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Universal patterns in egocentric
communication networks

Gerardo Iñiguez 1,2,3,4 , Sara Heydari 2, János Kertész 1,5 &
Jari Saramäki 2

Tie strengths in social networks are heterogeneous, with strong and weak ties
playing different roles at the network and individual levels. Egocentric net-
works, networks of relationships around an individual, exhibit few strong ties
and more weaker ties, as evidenced by electronic communication records.
Mobile phone data has also revealed persistent individual differences within
this pattern. However, the generality and driving mechanisms of social tie
strength heterogeneity remain unclear. Here, we study tie strengths in ego-
centric networks across multiple datasets of interactions between millions of
people during months to years. We find universality in tie strength distribu-
tions and their individual-level variation across communicationmodes, even in
channels not reflecting offline social relationships. Via a simple model of
egocentric network evolution, we show that the observed universality arises
from the competition between cumulative advantage and random choice, two
tie reinforcement mechanisms whose balance determines the diversity of tie
strengths. Our results provide insight into the driving mechanisms of tie
strength heterogeneity in social networks and have implications for the
understanding of social network structure and individual behavior.

Social networks are key to the exchange of ideas, norms, and
other cultural constructs in human society1, influencing the way we
communicate2, support each other3,4, and form enduring
communities5. Decades of research have focused on regularities in
the patterns of relations among individuals6 as well as the drivers
and mechanisms behind their origin7. One particularly prominent
feature of social networks is the diversity of tie strengths8, where
strong ties are typically embeddedwithin social groupswhileweak ties
are crucial for the cohesiveness of the network as a whole8–10. At the
micro level, ego networks—the sets of social ties between an individual
(the ego) and their family, friends, and acquaintances (the alters)—
commonly feature a small core of close relationships. These close
relationships are associated with high emotional intensity and they are
surrounded by a larger number of weaker ties. The emergence of
this characteristic structural pattern has been associated with

constraints on maintaining social relationships, which include limited
information processing capacity11, social cognition12–14, and time
availability15–17.

Studies of human communication via mobile phones have shown
that in linewith the abovepicture, there is a consistent, general pattern
in egocentric networks where a small number of close alters receive a
disproportionately large share of communication. Data on the fre-
quency of mobile phone calls and text messages also indicate that
within this general pattern, there are clear and persistent individual
differences18–22: some people repeatedly focus most of their attention
on a few close relationships, while others tend to distribute commu-
nication among their alters more evenly18. These differences are stable
in time even under high personal network turnover. However, the
mechanisms that generate such heterogeneity of tie strengths, its
individual-level variation, and the generality of this pattern beyond
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mobile-phone-mediated communication, have not yet been
established14,22–24.

Here, we explore multiple sets of data on recurring social inter-
actions between millions of people to study heterogeneity in ego
network tie strengths and its individual variation, and to shed light on
the mechanisms behind this heterogeneity. These large-scale datasets
contain metadata on different types of time-stamped interactions,
from mobile phone calls to social media, spanning a time range from
months to years. They are likely to reflect different aspects of social
behavior: e.g., mobile-phone calls between friends, work-related
emails, and messages on an Internet forum or dating website serve
different purposes andmay ormay not reflect social relationships that
also exist offline. Using social networks reconstructed from the inter-
action records in our data, wemeasure the distribution of tie strengths
in a massive number of egocentric networks, focusing on how this
distribution varies between individuals. We compare observations
across several datasets representing different channels of commu-
nication and use our observations to construct a minimal, analytically
tractable model of egocentric network growth that attributes hetero-
geneity in tie strengths and its individual variation to the balance
between competing mechanisms of tie reinforcement.

We find systematic evidence of broad variation in the distribu-
tions of tie strengths in ego networks across all communication
channels, including those channels that do not necessarily reflect off-
line social interactions. The majority of ego networks have hetero-
geneous tie strengths with varying amounts of heterogeneity, while a
minority of individuals distribute their contacts in a homogeneous
way. With the help of our model of egocentric network evolution, we
attribute the amount of heterogeneity to a mechanism of cumulative
advantage25–27, similar to proportional growth28 and preferential
attachment29–32. Homogeneity, in turn, is associated with effectively
random choice of alters for communication. The balance between
these twomechanisms determines the dispersion of tie strengths in an
egocentric network. This balance is captured in our model through a
single preferentiality parameter that can be fitted to data for each ego.
The distributions of fitted values of this parameter are remarkably
similar across different datasets, indicating universal patterns of
communication in channels that are very different in nature. Similarly
to social signatures18, we also observe that at the level of individuals,
the preferentiality parameter is a stable and persistent indicator of the
distinctive way people shape their network on the particular channel.

Results
We analyze data on recurring, time-stamped social interactions
between millions of individuals across 16 communication channels,
including phone call records, text messages, emails, and posts from
social networks and online forums (Fig. 1). Data include, among
others, anonymized metadata for 1.3B calls and 613M messages
made by 6M people in a European country during 20079,21,33–37, 431k
emails by 57k students at Kiel University in 4 months38,39, and 850k
wall posts in Facebook made by 45k users in New Orleans during
2006–200939,40. Periods of observation varywidely, from 1month of
text message logs for 3 mobile phone companies41 to 7 years of
private messages and open forum discussions in the Swedish movie
recommendation website Filmtipset39,42,43 (for data details see
Supplementary Information [SI] Section S1, Table S1, and Fig. S1).
The analyzed data covers a wide range of population sizes and time
scales of activity, and they come from a large enough variety of
channels to include typical social contexts of human online
communication.

Tie strengths are heterogeneous and driven by cumulative
advantage
The total communication activity a (the number of calls, messages,
or posts) between an individual, or ego, and each of the ego’s

acquaintances, or alters, increases with time (Fig. 1a). Due to
variability in communication patterns with different alters, aggre-
gated ego networks typically have heterogeneous activities (or,
equivalently, tie strengths). This heterogeneity leads to a broad
alter activity distribution pa, defined as the probability that a ran-
domly chosen alter has activity a at the end of the observation
period. Following44, we characterize the spread of pa by the dis-
persion index d = (σ2 − tr)/(σ2 + tr), where σ2 is the variance of pa and
tr = t − a0 its mean relative to the minimum activity in the ego net-
work (Fig. 1b). We find that in our datasets most egos primarily
communicate with a few alters, in agreement with previously
observed patterns of mobile phone communication18,45 and online
platform use46. These egos have networks with heterogeneous tie
strengths, in other words, broad activity distributions pa with large
dispersion d, where most events are concentrated on the most
communicative alters18,47 (Fig. 1c and SI Fig. S3). Note that in the
following, because of their equivalence, we use the term social
signature interchangeably for both individual activity distributions
and the activity-rank curves of18. In addition to egos with hetero-
geneous tie strengths, all studied communication channels contain
a smaller fraction of egos who distribute their communicationmore
homogeneously among alters, leading to smaller values of d and
narrower activity distributions. Indeed, the distribution pd of the
dispersion indices over an entire dataset shows both over-dispersed
egos (d ~ 1) and egos with more Poissonian social signatures (d ~ 0;
Fig. 1d and SI Fig. S2). Even egos with similar degrees or strength
(total numbers of alters or events) can have heterogeneous or
homogeneous activity distributions, which are thus not solely dri-
ven by differences in the total level of activity between individuals.

In order to find plausible generative mechanisms behind the
diversity of social signatures seen in human communication data,
we calculate the probability πa that an alter with current activity a
communicates oncemorewith the ego, averaged over all events and
alters in the observation period (SI Fig. S4). This measure is akin to
the attachment kernel of growing networks48–50, which has been
identified in many cases as a linear function of the degree51,52, and
which has been applied in preferential attachmentmodels28–30,53. We
further restrict πa to the aggregated data of egos with given values
of dispersion d (Fig. 1e and SI Fig. S6). When averaged over het-
erogeneous egos (large d), the connection kernel πa increases
monotonically with a, indicating cumulative advantage as the way
most individuals interact with their acquaintances. Homogeneous
egos (low d), on the other hand, have a flatter and eventually
decreasing kernel closer to the average baseline πa = 〈1/k〉 where
events are allocated among alters uniformly, which can be modeled
by random choice. Despite variations in the ratio of heterogeneous
to homogeneous activity distributions across channels (signaled by
different shapes of the dispersion distribution pd; Fig. 1f and SI
Fig. S2), the connection kernel πa has qualitatively the same func-
tional form for all datasets, and it even has a similar slope for a wide
range of activity values (Fig. 1g and SI Fig. S4). The observed
increasing kernels are also robust to the degree k of the ego net-
work, with low degrees showing slightly higher levels of cumulative
advantage (SI Fig. S5).

Modeling tie strength heterogeneity
To explore the simplest theoretical mechanisms that may give rise
to the observed variability across ego networks, we consider mini-
mal cumulative-advantage dynamics similar to Price’s model26,54,
where the probability of communication between an ego and an
alter depends on their prior communication activity and a tunable
parameter α that modulates random alter choice (Fig. 2). We start
with an undirected ego network of degree k where all alters
have initial communication activity a0. After τ interactions, the
probability πa that an alter with activity a interacts with the ego at
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event time τ + 1 is

πa =
a+α
τ + kα

: ð1Þ

When the parameter α is small, πa increases linearly with activity so
egos interact preferentially with the most active alters, following a
dynamics similar to stochastic processes driven by cumulative
advantage27,28, and preferential attachment in the evolution of
connectivity29,32,53 and edgeweights30 in growing networks. For large α,
the connection kernel is flatter and alters are chosen uniformly at
random. The parameter α interpolates between heterogeneity and
homogeneity in edge weights, even for ego networks with the same
mean alter activity t = τ/k (Fig. 2a; for a detailed model description see
Materials and Methods [MM] and SI Section S2).

We solve themodel analytically via amaster equation for pa in the
limit τ, k→∞ (see MM and SI Section S2 for derivation). By introducing

the preferentiality parameter β = tr/αrwith tr = t − a0 and αr = α + a0, the
activity distribution can be written as

pa =p0
a�1
r

Bðar ,αr Þ
1 +

1
β

� ��ar

, ð2Þ

where ar = a − a0, p0 = 1 + βð Þ�αr , and B(ar, αr) is the Euler beta function.
Eq. (2) fits to numerical simulations of the model very well, even for
relatively low values of τ and k (Fig. 2b). The preferentiality parameter
β, the ratio between the average number of interactions in the ego
network and the tendency of the ego and alters to interact pre-
ferentially, reveals a crossover in the behavior of the model, corre-
sponding to a dispersion d = β/(2 + β) (Fig. 2c; derivation in SI
Section S2). For large β, dispersion increases (just like in the hetero-
geneous signatures of Fig. 1) and pa takes the broad shape of a gamma
distribution. When β and d are small, the activity distribution
approaches a Poissondistribution and scales like aGaussian in the limit

Fig. 1 | Tie strengths are heterogeneous and driven by cumulative advantage.
a Real-time contact sequence between ego and its k alters (left) and timeline of
communication activity a (right), for selected ego in the CNS call dataset75,76 (data
description in SI Section S1). Times are relative to the observation length, so close-
by events appear as single lines (left) or sudden increases in a (right). The sequence
is divided into two consecutive intervals with the same number of events (I1 and I2).
With time, some alters communicate more than others. b Aggregated ego network
(left) and alter activity distribution pa (right) for (a). The distribution hasminimum
activity a0, mean t, and standard deviation σ. c Complementary cumulative dis-
tribution function (CCDF) P½a0 ≥a� of number of alters with at least activity a, for
egos in each quartile range of the dispersion distribution pd and k ≥ 10, in the
Mobile (call) dataset9,21,33–37 (all systems in SI Fig. S3). For larger dispersions, egos
communicate with alters heterogeneously. d Dispersion distribution pd for data in

(c), showing more heterogeneous egos (all channels in SI Fig. S2). e Relative
probability πa − 〈1/k〉 that alter with activity a is contacted, averaged over time and
egos in each quartile range of the dispersion distribution pd in (d) (all systems in SI
Fig. S6). The baseline πa = 〈1/k〉means alters are contacted at random (each a value
corresponds to at least 30 egos and is normalized by the maximum activity am in
the ego subset). For heterogeneous egos, the increasing tendency indicates
cumulative advantage: alters with high prior activity receive more events. f CCDF
P½d0 ≥d� of number of egos having at least dispersion d, for 8.6M egos in 16 com-
munication channels (SI Table S1 and SI Fig. S2; shown only for egoswithmore than
10 events). g Relative connection kernel πa − 〈1/k〉 for all datasets (each a value
corresponds to at least 50 egos with k ≥ 2; see SI Figs. S4–S6). Increasing trends
indicate cumulative advantage in all channels.
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of large tr (Fig. 2d). This equivalence between β and d justifies our
choice of the dispersion index as a measure of heterogeneity: d
depends only on β and allows us to compare egos with different
activity levels, while a quantity like the activity variance σ2 = tr(1 + β)
depends explicitly on mean activity.

Model reveals diversity and persistence of social signatures
Empirical ego networks have broadly distributed degree and mini-
mum/meanalter activities for all communication channels studied (see
SI Table S1 and Fig. S1). With k, a0, and t fixed by the data, Eq. (2)
becomes a single-parameter model, allowing us to derive maximum
likelihood estimates for the preferentiality parameter β in each ego
network (Fig. 3; see MM and SI Section S3 for details on the fitting
process). After performing a goodness-of-fit test55–57 with both
Kolmogorov-Smirnov andCramér-vonMises test statistics58, we obtain
β estimates for 33−71% of egos in each dataset, amounting to 6.57M
individuals over 16 communication channels (SI Tables S2–S3). Values
of the preferentiality parameter, capturing the shape of the social
signature of an ego, cover a wide region in the (αr, tr) space and
accumulate around the crossover β = 1 (Fig. 3a; compare with Fig. 2c;
all datasets in SI Fig. S13). By accumulating all alter activities over
heterogeneous (β > 1) and homogeneous (β < 1) egos (Fig. 3b and SI

Fig. S14), activity distributions have the same functional form as in
Fig. 1c, revealing the crossover value d = 1/3 predicted by the model as
a principled estimate of the boundary between heterogeneous and
homogeneous regimes in Fig. 1c–e.

Theheterogeneity of egonetwork tie strengths iswell capturedby
the preferentiality parameter β, as it is a single number that encapsu-
lates how each individual chooses which alters to interact with
(cumulative advantage or effective random choice). Our data and
model show that this parameter is broadly distributed (66–99% of ego
networks in a dataset have heterogeneous and 1–34% homogeneous
signatures; see SI Table S3). Yet, the parameter has a similar functional
shape in data representing different communication channels (Fig. 3c),
both in value and in the region in (αr, tr) space covered by data (see SI
Fig. S13). To explore whether β and the associated activity distribution
pa are personal characteristics of each ego and not a product of ran-
dom variation, we quantify its persistence by separating the commu-
nication activity of an ego into two consecutive intervals18–21 (with the
same number of events; see Fig. 1a), fitting themodel independently to
each interval. The difference Δβ in preferentiality, relative to β for the
whole observation period, is very small for most egos (Fig. 3d). When
separating individuals by alter turnover in their ego networks, i.e. the
Jaccard similarity coefficient J between sets of alters in both intervals,

Fig. 2 | Simple model of alter activity shows crossover in shape of social sig-
natures. a In a modeled ego network of degree k, alters begin with activity a0 and
engage in new communication events at event time τwith probability πa, wherea is
the alter’s current activity and α a parameter interpolating behavior between
cumulative advantage (α→ − a0, top) and random choice (α→∞, bottom; see MM
and SI Section S2). These dynamics lead to an ego network with mean alter activity
(i.e. time) t = τ/k. Plots and networks on the right are shown diagrammatically but
correspond to k = 5, a0 = 1, α = −0.9 (103), and t = 3 (103) at the top (bottom).
b Probability pa that an alter has activity a at time t, for varying twith α = −0.7 (9) at
the top (bottom), k = 100 and a0 = 1. Numerical simulations (num) match well with

analytical calculations (theo), indicating that cumulative advantage and random
choice, respectively, lead to broador narrow activity distributions. c Phase diagram
of activity dispersion d in terms of rescaled parameters αr = α + a0 and tr = t − a0.
The preferentiality parameter β = tr/αr showcases a crossover between hetero-
geneous and homogeneous regimes at β = 1 (dashed line). The vertical gray dash-
dotted lines are parameter values for plot (d).dRescaled activity distribution pa for
varying t and αr =0.3 (103) at the top (bottom). Heterogeneous (homogeneous)
regimes show gamma (Gaussian) scaling in pa. All simulations are averages over 104

realizations.
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the mean of Δβ remains close to zero even for egos with high network
turnover (J ~ 0; for details see SI Section S3 and SI Fig. S15). The per-
sistence of the preferentiality parameter, found in all of our datasets
regardless of communication channel (Fig. 3e) and irrespectively of
alter turnover, shows that it indeed captures intrinsic individual dif-
ferences in social behavior.

Discussion
Our findings demonstrate that humans tend to build similar-looking
personal networks on multiple online communication channels. The
analysis of egocentric networks reveals a common heterogeneous
pattern, in which a small group of alters receive a disproportionate
amount of communication, yet substantial inter-individual variation is
observed similarly across all datasets. To capture this pattern and its
variation, we have developed a parsimonious and analytically tractable
model of ego network evolution, which incorporates a preferentiality
parameter specific to each ego. This parameter quantifies the degree
of heterogeneity in an ego’s personal network, reflecting the balance
between two distinct mechanisms of tie reinforcement: cumulative
advantage and random choice. Importantly, the distribution of fitted
preferentiality parameter values characterizing individual social
behavior is consistent across datasets from different channels, point-
ing to the presence of platform-independent universal patterns of
communication.

This universality can be considered both expected and unex-
pected. In the case of people’s real social networks, loosely defined as
relationships that exist in theofflineworld, it is not surprising that their
structure, characterized by a small number of close relationships, is
reflected in online communication as well, such as through mobile

phone calls. The cumulative advantage mechanism that drives the
dispersion of tie strength can be thought to effectively result from
people putting more emphasis on their closest relationships, which
arise in part due to similarities in any number of sociodemographic,
behavioral, and intrapersonal characteristics59. Generally, the hetero-
geneity of tie strengths in ego networks has been attributed to cog-
nitive, temporal, and other constraints11–13,15–17, and different
personality traits60,61 and their relative stability have been proposed as
one possible reason for the persistent individual variation in this
heterogeneity20.

However, there is no a priori reason why the ego networks gen-
erated from work-related emails, dating website messages, or movie-
related online forum discussions should exhibit similarities to those
arising from mobile telephone communications. The nature of com-
munication in these different contexts often pertains to a specific
purpose and is limited to a subset of the ego’s alters62, who may even
only be represented by online aliases. Nevertheless, despite these
differences, the overall pattern of heterogeneous tie strengths and the
distribution of the preferentiality parameter, which captures inter-
individual variability, are remarkably similar across all datasets. This
raises questions as to the underlying mechanisms driving these
similarities.

One possibility is that our brain is simply wired to consistently
shape our social networks in similar ways, independent of the specific
medium of communication13,63. Alternatively, the reason may lie in the
mechanisms of tie strength reinforcement: cumulative advantage may
arise, e.g., because we have already participated in an online con-
versationwith someone and it is easier to continue interactingwith the
same alter. In other words, while the mechanism of cumulative

Fig. 3 | Model reveals diversity and persistence of social signatures. aHeat map
of the number Nα,t of egos with given values of αr = α + a0 and tr = t − a0 in the
Mobile (call) dataset9,21,33 -- 37 (data description in SI Section S1; all systems in SI
Fig. S13). Most egos (95%) have a heterogeneous social signature. On the other side
of the crossover β = 1, a few egos (5%) have more homogeneous tie strengths (SI
Table S3).bCCDF P½a0 ≥a� of number of alters having at least activity a, aggregated
over all egos in the heterogeneous (β > 1) or homogeneous (β < 1) regime in data
from (a) (all channels in SI Fig. S14). c CCDF P½1=β0 ≥ 1=β� of rate 1/β, estimated for
6.57M egos in 16 datasets of calls, messaging, and online interactions. All systems
show a diversity of social signatures, with 66–99% egos favouring a few of their

alters, and 1–34% communicating homogeneously (SI Table S3 andSI Figs. S11–S12).
d Number NJ,Δβ of egos with given alter turnover J and relative preferentiality
changeΔβ/βwhen estimating β in two consecutive intervals of activity (I1 and I2, see
Fig. 1 andSI SectionS3), calculated for egos in (a) (all channels inSI Fig. S15).We also
show marginal number distributions of turnover (NJ) and relative preferentiality
change (NΔβ). Social signatures are persistent in time at the level of individuals,
regardless of alter turnover. eDistribution pΔβ of relative preferentiality change for
all studied datasets. Persistence of social signatures is systematic across commu-
nication channels.
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advantage effectively explains ego network tie strengths, it can arise
becauseof different reasons: emotional closeness of real relationships,
or the ease of repeated interactions in online communication with
aliases. A process potentially underlying cumulative advantage is
homophily27,59,64. If individuals with similar traits communicate more
often, as time goes by, alters with large activity will be those most
similar to the ego, and also the onesmost likely to interactwith the ego
again, leading to an increasing connection kernel. Random choice and
a flat kernel, in turn, are consistent with a lack of similarity-based tie
reinforcement. Observational data including individual traits (beyond
the activity counts explored here) may allows us to further explore the
explicit relationship between cumulative advantage and
homophily65,66.

An alternative perspective to consider is one in which all forms of
social connections, whether they occur in-person or virtually, with
actual people or pseudonymous entities, are integral components of
an egocentric network that encompasses all relationships of an indi-
vidual. Then, the various communication media can be viewed as
distinct dimensions that reflect specific facets of this overarching
network. Subnetworks associated with each communication channel
are then shaped by the ego’s channel preferences and may or may not
contain the samealters (see, e.g., 62). It is conceivable that the cognitive
and time constraints on personal networks act across the whole set of
communication channels. Then, each individual has their own way of
allocating their available communication activity on the different
channels. The selection of a communication channel is known to affect
the capacity to sustain emotionally intense social relationships67, and it
is plausible that channel-specific variations in an ego’s preferentiality
parameter may reflect their ability (or inability) to manage channel-
specific constraints that impact effective social bonding. This offers
additional insights into the debate surrounding competing theories
such as media richness68 and communication naturalness63. Given that
the utilized datasets represent distinct populations, it is yet to be
determined whether the preferentiality parameter of each individual
displays similar or divergent values across different media. Recent
research suggests that the values of the preferentiality parameter are
similar at least for calls and text messages21, but it is not certain if this
finding generalizes to other channels.

It is also notable that the value of the preferentiality parameter of
each ego appears to be stable in time, even in the face of personal
network turnover. This suggests that the parameter may reflect a
persistent individual trait that influences the structure of egocentric
networks on various channels. This interpretation raises important
questions about the possible links between an ego’s preferentiality
parameter and their other personal characteristics, such as age, gen-
der, and health, and whether preferentiality itself is subject to homo-
philous constraints. It is well established that the diversity of social
relationships can serve as an indicator of increased longevity4,
enhanced cognitive functioning during aging69, and greater resilience
to disease70.

Variation in the preferentiality parameter within a population
may have also important consequences at the network level. Ego-
centric network tie strengths and their variation are obviously
related to the well-established heterogeneous distribution of tie
strengths across the broader network (see, e.g.,33). Moreover, if an
ego’s parameter value reflects a personal trait, it may also correlate
with their network role. For instance, in social media data, person-
ality traits seem to correlate with the ability of an individual to
increase their network size71, broker new relations between alters72,
and participate in more communities73. Thus, a broad distribution
of preferentiality parameter values among individuals maymanifest
as a macro-level network structure that reflects a broad array of
roles and positions of individuals within the network. These
observations highlight the potential for our findings to contribute

to a broader understanding of the underlying mechanisms driving
social network formation and individual behavior.

Methods
Model of alter activity
We consider a minimal ego network dynamics where individuals allo-
cate interactions via cumulative advantage and a tunable amount of
random choice (for details see SI Section S2). At initial event time
τ0 = ka0 with k the degree of the ego network, all alters have minimal
activitya0. At any time τ ≥ τ0, the probability that analterwith activitya
becomes active at time τ + 1 is

πa =
ar=tr + β

�1

kð1 +β�1Þ
, ð3Þ

with ar = a − a0, tr = t − a0, and t = τ/k the mean alter activity. The pre-
ferentiality parameter β = tr/αr (with αr = α + a0 and α a tunable para-
meter) interpolates between two regimes: random alter choice (β→0
and πa ~ 1/k), and preferential alter selection (β→∞ and πa ~ ar/τr
with τr = τ − τ0).

The model can be treated analytically in the limit τ, k→∞ with
constant t (SI Section S2). The probability pa that a randomly chosen
alter has activity a follows the master equation

dtpa =
1

t +α
ða� 1 +αÞpa�1 � ða+αÞpa

� �
, ð4Þ

with initial condition paða0Þ= δa,a0
and dt the derivative with respect to

t. By introducing the probability generating function g(z, t) =∑apaza,
Eq. (4) reduces to

∂tg =
z � 1
t +α

z∂zg +αg
� �

, ð5Þ

a partial differential equation with initial condition gðz,a0Þ= za0 . Via
the method of characteristics, g takes the explicit form

gðz,tÞ= za0 z + ð1� zÞ 1 +βð Þ½ ��αr , ð6Þ

fromwhichweobtain the activity distributionpa in Eq. (2) iterativelyby
taking partial derivatives of gwith respect to z. The distribution pa has
mean t and variance σ2 = tr(1 + β), leading to the dispersion index
d = β/(2 + β).

Fitting data and model
We derive maximum likelihood estimates of the model parameter for
empirical ego networks with degree k, minimum/maximum alter
activity a0 and am, and total/mean alter activity τ =∑iai and t = τ/k (for
details see SI Section S3). Assuming that the k alter activities {ai} are
independent and identically distributed random variables following pa
in the model, the likelihood Lα that the sample {ai} is generated by Eq.
(2) for given α follows

dα ln Lα = k Fα � lnð1 + βÞ� �
, ð7Þ

where Fα =
1
k

P
i½ψðar +αr Þ � ψðαrÞ� is an average over all observed

relative activities ar = ai − a0 of the digamma function ψ(α) = dαΓ(α)/
Γ(α), i.e. the logarithmic derivative of the gamma function Γ(α). The α
value that maximizes Lα is given implicitly by

αr =
tr

eFα � 1
, ð8Þ

or, equivalently, by β = eFα � 1.
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A goodness-of-fit test allows us to quantify how plausible is the
hypothesis that the empirical data is drawn from the model activity
distribution in Eq. (2) (SI Section S3). We measure goodness of fit via
the standard Kolmogorov-Smirnov statistic

D = max
a0 ≤a≤am

jΔPaj, ð9Þ

that is, the largest magnitude of the difference ΔPaðtÞ=Pdata½a0 ≤a� �
PaðtÞ between the cumulative distribution of alter activity in data,
Pdata½a0 ≤a�, and that of the fitted model, PaðtÞ=

Pa
a0 =a0

pa0 ðtÞ, across
all activities a∈ [a0, am]. We check the robustness of our results with
three other measures from the Cramér-von Mises family of test
statistics (for details see SI Section S3).

Given the sample {ai}, we compute the estimate α numerically
from Eq. (8) and the statisticD from Eq. (9), where themodel activity
distribution follows Eq. (2). From themodel we generate nsim = 2500
simulated activity samples faigsim. For each simulated sample, we
find its own estimate αsim and the corresponding statistic Dsim.
Then, the fraction of simulated statistics Dsim larger than the data
statistic D is the p-value associated with the goodness-of-fit test,
according to D. If the p-value is large enough (p > 0.1 with 0.1 an
arbitrary significance threshold), we do not rule out the hypothesis
that our activity model emulates the empirical data, and we con-
sider that the ego network has a measurable preferentiality para-
meter β. We aim at obtaining large p-values (rather than small),
since we want to keep the assumption that the model is a good
description of the observed data (rather than reject it). Our
goodness-of-fit test shows that 33 − 71% of all considered ego net-
works are well described by the model (or up to 42 − 88% for other
test statistics; see SI Table S2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For data availability see SI Section S1. Processed data is publicly
available at https://github.com/iniguezg/Farsignatures74. Raw data is
protected and not available due to data privacy laws.

Code availability
Code to reproduce the results of the paper is publicly available at
https://github.com/iniguezg/Farsignatures74.
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