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Creating speech zones with self-distributing
acoustic swarms

Malek Itani 1,3 , Tuochao Chen 1,3 , Takuya Yoshioka 2 &
Shyamnath Gollakota 1

Imagine being in a crowded roomwith a cacophonyof speakers and having the
ability to focus on or remove speech from a specific 2D region. This would
require understanding and manipulating an acoustic scene, isolating each
speaker, and associating a 2D spatial context with each constituent speech.
However, separating speech from a large number of concurrent speakers in a
room into individual streams and identifying their precise 2D locations is
challenging, even for the human brain. Here, we present the first acoustic
swarm that demonstrates cooperative navigation with centimeter-resolution
using sound, eliminating the need for cameras or external infrastructure. Our
acoustic swarm forms a self-distributing wireless microphone array, which,
alongwith our attention-basedneural network framework, lets us separate and
localize concurrent human speakers in the 2D space, enabling speech zones.
Our evaluations showed that the acoustic swarm could localize and separate
3-5 concurrent speech sources in real-world unseen reverberant environments
withmedian and 90-percentile 2D errors of 15 cm and 50 cm, respectively. Our
system enables applications like mute zones (parts of the room where sounds
are muted), active zones (regions where sounds are captured), multi-
conversation separation and location-aware interaction.

For decades, science fiction books and films have featured the ability
to manipulate acoustic scenes. In Dune (1984, 2021) and Get Smart
(2008), a cone of silence was used to mute conversations from a
specific zone in the room. In Rick and Morty (2019), using futuristic
technology, the speech of a character in the background was isolated
from a cacophony of sounds to reveal its content. Achieving such feats
requires the capability tomake sense of acoustic scenes by associating
spatial context with each of the constituent sounds. Here, we take a
step towards this future by introducing self-distributing acoustic
swarms, which can automatically create a wireless microphone array
distributed across a large area.

Distributing a large number of wireless microphones and
speakers across a roomhas been a long-standing vision in the acoustic
and speech communities1, since it can enable a range of acoustic
capabilities and applications. In contrast to commercial smart

speakers and conferencing systems where the microphones are co-
located, distributing the microphones across a larger area provides
the ability to localize sounds in the 2D space. Further, a distributed
microphone array has a larger aperture size and hence can achieve
better spatial coverage and/or resolution. Such a distributed wireless
microphone system can also allow us to better separate an unknown
number of concurrent speakers into individual audio streams, which
when coupledwith the ability to localize speakers in the 2D space, can
help create speech zones (Fig. 1A, Supplementary Movies 1–3). For
example, we can separate speech and map colocated speakers to
different conversation zones; thus, addressing the problem of group-
level multi-conversation separation. We can also use this to create
mute/active zones where we suppress/capture speech from specific
2D regions in a room. Finally, this can enable location-based speech
interaction for smart home applications, where a speech command
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could be interpreted differently depending on the speaker’s 2D
location.

Automating the dispersion of such distributed wireless micro-
phone arrays across a large area is critical for adapting to different
environments and spatial constraints, as well as for scaling the system
with the number of microphones. Specifically, we need three key
capabilities. First, the microphones should be able to disperse them-
selves across a surface, and adapt to different environments and tasks
to efficiently use the available space. Second, given the limited battery-
life of wireless microphones, manually dispersing and collecting them
for recharging adds to the maintenance cost and is not scalable with
the number of microphones. Thus, themicrophones should be able to
automatically navigate back to a base station to dock and be
recharged. Third, to achievemulti-speaker 2D localization,weneed the
microphones to bewireless synchronizedwith each other andhave the
ability to self-localize themselves with centimeter-level accuracy.

We present the first self-distributing wireless microphone array
system that can create speech zones. Our work makes three key con-
tributions spanning swarm robotics and deep learning for speech
separation and localization: (1) We designed self-distributing acoustic
swarms where tiny robots cooperate with each other using acoustic
signals to navigate on a 2D surface (e.g., table) with centimeter-level
accuracy. We developed navigation techniques for the swarm devices

to spread out across a surface as well as navigate back to the charging
station where they can be automatically recharged. Our on-device
sensor fusion algorithms combine acoustic chirps and IMU data at the
swarmdevices to achieve 2Dnavigation aswell as automatic docking at
the charging station, without using cameras or external infrastructure.
Further, we designed algorithms to ensure that the swarm devices do
not fall off the surface and can recover from collisions with other
objects. (2) Using the resulting distributed microphone system, we
demonstrate the capability to localize and separate speech from dif-
ferent 2D regions. We designed a joint 2D localization and speech
separation framework where we use speech separation to achieve
multi-source 2D localizationwhile utilizing the 2D location information
to improve the speech separation quality. Our architecture has two key
components. First, to reduce the search space for 2D localizationusing
neural networks, we run a low-computational complexity signal pro-
cessing algorithm to prune the search space and then use a speech
separation neural network to find the speakers’ 2D locations only in the
remaining space. Second, in real-world reverberant environments, the
speech separation quality can be poor due to residual cross-talk
components between speakers. To address this, we incorporated an
attention mechanism between speakers by leveraging their estimated
2D locations to jointly compute amuch cleaner signal for each speaker
and reduce the cross-talk. (3) We demonstrate that our system is

Fig. 1 | Creating speech zones using our acoustic swarms. A Shows the acoustic
swarmon the table in the front beingused to create a conversation zone and amute
zone based on the 2D locations of each of the speakers. B Shows a handful of our
swarm robots. C Shows a closeup with (D) showing an exploded view where each
robot has a pair of microphones, a speaker, an IMU, two motors, and photo-

interrupter to detect surface edges. E Shows the base station with an entry ramp, a
grooved, meandered track, and an exit ramp. F Shows the base with a conductive
tape that lines the grooves of the platform. The robot’s aluminum balls come in
contact with them as shown in (G). When powered using a 6 V DC source, this can
charge all robots on the platform simultaneously.
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robust to real-worldmeasurement errors while generalizing to unseen
environments and running in real-time.Wealso showproof-of-concept
applications like mute zones, active zones, and multi-conversation
separation.

Results
Self-distributing acoustic swarms
Our goal is to design a miniaturized acoustic swarm that can navigate
autonomously on 2D surfaces like tables without cameras or any
external infrastructure. Our swarm should meet four key require-
ments. (1) Since our target application requires maximizing the aper-
ture size, our swarm should spread out to efficiently use the available
space. (2) The swarm robots should avoid falling off the surface and
also recover from collisions with objects on the surface. (3) Once dis-
tributed, the swarm robots should cooperate and accurately localize
themselves to compute the absolute 2D position of each robot with
centimeter-level accuracy, even in the presence of objects and walls in
the vicinity. (4) When the swarm is low on power, it should autono-
mously navigate back to the base to recharge.

While prior work has presented swarms for miniature robots,
none of the existing designs meet the above requirements (see
Table 1). In particular, prior work uses external infrastructure to loca-
lize swarm robots, including overhead cameras2, projectors3, or spe-
cialized surfaces4. Infrastructure-less cooperative acoustic localization
for drones has also been developed in previous works5,6, however, this
focuses on large-scale aerial applications which do not suffer from
indoor multipath, do not achieve centimeter-level localization
accuracies, and use an array with 4 microphones at each drone to
estimate direction of arrival, which cannot fit on our centimeter-scale
robots. Infrared sensors7,8 have been used to estimate the inter-robot
distances but this only works for short ranges (<10 cm) and prevents
smaller swarms from spreading out very far. Prior work9,10 also used
encoder and IMU data to measure relative changes to a single robot’s
position, but this approach alone has not been used to achieve the
absolute 2D position within the swarm. Finally, while some prior work
has demonstrated robot swarms that can self-localize11–13 and even
collaboratively map via SLAM14 using on-device cameras, these robots
arenot only large for our applications but cameras also raise a different
set of privacy concerns.

Robot hardware. Our acoustic robots are based on a Bluetooth low-
energy (BLE) module (ISP-1807), which combines a microcontroller
(NordicnRF52840)with capacitors, oscillators, and anantenna (Fig. 1B,
C). Each robot is equipped with a gyroscope (STMicroelectronics
ISM330DLCTR) and an accelerometer (MemsicMC3419) forodometry,
and it is actuated by a pair of micro motors (FA-GM6-3V-25), each
driven by a separate motor driver (DRV8837C). Additionally, each
robot contains a pair of microphones (TDK Invensense ICS-41352) and
a speaker (AS01008MR-3) driven by a digital input Class D amplifier
(Maxim Integrated MAX98357A). To detect edges, the robot has a pair
of proximity-sensing photointerruptors (GP2S700HCP). The system is
powered by a 3.7 V, 100mAh Lithium Polymer Battery, and a buck

converter (Texas Instruments LM3671) is used to bring the system
voltage down to 3.3 V. The battery is charged through a charger IC
(Analog Devices LTC4124). To sense battery level, the controller can
probe battery information such as cell voltage and state of charge
(SOC) through an on-board fuel gauge (Maxim IntegratedMAX17048).
The main circuit board sits atop a 3D-printed plastic base, which
houses the battery andmotors (Fig. 1D). The bottomof the robot has a
pair of aluminum balls, each connected to the main circuit via a thin
wire passing through the robot base. One ball is connected to the
systemground, while the other ball is connected to the robot’s charger
input through a diode.When placed on a pair of conductive railswith a
6 V DC voltage potential, current flows through the balls and wires to
charge the robots. Each robot measures 3.0 cm by 2.6 cm by 3.0 cm.

The robots deploy from the plastic base station (Fig. 1E). The
station is composed of an entry ramp, a grooved, meandered track,
and an exit ramp. Robots can enter the station through the entry ramp.
Once inside the base, the robot’s aluminum balls slot into the grooved
track. This track is used to guide the robots along the base and towards
the exit ramp. The sides of the track are lined at specific positions with
black checkpoints, which are sensed using the robot’s photo-
interruptors to inform the robot of its position inside the base. Finally,
conductive tape can line the grooves of the platform and be powered
using a 6 V DC source to charge all robots on the platform simulta-
neously (Fig. 1F, G).

Our robots wirelessly stream 16-bit audio recordings at 48 kHz via
Bluetooth to a host computer for processing to achieve speech
separation and localization. Due to the Bluetooth bandwidth limita-
tions of 2Mbps15, each robot compresses the recordings in real-time
using the Opus Codec.We can simultaneously stream from 7 robots at
48 kHz, without noticeable wireless packet losses, when the audio
recordings are compressed down to 32 kbps (Supplementary Fig. 1).

Acoustic swarm localization. We use acoustic signals to achieve
swarm localization (Fig. 2A, B). The basic idea is to (1) transmit acoustic
chirps sampled at 62.5 kHz (see methods), to measure the pairwise
distances between robots, and (2) apply a 2D-localization algorithm to
estimate the robot’s coordinates from the pairwise 1D distances.

To compute the relative 1Ddistances to all other robots, the robot
broadcasts an acoustic chirp. The other robots measure the time-of-
flightΔtwhich is converted into the relative 1D distance as cΔt, where c
is the speed of sound16,17. A common reference clock is required to
compute the time of flight for which we implemented a global clock
synchronization algorithm (see supplementary text). The synchroni-
zation error never exceeds 1 sample at 62.5 kHz or around 16μs
(Fig. 2C). To find the exact arrival time of a chirp in the presence of an
indoor multi-path, we design a dual-microphone algorithm that runs
on each robot to combine the chirps received across twomicrophones
on a single robot (see methods). We measured the 1D localization
errors in three different scenarios shown in Fig. 2D–F with nearby
objects and walls. The 1D ranging errors for the empty desk and the
desk near the walls are similar with median errors of 0.48 and 0.45 cm
and 90% errors of 1.2 cm and 1.1 cm, respectively (Fig. 2G). Note that

Table 1 | Comparison with previous centimeter-scale swarm platforms

Centimeter-scale swarm platform Custom infrastructure sub-100us time sync. Localization range Robot size (cm) Edge detection

MicroMVP2 Camera No meter-level 8 × 5 No

Zooids3 Light projector No meter-level 2.6 × 2.6 No

Cellulo (2nd Rev.)4 Paper microdot pattern No – 7.5 × 7.5 No

WsBot53 Camera No meter-level 3.3 × 3.3 No

Kilobots54 Overhead controller No ~ 10 cm 3.3 × 3.3 No

GRITSBot55, 56 Camera No meter-level 3 × 3 No

Ours None Yes ~ 5m 3 × 2.6 Yes
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when the desk had multiple objects, the direct path between some
pairs of robots may be blocked, resulting in a long-tailed distribution.

To obtain the absolute 2D coordinates in the base station space
and address the long tail issue from 1D localization error, we introduce
a pairwise 2D localization pipeline. At the beginning, as shown in
Fig. 2A, oneof the robots stays at the platform. It goes over all the black
checkpoints on the track, emitting acoustic chirps along the way,
which the remaining robots use to compute the 1Ddistances fromeach
checkpoint. This creates virtual landmarks at the checkpoints, which
help resolve the rotation and flipping ambiguity during 2D localization
(SupplementaryMovie 4). Once the robot reaches the last checkpoint,
the external robots take turns emitting chirps to measure more pair-
wise 1D distances to improve 2D localization accuracy (Fig. 2B). Finally,
the swarm runs a 2D localization algorithm to estimate the positions of
the external robots and compensate for the outliers in 1D localization
estimation (see methods). Figure 2H shows that for the empty desk
and desk near the walls settings, the median 2D localization errors
were 0.37 cm and 0.38 cm, respectively. For the desk with objects
setting, the 1D localization long-tail errors were resolved with the 90%
2D error being 1.3 cm. Figure 2I shows that the 2D localization errors
across different table sizeswere similar, indicating that our localization
mechanism can scale to larger surfaces.

Swarm dispersal. Consider a swarm of N> 3 robots placed in arbitrary
order on the groovesof thebase station, oriented towards the exit ramp.

Ourgoal is todisperse the robot swarmas far away aspossible across the
table while leaving one of the robots at the base. Since the swarms have
noprior knowledgeof the shape, size, andobject occupancyof thedesk,
we design a heuristic swarm dispersing strategy with two principles: (1)
robots expand in equally-partitioned angles, and (2) each robot keeps
moving until it either arrives at the desk edge or collides with objects.

Our dispersal mechanism has multiple stages as shown in
Fig. 3A–C. The first stage is to sequence and correctly position the
robots within the base, before dispersal. Since the robots may be
placed in an arbitrary order within the base, the swarm first discovers
the robot ordering within the base station. Our intuition is that a for-
wardmoving robotfirst collideswith the robot immediately aheadof it.
By performing several such collisions between different robots, and
using the photointerruptors to identify the base station start and end
checkpoints, the robot ordering within the base is obtained (Fig. 3A).
The robots then position themselves to be at the base station check-
points, which they can detect using the photointerruptors. Since the
robots may not be evenly distributed along the platform, it is not
enough for them to move to the first checkpoint they detect, as two
robotsmay contend for the samecheckpoint. Indeed, all robots, except
the last robot in sequence, move forward to form a continuous chain
starting from the exit ramp. The last robot then moves backward and
stops at the endcheckpoint. Finally, theother robots,onebyone,move
backward, collide with the robot behind them, and thenmove forward
to stop at the first checkpoint they detect (Supplementary Movie 5).

Fig. 2 | 2D localization of swarm robots. AOne of the robots stays at the platform
and moves over all the black checkpoints on the track, emitting acoustic chirps
along the way. The remaining robots use these chirps to compute the 1D distances
from each checkpoint.B The external robots take turns emitting chirps tomeasure
more pairwise 1D distances to improve 2D localization accuracy. C Shows the
synchronization errors between robot pairs with and without our time

synchronization technique. We evaluate our localization algorithm in the scenarios
shown in (D–F) with clutter on the table and walls nearby.G,H show the 1D and 2D
localization errors in these scenarios while (I) shows the 2D localization errors for
different sized tables. The large, medium, and small table sizes are 1.8 ×0.8m,
1.5 × 0.6m, and 1.2 × 0.4m, respectively.
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The second stage is to disperse robots across equally-partitioned
angles (Fig. 3B). However, the desired directions for the first half of the
robots require navigating around the base station and then dispersing
at the correct angle. To achieve this, the swarm first createsmilestones
and navigates the robots to the milestones by path-planning using the
A* algorithm.During navigation, each robot tracks its current position,
orientation (yaw), and velocity, (Xt, θt, Vt), at each timestamp t. The
robots use an IMU-based motion model to continuously update their
states. To address error accumulation inherent to IMU-based naviga-
tion, the swarm uses an IMU and acoustic fusion-based navigation
algorithm (seemethods). The basic idea is that the remaining robots at
the base station cooperate by becoming landmarks for acoustic loca-
lization. The moving robot, while in motion, sends acoustic chirps

every 200 ms to measure its distance to these landmarks. It then uses
these distance estimates to periodically calibrate the IMU-based state
and correct the drift during navigation.

Now that the robots are at their designated milestones, they ori-
ent themselves to their assigned angles and disperse away from the
base station. Since each robot has knowledge about its orientation at
itsmilestone, it can use its gyroscope to rotate to the desired direction
and keepmoving. The robots expandoutwards until they areno longer
able to do so. Specifically, they use the photo interrupters to detect
changes in proximity to the surface, and they use the IMU to detect
collisions (Fig. 3C). Once an edge or collision is detected, the robots
back off slightly to avoid falling over edges and stay away fromobjects
(SupplementaryMovie 6). Our robots can correctly detect and react to

Fig. 3 | Acoustic swarm dispersal. Our mechanism for dispersal has three stages.
A The swarm first discovers the robot ordering within the base station and then
correctly positions the robots at the black markers. B Next, the robots disperse
across equally-partitioned angle. The swarmcreatesmilestones (white crosses) and
navigates the robots to themilestones bypath-planningusing theA* algorithm. The
milestones are equidistant from the base and only 4 of the 6 milestones are shown
in the figure. C The robots use their photointerruptors to detect changes in

proximity to the surface and discover edges. They use the IMU to detect collisions.
D, E Shows the paths taken by each robot during swarm dispersal with and without
objects on the table. F Plots the surface occupancy efficiency as a function of angle
fordifferent desk shapes, and (G) Shows the cumulative distribution function (CDF)
of the energy consumedduring sequencediscovery and thenavigation required for
swarm dispersal.
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edges at speeds as high as 18 cms−1 and detect collisions with objects
for speeds as low as 10 cm s−1 (Supplementary Fig. 2). Figure 3D, E show
the navigation paths taken by the swarm robots and their behavior
near edges and recovery from object collisions. We also characterized
the effectiveness of our swarm dispersal using a surface occupancy
ratiometric. This is the ratio between the largest possible array sizewe
can achieve for a given table and the actual array size using our dis-
tribution strategy. Figure 3F shows that the surface occupancy ratio is
above 75% across all directions for different surface geometries.
Finally, since the dispersal step is only the initial step for our dis-
tributed microphone applications, it should not significantly drain the
robots’batteries. Figure 3G shows that the dispersal process consumes
on average 22.3 J or 1.7% of the overall battery life.

Navigating back to the base. After the designated task is finished or
the swarm is low on power, the robots come back to the base station
(SupplementaryMovie 7).Wemake two key assumptions: (1) There is a
small region, we call a clear zone, around the base that is clear of
objects. If the base station is near an edge orwall, this is the region that
is part of the surface and is within 25 cm of the base station. This zone
canbe used for the robots tomaneuver and dockwith the base station.
(2) We can make use of the fact that the robots reached their current
positions due to dispersal by moving in a straight path away from the
base station. So, we assume that no objects were later placed on this
path. As a result, the robots can approach the base station by moving
back along that same path. Hence, the robots outside the base station
simultaneously approach it. Concurrently, the lone robot in the base
station transmits periodic chirps at a rate of 5Hz that all the other
robots use for 1D acoustic ranging to estimate their distances to the
base. Using thesedistance estimates, eachof themoving robots comes

to a stop as soon as it arrives within the clear zone. Once all the robots
are inside the clear zone, the robots run our 2D localization algorithm
to accurately estimate their positions, which are then used to navigate
back to the base station. Specifically, the swarm uses our IMU-acoustic
navigation algorithm, where the landmarks are the positions of the
stationary robots inside and outside the base station. The robotsmove
back to the base station in the same order they exited during dispersal.
Once a robot is close enough to the entry ramp, however, its estimated
orientation may be erroneous due to gyroscope drifts during naviga-
tion. Since a precise orientation estimate is needed to enter the base,
the robot executes a simple calibration maneuver to correct the
rotation errors. During this time, the robotmoves in a straight line and
uses several 2D acoustic measurements to estimate its direction of
travel, i.e., its orientation. The robot then moves back to the center of
the entry ramp. There is a narrow region in front of the base from
which the robot can enter, and the robot uses 2D acoustic measure-
ments to verify that it is inside this region. If it is not, it corrects its
position by rotating and moving forward in sequence until it is inside
the region, after which it enters the base station. It then performs a
short sequence of rotations to identify the entry ramp tracks and
moves forward to dock with the grooves of the track (see supple-
mentary text). As the robot enters the base, other robots maymove to
different black checkpoint positions to make room for it inside the
base station. The robots in the base accordingly update their positions
and are re-used as landmarks for the next robot to navigate back.

Figure 4A–F show the trajectories taken by robots as they move
back to the base station. Different plots show trajectories of various
stages of the process. At each stage, a single robot moves back to the
base station as the remaining robots act as acoustic landmarks. In
these figures, we kidnap themoving robot in eachfigure and place it at

Fig. 4 | Acoustic swarm returning to thebase. A Shows thepaths takenby the first
external robot as it navigates its way back to the base from three different initial
positions. B–F Show the corresponding paths taken by the second, third, fourth,
fifth and the sixth external robots, respectively. G Shows a timelapse of the man-
euvering performed by a robot when it is close to the base to orient itself for

docking. H Shows a cumulative distribution function (CDF) of the energy con-
sumed for different activities like contraction to the clear zone, localization, and
navigation. I Shows the voltage and battery state of charge (SOC) as a function of
time when the robot is on the charging station.
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a different starting position and orientation and have it move back to
the base station. Figure 4G also shows a timelapse of the maneuvering
performed by a robot when it is close to the base to orient itself for
docking. Figure 4H, I show the energy consumed during this process
and the time it takes for the robot to fully charge, once it is back at the
base, which is around 2.5 h.

The time it takes for the swarm to disperse and return to the base
is based on two key factors: (1) the size of the table, and (2) the number
of robots in the swarm. We recorded the time consumption for the
dispersal and return of the acoustic swarm on a 90 cm×45cm table.
For a swarm in the base station to distribute across a surface, the
robots need to first identify the order in which they are placed in the
base station. For a swarm of 7 robots, this took around 32 s. After this,
the robots disperse one by one, taking approximately 11.8 ± 7.0 s per
robot dispersal. In total, the sequence discovery and swarm dispersal
take around 1min and 45 s. To return to the base, the robots first
moved toward the clear zone in less than 1.5 s. Then, the robot at the
base station goes around the landmarks on the base, performing
acoustic chirps along the way. This is dependent on the number of
landmarks on the base station, and with 7 landmarks, it took around
30 s. Next, the robots outside the base take turns emitting chirps,
which took about 3.1 ± 0.02 s per robot. Finally, each robot needs to
navigate to the base station one by one, perform the pre-entry cali-
bration maneuver, and successfully dock with the station. This took
40.4 ± 4.5 s per robot.

Speech separation and 2D localization
We present a new distributed microphone array processing algorithm
using our acoustic swarm that performs the following two tasks: (1)
localize all speakers in a room without prior knowledge about the
number of speakers, (2) separate the individual acoustic signal of each
speaker. The algorithmmust be robust to microphone position errors
and work across different array shapes and sizes even in reverberant
real-world environments. While prior work in deep learning proposed
speech separation networks18–21, they did not achieve 2D localization.
Recent work also explored distributed microphone arrays1. However,
they did not satisfy the above goals: they were evaluated in simulated
or strongly constrained environments22–25, required exact microphone
positions26–29, used wired setups to achieve synchronization26,30,31,
localized only 1–2 speakers31–35, or assumed a priori knowledge about
the number of speakers36–38.

Our algorithm is based on a joint 2D localization and speech
separation framework where we use speech separation to achieve
multi-source 2D localization of an unknown number of speakers. The
computed 2D locations are used to further improve the speech
separation performance.

2D localization via separation. Let us consider amulti-channel speech
separation network that extracts a signal from a speaker if the person’s
waveforms are found to be aligned across all the microphones while
producing a zero signal otherwise. Such a source separation network
can be used to examine whether each localized space contains a
speaker or not. Specifically, we can align the microphone channels to
each locationwhere a speakermay exist by time shifting. Todo this,we
shift the microphone signals based on the Time Difference of Arrival
(TDoA) for each location. The TDoA values are the signal propagation
time differences from the candidate location to each pair of micro-
phones. If the location contains a speaker, the shifted speaker signals
will be aligned across all the channels while the signals from other
locations will be unaligned. Thus, the separation network applied to
the time-aligned signalswill produce anenhanced speechsignal for the
target location. Therefore, by checking the output signal amplitude,
we can check for the presence of a speaker at each location to count
the speakers as well as to obtain their 2D locations.

While our objective is to perform speaker 2D localization, we
conduct the search for speakers in the 3D space. This is because the
height difference between speakers and microphones introduces
additional time delays to the multi-channel signals. To efficiently
search for speakers in the 3D space, we combine neural speech
separation and a conventional source localization method. Specifi-
cally, we first prune the search space using the Steered-Response
Power Phase Transform (SRP-PHAT) algorithm39 (Fig. 5A). SRP-PHAT is
a signal processing technique that can achieve coarse localization of
the sound source by analyzing the phase differences between all pairs
ofmicrophones. SRP-PHAT outputs the power of the signals aligned to
eachpossible candidate point in the search space.Weprune the search
space by discarding the region with low output power. We then use an
attention-based separation model to find the potential speaker loca-
tions in the remaining space. The separationmodel uses aU-Net-style40

encoder-decoder structure with a transformer encoder41 bottleneck
layer inserted in between (Fig. 5B). This transformer encoder uses self-
attention, a mechanism to correlate between different parts of an
input sequence when making predictions or encoding information.
Here, we use it across the time dimension to encode the relative
importance between the utterances at different time instances of the
same speaker and get a cleaner output signal. This hybrid approach
allows us to avoid searching across the entire 3D space by applying a
neural network to every local region, which is computationally very
demanding. While SRP-PHATmay not be as effective as deep learning,
it can still provide a coarse estimation of the likelihood of speaker
presence in a space with much lower computational complexity.

In addition, we utilize the following tricks for robustness and
efficiency: (1) Due to indoor reverberation, the direct path and strong
reflections of a speaker signal may align at other locations, creating
phantom speakers. We eliminate these phantom speakers by cluster-
ing similar speaker outputs (see methods). (2) To address the imper-
fect 2D microphone positions provided by the acoustic swarm, we
randomly shift the microphone signals by up to four samples during
training. This corresponds to a 2D error of up to 2.8 cm between the
swarm robots. (3) To achieve a high spatial resolution without sig-
nificantly increasing the computational complexity, we first condition
the network to search in a larger region with lower resolution around
each target location and discard the regions with low output ampli-
tudes. Then, we decompose the remaining regions into smaller sub-
regions and run a finer search. Conditioning the network on the large
and small regions is done by passing a one-hot vector as a secondary
parameter to the network. The one-hot vector is a two-element array
with one entry set to zero and the other set to one, depending on
whether we are conditioning on small regions or large regions. We
provide this vector at each block of the speech separation U-Net
(Fig. 5B). (4) For efficient speaker search, instead of discretizing the 3D
Euclidean space into uniformly-sized cubes, we divide the 3D space
into a set of regions associated with uniformly-spaced discrete TDoA
values. The points of 3D space inside each region map to the same
discrete TDoA values (see definition of TDoA space in Methods). This
also enables generalization to different microphone distributions.

Separation via 2D localization. A first-cut solution for obtaining iso-
lated signals of the individual detected speakers is to use the outputs
of the separation network employed for the localization. However, in
the real-world reverberant environments, the output signal quality of
the localization-oriented separation network can be poor due to resi-
dual cross-talk components between the speakers. Further, this
approach under-utilizes the information we gain from our 2D locali-
zation network, i.e., the locations of the other speakers. This infor-
mation can be leveraged to jointly compute much cleaner signals for
all the speakers and reduce the cross-talk. This is achieved by utilizing
inter-speaker attention as follows.
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Since the localization step identifies the number of speakers S and
their 2D locations, for each speaker,we align theMmicrophone signals
to their 2D locations and feed the resultant S ×M signals to a new
separation model as shown in Fig. 5C. In this model, the encoder and
decoder blocks are applied separately to the alignedmicrophone data
for each of the speakers. However, the bottleneck block uses inter-
speaker attention to deal with the cross-talk. The bottleneck block first
applies self-attention to each speaker using a conformer network42

along the time dimension, processing each speaker independently
(intra-speaker attention). It then uses a transformer encoder that
applies attention along the speaker dimension, so that the model
correlates information between different speaker channels. The intra-
and inter-speaker attention layers are alternately applied to let the
network identify and attenuate the cross-talk. Since the inter-speaker
attention is performed in the speaker dimension, our architecture can
be applied to any number of speakers (see methods).

Figure 6A shows the separation experiment result for an example
synthetic mixture of two speech sources, with the corresponding
spectrograms depicted in Supplementary Fig. 3. The precision and

recall regarding speaker counting were both above 89% even with five
concurrent speakers (Fig. 6B). The median and 90-percentile 2D
speaker localization errors were 9–10 cm and 32–36 cm for 2–5 con-
current speakers (Fig. 6C, Supplementary Movie 8), respectively. Our
algorithm also worked across different microphone array sizes (Sup-
plementary Fig. 4).We evaluate the quality of our separation algorithm
using the Scale-Invariant Signal-to-Distorion Ratio (SI-SDR)43. In Fig. 6D
we show that our technique outperformed the ideal ratiomask (IRM)44,
an oracle speech separation method, by 4.8 dB in terms of SI-SDR
improvement (SI-SDRi) over the unprocessed mixture signal for the
five-speaker case. Our comparisons with existing transformer
(SepFormer45) and convolution-based (Conv-TasNet46) source separa-
tion networks showed improvement across a range of input SI-SDR
values for two concurrent speakers, as shown in (Fig. 6E). To create the
plots in Fig. 6E, wedivide the input SI-SDR into 5000discrete steps and
apply a moving average filter of length 100 on the output SI-SDR. The
plot also shows the significant performance contribution of the pro-
posed inter-speaker attention bottleneck block. Figure 6F shows that
SRP-PHAT could reduce the search space by a factor of 446 for the two

Fig. 5 | Joint 2D localization and speech separation framework.AWe first run the
SRP-PHAT algorithm to prune the search space, and then in (B) we use an attention-
based separation model to find the potential speaker locations in the remaining
space. The separation model is composed of a U-Net encoder-decoder with a
transformer encoder bottleneck between them. GLU stands for Gated Linear Unit.
C shows our network used for speech separation. The encoder and decoder blocks

are applied separately to the alignedmicrophone data for each of the speakers. The
bottleneck block first applies temporal self-attention to each speaker individually
using a conformer encoder (CE). It then applies self-attention across speakers using
a transformer encoder (TFE) to compute attention weights across different
speakers. It repeats this multiple times to address cross-talk between speakers.
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concurrent speaker cases, with the efficiency gradually decreasing to
208 for five concurrent speakers. Also, Fig. 6G and Supplementary
Table 1 show that our algorithm was able to achieve a median 2D
speaker localization error of 25.8 cm in the presence of the micro-
phone position errors of 4 cm although the localization errors
increased as the microphone positions became less accurate. Finally,
Supplementary Table 2 shows the results for various reverberation
settings, demonstrating the effectiveness of our design in the presence
of multi-path interference.

We also re-trained and tested our models on a co-located circular
microphone array with a 10-cm diameter and the same number of
microphones. The precision drops to 71% and recall drops to 54%. This
shows the importance of distributing the microphones across a larger
area for 2D source localization.

Finally, we measured the total runtime of our system to process
3 s of input audio. Since the separationmodel used during localization
is run at each location,we evaluate thismodelwith twodifferent sets of
parameters. Both models have the same network architecture but the
smaller model has fewer parameters (for detail see Methods). Figure
7A, B show that themedian runtime to process a 3-s audiomixturewith
the smaller model was 1.82s and the 90th percentile runtime is 2.46 s,
which shows our system can process the incoming data in real-time.
Figure 7C shows that using a smaller separation model during locali-
zation does not cause large performance degradation.

Real-world evaluation
We evaluated our robot swarm in real-world environments. Our eva-
luation used the environments that were unseen during training and
included offices, living rooms, laboratories, and kitchens as shown in
Supplementary Figs. 5A–C and Supplementary Fig 6. In each setting,
we placed the swarm robots on a different sized surface for dispersal.
To obtain the ground-truth signals, we used loudspeakers to play back
speech signals from different locations in the room at heights ranging
from 90 to 160 cm. Supplementary Fig. 5D shows the precision and
recall for different concurrent speaker numbers. Both metrics showed
results greater than 90%, demonstrating the robustness to the
potential measurement errors and real-world noise and reverberation
distortion. Supplementary Fig. 5E shows that the median localization
error across all the tested scenarios was 15 cm and that the 90 per-
centile error was 49–50 cm for 3–5 concurrent speakers (Supplemen-
tary Movie 9). Finally, Supplementary Fig. 5F shows the usefulness of
the inter-speaker attention, which is in line with our observations from
the simulation experiments. Note that the SI-SDRi improvements were
lower than those obtained for the simulated environments even for
IRM using the ground-truth signals due to the considerable amount of
real-world distortions.

We also evaluate the system on three surfaces with randomly
placed objects that clutter the table (Fig. 8A–C). The objects are
comprised of typical items found on a household table, including

Fig. 6 | Synthetic data evaluation. A Shows an example time-domain mixture
signal consisting of two audio signals with different amplitudes. The output of our
source separationmodel reconstructs the two audio signals.B Shows the precision
and recall of our system for correctly identifying the speech signals as a function of
different numbers of concurrent speakers. The details of matching outputs and
ground-truth are found in the supplementary materials. C Plots the cumulative
distribution function (CDF) for the 2D localization errors for different numbers of
speakers and (D) compares the corresponding Scale-Invariant Signal-to-Distortion
Ratio improvement (SI-SDRi) with theoracle-based technique, IRM (The error bar is

the standard deviation). To ensure a fair comparison, only for the oracle and neural
baselines, such as IRM, we consider the top 90% of samples in terms of SI-SDRi
when we report the separation results. This is because our localization stage may
drop at most 10% of speakers. E Compares our approach with and without our
attention-mechanism with oracles-based approaches and prior source separation
networks (SepFormer andConv-TasNet). F Shows the reduction in the search space
achieved by our pruning algorithm IRM (the error bar shows the standard devia-
tion) and (G) shows the 2D localization errors for different microphone position
errors.
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phones, pens, laptops, liquid containers, booklets, boxes, and wires.
These objects create occlusions between pairs of robots, as well as
between individual robots and the speakers. We use our acoustic
swarm localization method to determine the positions of the robots.
Figure 8D shows that the precision and recall values are both above
90% and the median localization error across all these scenarios was

14 cm. Further, the 90th percentile error was 41–49 cm for 3–5 con-
current speakers (Fig. 8E). Figure 8F also shows that the separation
quality is above 10 dB in the presence of clutter on the table.

We further evaluated our system with five (three male and two
female) human adults who had different accents in four different
rooms. The participants uttered English phrases from different

Fig. 8 | Real-world evaluationswith cluttered surfaces andhuman speakers.We
assess our system’s performance in three previously unseen cluttered environ-
ments, shown in (A–C). In (D), we show precision and recall results by varying the
number of speakers in the audio mixture. E illustrates the cumulative distribution
function (CDF) for the 2D localization errors across all three environments, con-
sidering varying numbers of speakers. F compares our approach, with and without
the inter-speaker attentionmechanism, and anoracle approach (IRM) (the error bar

shows the standard deviation).G Shows the 2D localization errors for a participant
in different locations. H Plots the mean 2D localization error as a function of the
human head orientation, where 0° is when the human face is pointing in the
direction of the acoustic swarm and 1800 is when the human’s back is facing the
acoustic swarm. I Shows themean 2Derrors as a function of different distances of a
human speaker to a wall.

Fig. 7 | Runtime evaluation. A, B Shows the proportion of time spent at each step
of our speaker localization and separation algorithm when using our large and
small separation networks during localization. The results are for 2-speaker mix-
tures and for processing 3-second audio chunks. When using the larger network,

themajority of the time is spent trying to localize the speakers. In contrast, whenwe
use a smaller network, the time spent localizing speakers reduces, and the overall
system runs in real time. C Shows that using a smaller network for localization
causes only a small performance degradation.
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locations in a room. Figure 8G shows that the human speakers were
detected with a median localization error of 14 cm and a 90th-
percentile error of 50 cm. We also evaluated the robustness of our
system to various orientations of the participants relative to the
swarm. Figure 8H shows that the localization errors were lowwhen the
participant’s orientation was within 135° with respect to the swarm.
Figure 8I also shows that even the participants close to the walls were
localized with high accuracy when their distances to the walls were
larger than 60 cm.

Finally, we demonstrate various potential applications with our
acoustic swarm system (Supplementary Movies 1–3). Figure 9A–D
shows moving speaker tracking results, i.e., estimating the trajectory
of one moving participant. Figure 9E, F show the results for two
simultaneously-speaking moving talkers. In these experiments, the
participants were instructed to follow trajectories marked on the
floor as they spoke. All the above results demonstrate our system’s
ability to generalize to unseen real world environments and human
speakers.

Fig. 9 | Trajectories of mobile participants. A–D Show the paths taped on the
ground that participants were asked to follow and the trajectories predicted by our
acoustic swarmof amobileparticipantmoving around indifferent rooms.E,F show

the trajectories for two mobile participants who talked concurrently in the
same room.
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Discussion
We presented an acoustic swarm system that can self-distribute with-
out any cameras or external infrastructure. Using the resulting dis-
tributed microphone array, we introduced a joint speech separation
and 2D localization framework that uses attention-based neural net-
works. Our current swarm implementation uses a single-digit number
of robots as microphones, which is in the same range as those
employed in commercial smart speakers such as Amazon Echo.
Increasing the number of robots may provide better spatial resolution
for speech separation and 2D localization. All navigation operations
including time synchronization, 1D ranging, the IMU-acoustic fusion
algorithm, motion planning and control, pre-entry maneuvering, and
docking operations ran on-device at the robots. However, the swarm
2D localization algorithm and the joint neural network framework for
speech separation and localization ran on a central base station with
more computational capabilities. Finally, the localization and separa-
tion performances can be further improved by training the models on
a larger amount of data collected in real-world reverberant settings.

Multiple factors affect 2D speech localization. A larger array size
provides a higher spatial resolution, leading to lower 2D localization
errors (Supplementary Fig. 4). This is in contrast to a commercial cir-
cular array (~10 cm diameter), where the precision and recall are
reduced to 71% and 54%, highlighting the need for a distributed
microphone array. Larger errors in the microphone location estimates
result in larger localization errors (Fig. 6G). Human head orientation
and distance to the wall can also affect the localization accuracy as
shown in our real-world evaluation (Fig. 8H, I). It is noteworthy that as
the number of concurrent speakers and reverberation time (RT60)
increases, the median localization errors only slightly increase by
around 2 cm (Fig. 6C and Supplementary Table 2), demonstrating the
scalability of our system to a larger number of speakers as well as
reverberant environments.

While showing a strong generalization capability to real-world
reverberant environments, our system has four key limitations. First,
the current navigation algorithmmakes two assumptions: (1) there are
no objects in the clear zone of tens of centimeters around the base
station, and (2) no objects have been added later to the path taken by
an external robot during dispersal. If there are obstacles in this zone,
the robots may not be able to navigate back to the base station. Sec-
ond, we demonstrate swarm dispersal on relatively smooth surfaces
like tables. Increasing the size of the wheels and the distance between
thebase of the robot and the surface canenable locomotionovermore
uneven surfaces like carpets. Third, while speakers can be at different
heights, our system only achieves 2D localization instead of 3Dmainly
becauseall our acoustic swarmrobots locomoteon a single 2Dsurface.
Fourth, as our current charging mechanism is contact-based, the
charging surface is susceptible to wear and tear, which can degrade
charging performance over time. Since our robots are equipped with a
dual-purpose AC and DC battery charger, future iterations of the
robots can utilize wireless charging coils directly underneath the base
station checkpoints to overcome this issue, as was done in ref. 47.

Our proposed system is an important step in the direction of
achieving capabilities that have long only existed in the realm of sci-
ence fiction. Our acoustic swarms present vast opportunities for novel
audio applications as they can physically adapt their structures to the
environment unlike the conventional centralized microphone arrays
while automatically recharging on their own. For example, our swarm
robots may be deployed in conference rooms to cover much wider
spaces than the existing meeting devices. Our swarm also can address
the long-standing cocktail party problem by allowing the user to focus
on a conversation at specific regions in the room. Additionally, the
swarm can be a part of future smart homes, permitting speech inter-
action with devices based on the speakers’ locations. Finally, since our
robots are also equipped with loudspeakers, future work may create
distributed self-organizing speaker arrays that can program sound

zones, where people in different zones of the room can perceive dif-
ferent sounds.

Methods
Our research complied with the ethical regulation of the University of
Washington IRB. Informed consent was obtained by participants. The
authors affirm that human research participants provided informed
consent for the publication of the images in Fig. 1.

Acoustic localization
For ranging and localization, the microphones and speakers are sam-
pled at 62.5 kHz. To perform distance measurements between robots,
each robot sends a 32ms chirp between 15 and 30 kHz and records the
send timestamp, tsend. The other robots listen on their two micro-
phones to compute the received chirp timestamp, trecv. The robots
then share their timestamps using BLE to compute the 1D relative
distance as, d = (tsend − trecv) ⋅ c + doffset, where c is the speed of sound
and doffset is the fixed distance between the speaker andmicrophone in
the transmitting robot. In practice, accurately estimating trecv is chal-
lenging due to the multi-path in reverberant indoor environments. In
reverberant environments, we cannot assume that the direct path has
thehighest power. Instead,wedesign a ranging algorithm thatuses the
two microphones on the robot to accurately estimate the direct path
(see Supplementary Algorithm 1).

Our pairwise 2D localization algorithm can be abstracted as fol-
lows. We have 2 types of nodes:N nodes whose positions [p1,p2…,pN]
need to be estimated and M landmarks whose positions are known
[pN+1,pN+2…,pN+M]. Say D(N+M)×(N+M) denotes the pairwise distance
matrix, whereD(i, j) represents the distancebetween nodes i and j. The
2D localization problem for the N nodes can be formulated as a mini-
mization function,

min
p1,...,pN

X
1 ≤ i≤N

X
i<j ≤N

Dði,jÞ � jpi � pj j
h i2

+
X

1 ≤ i≤N

X
N + 1≤ j ≤M +N

Dði,jÞ � jpi � pj j
h i2

,

ð1Þ

where p1, . . . ,pN 2 R2 are the unknown 2D positions and
pN+ 1, . . . ,pN+M 2 R2 are the known 2D landmark positions. In our
swarm, the M landmarks are the virtual landmarks created by the
motion of the robot on the platform (Fig. 2A) and the N unknown
nodes are the external robots to be localized. To solve this optimiza-
tion problem, we use an iterative scaling by majorizing a complicated
function (SMACOF) algorithm48.

In practice, the iteration-based SMACOF algorithm may fail for
two reasons: (1) inappropriate initial positions, and (2) outliers in the
measured pairwise 1D distances. To address the first problem, we use
tri-lateration49 to estimate coarse positions and use them as initial
values for the SMACOF algorithm. Tri-lateration uses the distances
from the object to three ormore known reference points to determine
the object’s positions. To identify outlier 1D distance measurements
between the landmarks and external robots, we iteratively remove
individual and pairwise subsets of 1D measurements and recompute
the tri-lateration minimization function. If the optimization value
reduces to less than 1% of the original value then we identify those 1D
distances asoutliers andeliminate them fromourmeasurement set. To
identify outlier 1D distance measurements between pairs of external
robots, we compare themeasured 1Ddistancebetween the robotswith
the distance estimated by the tri-lateration algorithm. If they differ by
more than 20 cm, we identify the measurement as an outlier and
remove it.

IMU-acoustic fusion for navigation
The system makes use of two distinct reference frames: the robot’s
local reference frame, as defined by the axes of the IMU sensors
(Supplementary Fig. 7A), and the global reference frame, as defined
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by the base station (Supplementary Fig. 7B). Each robot maintains a
current state vector with its 2D position, yaw (Supplementary
Fig. 7C), and velocity, (Pt, θt,Vt), defined relative to the global
reference frame. The robots sample the accelerometer at 100Hz and
the gyroscope at 104Hz. We apply exponential smoothing with
smoothing factors of 0.9 and 0.5 to the angular velocity and accel-
eration measurements respectively. Suppose the accelerometer and
gyroscope data at each time, t, are given as, ðax

t ,a
y
t ,a

z
t Þ and ðωx

t ,ω
y
t ,ω

z
t Þ

respectively.
The robots continuously update their state ðPI

t,θ
I
t ,V

I
tÞ using the

IMU data as,

θI
t =θ

I
t�Δt +ω

z
tΔt

VI
t =V

I
t�Δt +a

x
t uθI

t
Δt

PI
t =P

I
t�Δt +V

I
t�ΔtΔt +

1
2a

x
t uθI

t
Δt2

8>><
>>:

ð2Þ

where Δt is the IMU data sampling interval and uθI
t
is the unit vector

along the direction θIt . Additionally, since the robot may tilt slightly
during motion, we also keep track of the robot’s pitch using the
gyroscope. Specifically, we track the pitch ϕt (Supplementary Fig. 7D)
as, ϕt =ϕt�Δt +ω

y
tΔt, where ωy

t is the y-axis output of the gyroscope.
We use the pitch to project the accelerometer x- and z- components to
the direction of motion and use the projected values to compute state
updates.

To avoid large drift errors from the IMU, we use the acoustic data
to re-calibrate the current state. The moving robot sends an acoustic
chirp every 200ms, which is used by the other stationary robots to
estimate its 2D position PA

t using tri-lateration. To periodically fuse it
with the IMU data, the robots maintain a history of n positions for the
moving robot inferred from the acoustic data, ½PA

t�nΔA
, . . . ,PA

t�ΔA
,PA

t �,
where ΔA is the acoustic measurement interval 200ms. The angle and
velocity can be estimated using these acoustic measurements
PA
t = ½xA

t ,y
A
t � as,

θA
t = argmin

θA
t ,ϵ

X
0≤ i ≤n

yAt�iΔA
� tan θAt

� �
xA
t�iΔA

+ ϵ
h i2

ð3Þ

VA
t = ðPA

t � PA
t�ΔA

Þ=ΔA ð4Þ

Theminimization problem for θA
t is solved using linear regression

using a bias term, ϵ. Periodically, the robot can fuse the estimated state
ðPA

t ,θ
A
t ,V

A
t Þ from the acoustic data with the IMU-estimated state,

ðPI
t,θ

I
t ,V

I
tÞ. Specifically, we compute the following weighted sums.
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θθ
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wI
θ,w

I
V ,w

I
P and wA

θ ,w
A
V ,w

A
P are the corresponding weights for the IMU

and acoustic data, respectively. In our implementation, we set
wI

V =0:2,wA
V =0:8,wI

P =0 and wA
P = 1. If the R2 coefficient for linear

regression is larger than0.8 and n is greater than4,we setwI
θ =0:2 and

wA
θ =0:8, otherwise we set wI

θ = 1 and wA
θ =0.

Localization by separation
For efficiency and generalization, we operate in the uniformly spaced
TDoA space50,51. The TDoA space is a multidimensional space where
each dimension represents the time delay difference between the
arrival of the signal at thefirstmicrophone and the othermicrophones.
In the 3D Euclidean space R3, let Pi = (xi, yi, zi), i = 1,…,M be the posi-
tion of the i-th microphone and x be the candidate source position. A
mapping from the position x in 3D Euclidean space to the position ζ in

TDoA space is defined as follows51:

τ : R3�!RM�1

x↦ζ = ðτ21ðxÞ,τ31ðxÞ, . . . ,τM1ðxÞÞ
ð6Þ

Here, τjiðxÞ= f s
c ðjx� Pjj � jx� PijÞ is the TDoA between the

microphone i and microphone j. We set the sampling rate fs = 48,000
Hz and the speed of sound c = 343m s−1.

We followmultiple steps to achieve 2Dmulti-speaker localization.
Step 1. Mapping 3D space to TDOA space. For our implementation

of themapping between 3D space and TDoA space, we use a sampling-
based method. We first divide the 3D Euclidean space into smaller
subspaces with dimensions 5 × 5 × 10 cm. We map the centers of these
3D subspaces x 2 R3 to a point in the TDOA space ζ 2 RM�1. We then
cluster this set of points in the TDOA space into hypercubes of width 2
and4 samples. Ahypercube in theTDOAspacewith centerC andwidth
W is defined as the set of points in the TDOA space whose Chebyshev
distances from C are less than W. We use a dynamic programming
algorithm to cluster the points into a set of hypercubes and output the
hypercube centers (Supplementary Algorithm 2).

Step 2. Pruning using SRP-PHAT. The hypercube centers in the
TDOA sample space correspond to steering vectors. Thus, we can use
the sample offset of the hypercube’s center to calculate its SRP-PHAT
value. We apply SRP-PHAT to the width-2 hypercubes. We select the
hypercubes with the SRP-PHAT values greater than both noise and
those of the adjacent hypercubes as being speaker position
candidates.

For each valid hypercube satisfying these conditions, we use the
larger, width-4, hypercube with the same center and regard it as the
source candidate. This is to account for the SRP-PHAT errors caused,
for example, by room reverberation and imperfect microphone posi-
tions. Note that running SRP-PHAT directly on width-4 hypercube
resulted in worse performance in our preliminary tests than running it
on width-2 hypercubes and then converting them into width-4
hypercubes.

Step 3: Source separation and clustering. Next, we shift the
microphone signals in time according to the center of each of the
hypercubes resulting from the previous step and feed the shifted sig-
nal data into our separation model for localization (Supplementary
Algorithm 3). The separation model outputs a signal for each hyper-
cube. We calculate the moving average powers of these output signals
with a window size of 12000 samples and a step of 1 sample. If the
maximum of the moving averages is below a distance-dependent
power threshold, the corresponding hypercube is regarded as not
containing speakers and thus removed from further consideration, to
reduce computational complexity. The distance-based threshold is
used to take into account that farther sources usually have lower signal
levels at the microphone positions. Then, to obtain fine-grained loca-
lization, we divide the surviving larger hypercubes, with output signal
levels above the threshold, into smaller hypercubes with a width of 2.
We re-apply the separation network on these smaller hypercubes and
remove the hypercubes that are unlikely to be containing speakers by
using the distance-based threshold (Supplementary Algorithm 5).

Finally, we run a clustering algorithm on the remaining hyper-
cubes to remove: (a) duplicate outputs from adjacent regions in the
TDOA space and (b) phantom speakers due to signal reflections
aligning at other locations. The artifacts of the first type take place at
locations close to the real speaker positions in the TDoA space, and the
output signals of these artifacts have high similarity with those of the
true positions (Supplementary Fig. 8A). To remove these artifacts, we
merge small hypercubes with their neighborhood hypercubes that
have the highest signal power among the neighborhoods (we define
two hypercubes are neighborhoods if their Chebyshev distance
≤4 samples) and if they have similar output content (SI-SDR between
them is greater than −4dB). To calculate the speaker position for each
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merged region, we find all the hypercubes within the merged region
whoseoutput signal powers are greater than 75%of the largest one and
compute the weighted average of their TDoA coordinates by using the
signal powers as the weights. Finally, we map the averaged TDoA
coordinates back to the 3D space and use it as the predicted speaker
position (Supplementary Algorithm 4). Phantom speakers caused by
reverberations havemultiple properties: (1) they usually occur far from
the real speakers, (2) they may contain only partial segments of the
original speech (Supplementary Fig. 8A), (3) they are shifted in time
relative to the real speakers and (4) they may be composed of seg-
ments from different speakers in the multiple-speaker scenario (Sup-
plementary Fig. 8B). Considering these, we first order all potential
speaker outputs based on their power. We maintain a set of detected
speakers, which we initialize with the single speaker with the highest
power. We then consider the next highest power speaker output. To
compare it with the set of already found speakers, we first split it into
non-silent segmentswith amaximum lengthof 8000 samples.We then
checkwhether these segments belong to a combination of someof the
segments from the found speaker set by calculating the time-invariant
SDR metric52 across all possible combinations. If such a combination
canbe found (Supplementary Algorithm6), the new speaker candidate
is dropped. Otherwise, we add it to the detected speaker set. This
allows us to identify the number of speakers and their 2D positions.

Separation network used for localization. The separation network
for localization, shown in Fig. 5B, accepts the time-shifted audio sig-
nals aligned for a location of interest as input. As we use 7 swarm
robots, the input is a 7-channel audio. We first apply a 1 × 1 1D-
convolution layer with stride 1 to increase the input channels from 7
to 64.We use a U-Net architecture with 5 encoder and decoder blocks
with skip connections between the corresponding blocks. The stride
length (S), which is the number of samples to move a convolutional
kernel after each step in the convolution, is varied across the U-Net
layers. The encoder and decoder blocks consist of dilated residual
stacks, each containing 3 residual blocks with different dilation
values. We then condition the output of these dilated residual stacks
on the hypercube width parameter W. This is a one-hot encoding
vector, which takes either [1,0] and [0,1], each representing the width
of 2 or 4. Specifically, to condition the network onW, we use a linear
transformation to the one-hot vector to obtain a different embedding
vector at each block in the U-Net, and multiply it by the encoded
representation of our audio signal along the channel dimension. The
U-Net encoder blocks then pool the signals using a convolutional
layer followed by a Gated Linear Unit (GLU). Conversely, the decoder
blocks upsample the features using transposed 1D-convolutions and a
GLU. The output of the last U-Net encoder layer is passed to a trans-
former encoder bottleneck to allow the network to attend todifferent
temporal regions of the speech signal. This transformer encoder has 8
heads, 1024 feedforward dimensions, and is repeated twice. The
U-Net output is used to compute a mask in the latent space via a 1D
convolution, with a 2048 output channel, a kernel size of 33, and a
stride of 16. The mask is applied to the latent representation of a
reference channel (the first microphone in our implementation) by
means of element-wise multiplication. We decode this masked result
via a 1D transposed convolution with a kernel size of 33 and stride of
16 to estimate the clean signal that would have been observed by the
reference microphone channel. The network is trained by randomly
sampling points in a collection of rooms and predicting the speech
signal of a target speaker at each point. If there are no speakers suf-
ficiently close to the chosen point as specified by the hypercubewidth
parameter W, then the target signal is set to zero.

Separation by localization
Figure 5C shows the separation network used to separate individual
speakers. For each of the N detected speaker locations from the

previous step, we align themicrophone signals. The aligned signals for
all the N locations are then fed to the separation network. While this
separation network has some commonalities with that used for loca-
lization, there are some key differences. First, the network uses a
4-layer U-Net and applies the U-Net encoder and decoder stages
separately to the speaker-aligned signals of each of the N speakers.
Second, we use a larger feature dimension for masking (4096) and
reduce the residual dilation factor to 2. The kernel size of the 1D-
convolutions in the residual blocks and the encoder blocks is also
changed to 5. Additionally, the bottleneck layer is used to performself-
and cross- attention using 3 pairs of conformer and transformer
encoders. The conformers are applied to each speaker independently
over the time dimension. The transformer encoders are then applied
across speakers where the attention is on the speaker dimension. The
conformer blocks have 8 heads, 1024 feedforward dimensions, and a
kernel size of 31. The transformer encoders have 8 heads and 1024
feedforward dimensions. An encoded output for each speaker is pro-
duced from the bottleneck layer and passed through the U-Net deco-
der. For each speaker, we generate a mask and apply it to the latent
representation of the common reference channel to obtain a clean
speech estimate of that channel for each speaker.

Data availability
Thedata used for ourmachine learningmodels have beendeposited in
three parts at https://zenodo.org/record/8219720, https://zenodo.org/
record/8222714 and https://zenodo.org/record/8222784 under a
Creative Commons Attribution 4.0 International License.

Code availability
We provide the circuit design files used to create the robots, as well as
thefirmware source code at https://github.com/uw-x/AcousticSwarms-
Robots. We also provide the source code for the speech processing
algorithms at https://github.com/uw-x/AcousticSwarms-Speech.

References
1. Grumiaux, P.-A., Kitić, S., Girin, L. & Guérin, A. A survey of sound

source localizationwith deep learningmethods. J. Acoust. Soc. Am.
152, 107–151 (2022).

2. Yu, J., Han, S. D., Tang, W. N. & Rus, D. A portable, 3d-printing
enabled multi-vehicle platform for robotics research and educa-
tion. 2017 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1475–1480 (2017).

3. Le Goc, M. et al. Zooids: Building blocks for swarm user interfaces.
In Proc of the 29th Annual Symposium on User Interface Software
and Technology, page 97–109 (2016).

4. Özgür, A. et al. Cellulo: Versatile handheld robots for education. In
Proc of the 2017 ACM/IEEE International Conference on Human-
Robot Interaction, page 119–127 (2017).

5. Basiri,M., Schill, F., Floreano,D.& Lima, P.U.Audio-based localization
for swarms of micro air vehicles. 2014 IEEE international conference
on robotics and automation (ICRA), pages 4729–4734 (2014).

6. Basiri, M., Schill, F., Lima, P. & Floreano, D. On-board relative
bearing estimation for teams of drones using sound. IEEE Robot.
Autom. Lett. 1, 820–827 (2016).

7. Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-
assembly in a thousand-robot swarm. Science (NewYork, N.Y.) 345,
795–9 (2014).

8. Arvin, F., Murray, J., Zhang, C. & Shigang, Y. Colias: an autonomous
micro robot for swarm robotic applications. Int. J. Adv. Robot. Sys.
11, 113 (2014).

9. Arvin, F. et al. Mona: an affordable open-source mobile robot for
education and research. J. Intell. Robot. Sys. 94, 761–775 (2019).

10. Rezeck, P., Azpurua, H., Correa, Mauricio FS, & Chaimowicz, L. Hero
2.0: a low-cost robot for swarm robotics research. Autonomous
Robots, 1–25 (2023).

Article https://doi.org/10.1038/s41467-023-40869-8

Nature Communications |         (2023) 14:5684 14

https://zenodo.org/record/8219720
https://zenodo.org/record/8222714
https://zenodo.org/record/8222714
https://zenodo.org/record/8222784
https://github.com/uw-x/AcousticSwarms-Robots
https://github.com/uw-x/AcousticSwarms-Robots
https://github.com/uw-x/AcousticSwarms-Speech


11. Guzzi, Jérôme, Giusti, A., Gambardella, L. M., Theraulaz, G., & Di
Caro, G. A. Human-friendly robot navigation in dynamic environ-
ments. 2013 IEEE International Conference on Robotics and Auto-
mation, pages 423–430, (2013).

12. Berlinger, F., Gauci, M. & Nagpal, R. Implicit coordination for 3d
underwater collective behaviors in a fish-inspired robot swarm. Sci.
Robot. 6, eabd8668 (2021).

13. Wang, X., Wang, F., Nie, Z., Ai, Y. & Hu, T. Optiswarm: optical swarm
robots using implicit cooperation. IEEE Sensors J. 22,
24380–24394 (2022).

14. Waniek, N., Biedermann, J., &Conradt, J. Cooperative slamon small
mobile robots. 2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 1810–1815 (2015).

15. Chatterjee, I. et al. ClearBuds: wireless binaural earbuds for
learning-based speech enhancement. In Proc of the 20th Annual
International Conference on Mobile Systems, Applications and Ser-
vices, pages 384–396 (2022).

16. Wang, A. & Gollakota, S. Millisonic: pushing the limits of acoustic
motion tracking. In Proc of the 2019 CHI Conference on Human
Factors in Computing Systems, page 1–11 (2019).

17. Mao, W., He, J., & Qiu, L. Cat: High-precision acoustic motion
tracking. In Proc of the 22nd Annual International Conference on
Mobile Computing and Networking, page 69–81 (2016).

18. Yoshioka, T. et al. Vararray: Array-geometry-agnostic continuous
speech separation. ICASSP 2022 - 2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pages 6027–6031 (2022).

19. Yoshioka, T., Erdogan, H., Chen, Z., & Alleva, F. Multi-microphone
neural speech separation for far-field multi-talker speech recogni-
tion. 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5739–5743 (2018).

20. Jenrungrot, T., Jayaram, V., Seitz, S. & Kemelmacher-Shlizerman, I.
The cone of silence: speech separation by localization. Adv. Neural
Inf. Process. Sys. 33, 20925–20938 (2020).

21. Wang, A., Kim, M., Zhang, H., Gollakota, S. Hybrid neural networks
for on-device directional hearing. The Thirty-Sixth AAAI Conference
on Artificial Intelligence, 11421–11430 (2022).

22. Guo, Y., Zhu, H. & Dang, X. Tracking multiple acoustic sources by
adaptive fusion of tdoas across microphone pairs. Digit. Signal
Process. 106, 102853 (2020).

23. Ma, W. & Liu, X. Phased microphone array for sound source locali-
zation with deep learning. Aerospace Sys. 2, 71–81 (2019).

24. Yang, B., Liu, H., & Li, X. Srp-dnn: Learning direct-path phase dif-
ference for multiple moving sound source localization. ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 721–725 (2022).

25. Xu, P., Arcondoulis, E. & Liu, Y. Acoustic source imaging using
densely connected convolutional networks. Mech. Sys. Signal
Process. 151, 107370 (2021).

26. Dang, X. & Zhu, H. A feature-based data association method for
multiple acoustic source localization in a distributed microphone
array. J. Acoust. Soc. Am. 149, 612–628 (2021).

27. Plinge, A. & Fink, G. A. Multi-speaker tracking using multiple dis-
tributed microphone arrays. 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
614–618 (2014).

28. Le Moing, G. et al. Learning multiple sound source 2d localization.
In 2019 IEEE 21st International Workshop on Multimedia Signal Pro-
cessing (MMSP), pages 1–6. IEEE, (2019).

29. Taseska, M. & Habets, EmanuëlA. P. Spotforming: Spatial filtering
with distributed arrays for position-selective sound acquisition.
IEEE/ACM Trans. Audio, Speech, Lang. Process. 24,
1291–1304 (2016).

30. Ravanelli, M., Svaizer, P., &Omologo,M. Realisticmulti-microphone
data simulation for distant speech recognition. InterSpeech, (2017).

31. Comanducci, L. et al. Source localization using distributed micro-
phones in reverberant environments based on deep learning and
ray space transform. IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess. 28, 2238–2251 (2020).

32. Vera-Diaz, JuanManuel, Pizarro, D. & Macias-Guarasa, J. Towards
end-to-end acoustic localization using deep learning: From audio
signals to source position coordinates. Sensors 18, 3418 (2018).

33. Kujawski, A., Herold, G. & Sarradj, E. A deep learning method for
grid-free localization andquantificationof sound sources. J. Acoust.
Soc. Am. 146, EL225–EL231 (2019).

34. Salvati, D., Drioli, C., Ferrin, G. & Foresti, GianLuca Acoustic source
localization frommultirotor uavs. IEEE Trans. Industrial Electron. 67,
8618–8628 (2019).

35. Wang, L. & Cavallaro, A. Acoustic sensing from amulti-rotor drone.
IEEE Sensors J. 18, 4570–4582 (2018).

36. Adavanne, S., Politis, A., & Virtanen, T. Differentiable tracking-based
training of deep learning sound source localizers. 2021 IEEE Work-
shop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), pages 211–215 (2021).

37. Castellini, P., Giulietti, N., Falcionelli, N., Dragoni, AldoFranco &
Chiariotti, P. A neural network basedmicrophone array approach to
grid-less noise source localization.Appl. Acoust. 177, 107947 (2021).

38. Poschadel, N., Preihs, S., and Peissig, J. Multi-source direction of
arrival estimation of noisy speech using convolutional recurrent
neural networks with higher-order ambisonics signals. 2021 29th
European Signal Processing Conference, pages 1015–1019 (2021).

39. Silverman, H. F., Yu, Y., Sachar, J. M. & Patterson,W. R. Performance
of real-time source-location estimators for a large-aperture micro-
phone array. IEEE Trans. Speech Audio Process. 13,
593–606 (2005).

40. Ronneberger, O., Fischer, P., & Brox, T. U-net: Convolutional net-
works for biomedical image segmentation. International Con-
ference on Medical image computing and computer-assisted
intervention, pages 234–241 (2015).

41. Vaswani, A. et al. Attention is all you need. NeuriPS, (2017).
42. Gulati, A. et al. Conformer: Convolution-augmented transformer for

speech recognition. Proc. Interspeech 2020, pages
5036–5040 (2020).

43. Roux, Jonathan Le, Wisdom, S., Erdogan, H., & Hershey, J. R. Sdr -
half-baked or well done? IEEE International Conference on Acous-
tics, Speech andSignal Processing (ICASSP),pages 626-630 (2019).

44. Stöter, Fabian-Robert, Liutkus, A., & Ito, N. The 2018 signal separa-
tion evaluation campaign, 2018. Latent Variable Analysis and Signal
Separation. LVA/ICA. Lecture Notes in Computer Science, (2018).

45. Subakan, C., Ravanelli, M., Cornell, S., Bronzi, M., & Zhong, J.
Attention is all you need in speech separation. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 21–25 (2021).

46. Luo, Y. & Mesgarani, N. Conv-tasnet: Surpassing ideal
time–frequency magnitude masking for speech separation. IEEE/
ACM Trans. Audio, Speech, Lang. Process. 27, 1256–1266 (2019).

47. Karpelson, M. et al. A wirelessly powered, biologically inspired
ambulatory microrobot. 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 2384–2391, (2014).

48. Barra, J.R., Bordeau, F., Romier, G. & Van Cutsem, B. Recent
Developments in Statistics: Proceedings of the European Meeting
of Statisticians. Amsterdam, North Holland Publishing Company,
133-146 (1976).

49. Murphy, W. & Hereman, W. Determination of a position in three
dimensions using trilateration and approximate distances. Dept.
Math. Comput. Sci. Colo. School Mines Gold. Colo., MCS-95 7,
19 (1995).

50. Compagnoni, M., Notari, R., Antonacci, F. & Sarti, A. A compre-
hensive analysis of the geometry of tdoa maps in localization pro-
blems. Inverse Probl. 30, 035004 (2014).

Article https://doi.org/10.1038/s41467-023-40869-8

Nature Communications |         (2023) 14:5684 15



51. Compagnoni, M. et al. Source localization and denoising: a per-
spective from the tdoa space.Multidimens. Sys. Signal Process. 28,
1283–1308 (2017).

52. Vincent, E., Gribonval, R. & Févotte, C. Performance measurement
in blind audio source separation. IEEE Trans. Audio Speech Lang.
Process. 14, 1462–1469 (2006).

53. Limeira, M., Piardi, L., Kalempa V.C., Vivian Cremer, de Oliveira,
André Schneider, & Leitão, P. Wsbot: a tiny, low-cost swarm robot
for experimentation on industry 4.0. 2019 Latin American Robotics
Symposium (LARS), pages 293–298 (2019).

54. Rubenstein, M., Ahler, C., & Nagpal, R. Kilobot: a low cost scalable
robot system for collective behaviors. 2012 IEEE International Con-
ference on Robotics and Automation, pages 3293–3298 (2012).

55. Pickem,D., Lee,M., & Egerstedt,M. The gritsbot in its natural habitat
- a multi-robot testbed. 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 4062–4067 (2015).

56. Pickem, D. et al. The robotarium: a remotely accessible swarm
robotics research testbed. IEEE International Conference on
Robotics and Automation (ICRA), pages 1699–1706 (2016).

Acknowledgements
The authors thank Maruchi Kim, Abhishek Gupta, Vikram Iyer and Justin
Chan for their feedback on themanuscript. The University of Washington
researchers are fundedby theMoore Inventor Fellowaward #10617 (S.G.).

Author contributions
M.I. designed and fabricated the swarmhardware. T.C. andM.I. designed
and tested the navigation and localization algorithms. M.I and T.C.
designedandevaluated theneural networkswithguidance fromT.Y. and
S.G. All authors wrote themanuscript. Conceptualization: M.I., T.C., S.G.

Competing interests
S.G. is a co-founder of JeevaWireless andWaveleyDiagnostics. T.Y. is an
employee of Microsoft. The remaining authors declare no competing
interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-40869-8.

Correspondence and requests for materials should be addressed to
Malek Itani, Tuochao Chen, Takuya Yoshioka or Shyamnath Gollakota.

Peer review information Nature Communications thanks Kirill V. Hor-
oshenkov, and Lou Liang for their contribution to the peer review of this
work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-40869-8

Nature Communications |         (2023) 14:5684 16

https://doi.org/10.1038/s41467-023-40869-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Creating speech zones with self-distributing acoustic swarms
	Results
	Self-distributing acoustic swarms
	Robot hardware
	Acoustic swarm localization
	Swarm dispersal
	Navigating back to the base
	Speech separation and 2D localization
	2D localization via separation
	Separation via 2D localization
	Real-world evaluation

	Discussion
	Methods
	Acoustic localization
	IMU-acoustic fusion for navigation
	Localization by separation
	Separation network used for localization
	Separation by localization

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




