to 10 years of experi-
ence) who were blinded to the outcome data. In cases where
differences arose between the two primary pathologists, a third
pathologist was consulted to reach a consensus. At low power
(100x), the tissue sections were screened using an inverted
researchmicroscope (model DM IRB; Leica, Germany). Two areas of
interest, i.e., center of tumor (CT) and invasive margin (IM), were
evaluated at 200x magnification to measure the density of stained
immune cells for ISGC calculation. The nucleated stained cells in
each area were quantified and expressed as the number of cells per
field. For a representative analysis of POSTN, five high-power fields
sampled randomly over the entire tumor area in the total specimen
were selected for evaluation at 200× magnification. Stain intensity
was graded as 0 (negative staining), 1 (weak staining), 2 (moderate
staining), and 3 (strong staining); stain extent was graded as 0
(0–4%), 1 (5–24%), 2 (25–49%), 3 (50–74%), and 4 (>75%)45. Values of
the stain intensity and extent were multiplied and then averaged
over the five fields as the final score for each marker.

CT acquisition and image processing
Patients underwent contrast-enhanced abdominal CT scans prior to
treatment. All CT scans were acquired in the cross-sectional (or
transaxial) planes, which is the standard abdominal imaging protocol.
Following intravenous contrast administration, arterial and portal
venous-phase contrast-enhanced CT scans were performed after
delays of 28 s and 60 s, respectively. Iodinated contrast material in the
amount of 90–100ml (Ultravist 370, Bayer Schering Pharma, Berlin,
Germany) was injected at a rate of 3.0 or 3.5ml/s with a pump injector
(Ulrich CT Plus 150, Ulrich Medical, Ulm, Germany). The type of CT
scanners included GE Lightspeed 16, GEHealthcareMilwaukee,WI; 64-
section LightSpeedVCT,GEMedical Systems,Milwaukee,WI;USA. The
CT acquisition protocols were as follows: 120 kV; 150–190mAs; 0.5- or
0.4-second rotation time. Contrast-enhanced CT was reconstructed
with a field of view, 350 × 350mm; data matrix, 512 × 512; in-plane
spatial resolution 0.607–0.75mm; axial slice thickness, 1.25–7.5mm.
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Portal venous-phase CT images were retrieved from the picture
archiving and communication system (Carestream, Canada). The
images used were in their native DICOM format. CT images were
resampled to a consistent spatial resolution of 0.75 × 0.75 × 2.5mmby
using trilinear interpolation. We normalized the CT intensity to a
windowof [−150, 150]HU to highlight the soft-tissue contrast. To focus
analysis on the most relevant region (i.e., gastric carcinoma), we deli-
neated theprimary tumor as the regionof interest. Thiswas performed
by two radiologists (C.C. and Q.Y. with 11 and 10 years of clinical
experience in abdominal CT interpretation, respectively) using the
ITK-SNAP software. Patients whose tumors cannot be identified on CT
scans, for example, small tumors <1 cm or highly infiltrative tumors
with linitis plasticus, were excluded. These patients represent a small
percentage of the total population, and their clinical behavior and
prognostic patterns are relatively well-defined. Both radiologists were
present and reached consensus regarding tumor delineation.

Development of a deep learning model to predict TME classes
and survival
We designed a multi-task deep learning model to simultaneously
predict the TME classes and disease-free survival (DFS) from CT ima-
ges. In multi-task learning, multiple tasks are simultaneously learned
by a single model. Intuitively, it can be viewed as a form of inductive
transfer, which causes the model to prefer hypotheses that explain
more than one task46. By sharing representations between related
tasks, learning can be made more data efficient and may lead to
solutions that generalize better. Indeed, multi-task learning has been
shown to reduce overfitting and improve model generalizability in
many computer vision applications47.

Figure 2 shows the flowchart of the proposed network archi-
tecture. Here, we used ResNet-18 as the network backbone for feature
extraction48. We then concatenated the features from all slices and
input them into an attention-based module, which allows the network
to focus on the most relevant information for prediction. Given the
known relations between the two tasks, the network outputs of pre-
dicted TME classes are fed as additional input features into the fully
connected layer for prediction of DFS.

In detail, we input five CT image slices with a size of 160 × 160
centered around the largest tumor section to the ResNet-18model and
obtained five 1-dimensional features of size 256. After that, two fully
connected (FC) layers with Leaky Relu as the activation function were
employed to refine these features. We then concatenated the features
from all slices and input them into an attention-based module. Here,
we used two different FC layers to process the above features
according to Eq. (1) and obtained an attention map A:

A= sof tmaxðw3ðtanh w1f +b1

� �
*sigmoid w2f +b2

� �Þ+ b3Þ ð1Þ

Where f is the input feature, wif + bi ði= 1,2,3Þ denotes the FC layer.
Tanh, sigmoid and softmax is the activation function. Note that the
dimension of the third FC layer (w3f +b3) follows the number of tasks.
We multiplied the attention map with f to get the final feature M with
size of N ×256, N is the number of tasks.

The proposed deep learning model is simultaneously conducting
two tasks: TME classification and DFS prediction. Therefore, we first
used an FC layer to process the first-row feature in the final feature
M½0� and output the probability of TME classes. Given the known
relations between the two tasks, we concatenated the second-row
feature in the final feature M½1� with the predicted TME classes and
then used two FC layers to output the final DFS.

For training the multi-task learning model, the total loss function
L θð Þ is defined as:

L θð Þ= LTME Y,bY
� �

+LDFS θð Þ ð2Þ

We used cross-entropy as the loss function for predicting the
probability of TME class:

LTME ðY,bY Þ=YlogðbY Þ+ ð1� YÞlogð1� bY Þ ð3Þ

where bY is the output of the model and Y is the ground truth of
TME class.

For predicting disease-free survival, we used the Cox model to
estimate the hazard function. The Cox loss function can be defined as:
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where RðTiÞ represents the set of patients who are still in the obser-
vational study at the time Ti. w and b represent the weights and bias
parameters of the proposed network, and r̂w,b is the output of the
network. plð�Þ represents the partial likelihood of the risk of death
observed in the patients by multiplying the conditional probability of
the individual patient’s death at each time T 1, T2, � � �, Tk . By sub-
stituting network output by the hazard function ĥθ xð Þ, the loss func-
tion can be simplified as:

LDFS θð Þ := �
X

i:Ei = 1
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The proposed framework was implemented on the open-source
TensorFlow and trained using theNVIDIA Tesla V100GPUworkstation.
We used Adam optimizer to train the proposed framework with a
learning rate of 1e� 5. The batch size for the mini-batch random gra-
dient descent method was set at 16. To mitigate risk of overfitting, we
usedata augmentation to increase thenumber anddiversity of training
samples,which has been shown to improvemodel generalizability49. In
brief, we applied data augmentation on the fly during generating
training batches by the imgaug toolbox. The augmentation included
image reflection along with the patient’s anterior/posterior or left/
right directions, random affine translation, gaussian blur, image shar-
pening, and image enhancement with the Laplacian operator.

Evaluation of the model accuracy for TME classification
We evaluated the accuracy of the CT imaging-based deep learning
model to predict the IHC-defined TME classes. Beside the training
cohort, the model was tested in two independent cohorts (internal
validation cohort 1 and external validation cohort 1) for which IHCdata
was available. Metrics including the area under the receiver operating
characteristic curve (AUC), per-class and overall accuracy were com-
puted. Additionally, we also evaluated the sensitivity, specificity,
positive andnegative predictive values. The confusionmatrixwas used
to quantify the pairwise classification accuracy among different TME
classes.

Evaluation of the model accuracy for prognosis prediction
We assessed the prognostic accuracy of the deep learning model for
predicting the actual events of DFS and OS in terms of discrimination
and calibration. DFS was defined as the time from surgery to disease
progression or death. OS was defined as the time to death from any
cause. AUC was used to evaluate the accuracy for prediction of 5-year
DFS and OS. Calibration curves were generated to compare the pre-
dicted survival probabilities with the actual probabilities for the event
of interest. In addition, we assessed whether the survival model could
distinguish patients with distinct prognoses using Kaplan-Meier ana-
lysis. The medium value of predicted survival scores in the training
cohort was used as the cutoff value, and the same threshold was
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applied to the validation cohorts. This analysis was performed for all
2430 patients in 6 independent cohorts (excluding those in the
immunotherapy cohort).

An integrated model that combines the imaging signature and
clinicopathologic factors was constructed by using the multivariable
Cox regression analysis in the training cohort for prediction ofDFS and
OS. In comparison, a clinicopathologic model was built by including
only prognostic clinicopathologic factors, including T stage, N stage,
M stage, CEA, tumor location and differentiation. To quantify the
relative improvement in prediction accuracy, the net reclassification
improvement (NRI) was calculated. The overall performance of these
models was assessed by using the prediction error curves and inte-
grated Brier score (IBS).

Evaluation of the model’s association with benefit from
chemotherapy
We investigated the deep learning model for its ability to predict the
survival benefit of adjuvant chemotherapy in patients with stage II and
III GC in a post-hoc exploratory analysis. To minimize selection bias
and confounding effects, we used a matching strategy to balance
patients in each defined TME class50. Specifically, propensity score
matching (PSM) was performed for patients who received vs. did not
receive adjuvant chemotherapy using 1:1 nearest matching. Propensity
scores were calculated using the following clinicopathologic variables:
age, sex, differentiation, CEA, CA19-9, location, depth of invasion (T
stage), lymph node metastasis (N stage), tumor size, and Lauren type.

Evaluation of the model’s association with response to anti-PD1
immunotherapy
We analyzed an independent cohort of 303 advanced GC patients
treated with anti-PD-1 immune checkpoint blockade, and assessed
clinical response and outcomes in relation to the deep learning
model predicted TME classes. Response to immunotherapy was
evaluated according to the irRECIST criteria51 and defined as com-
plete response (CR), partial response (PR), stable disease (SD), or
progressed disease (PD). Objective response was defined for
patients who achieved either CR or PR. Progression-free survival
(PFS) was calculated from the start of treatment until disease pro-
gression, death, or last follow up. The combined positive score
(CPS) was defined as the total number of PD-L1 positive cells
(tumor, lymphocytes, and macrophages) divided by the total
number of viable tumor cells multiplied by 100. CPS was categor-
ized as high (CPS ≥ 10), intermediate (10 > CPS ≥ 1), and low (CPS <
1). An integrated model that combines CPS and predicted TME was
built using the Classification and Regression Tree algorithm.

Statistical analysis
We compared two groups using the t-test for continuous variables and
the chi-square test or Fisher exact test for categorical variables, as
appropriate. Comparisons in AUC were performed using the DeLong’s
method. Survival curves were generated according to the Kaplan-
Meier method and compared using the log-rank test. Univariate and
multivariate analyses for survival were performed with the Cox pro-
portional hazardmodel. All clinicopathological variables were used for
themultivariate analysis. The relative importanceof each parameter to
survival risk was assessed using the χ² from Harrell’s rms R package.
Interaction between the TME classes/survival score and chemotherapy
was also assessed by the Cox model. The “survival ROC” package was
used to perform the time-dependent ROC analysis. Nomograms and
calibration plots were generated using the “rms” package in R. Net
reclassification improvement was computed using the “survIDINRI”
package in R. The prediction error curves were obtained using the
“pec”package inR (“Boot- 632plus” splitmethodwith 1000 iterations).
P value less than 0.05 was defined as statistically significant in two-

tailed analyses. Statistical analyses were performed using R version
4.1.0 and SPSS version 21.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The source data underlying
Figs. 3–8, Supplementary Figs. 3–23, and Supplementary Table 1, 2,
4–11, 13, 22 and 23 are provided as a Source Data file. The remaining
data are available within the Article, Supplementary Information, or
Source Data file. The de-identified individual patient data including CT
images, tumor segmentations, IHC evaluation, clinicopathologic and
follow-up data are available. A data transfer agreement is required that
includes a brief research plan submitted by the user and data usage is
restricted to non-commercial academic research purposes. Request
for data access can be submitted to R.L. and will receive a response
typically within 10 days. Data will be shared through cloud storage and
available for 1 year once access has been granted. Source data are
provided with this paper.

Code availability
Source code for the deep learningmodel is available at: https://github.
com/zzc623/ClassGastric. Source code has also been placed on the
Zenodo platform [https://zenodo.org/record/8176377]52.
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