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A fungal sesquiterpene biosynthesis gene
cluster critical for mutualist-pathogen
transition in Colletotrichum tofieldiae

Kei Hiruma 1,2 , Seishiro Aoki 3, Junya Takino4, Takeshi Higa1,
Yuniar Devi Utami 1, Akito Shiina1, Masanori Okamoto 5, Masami Nakamura1,
Nanami Kawamura 2, Yoshihiro Ohmori6, Ryohei Sugita 7, Keitaro Tanoi 6,
Toyozo Sato8, Hideaki Oikawa 9, Atsushi Minami 4, Wataru Iwasaki 3 &
Yusuke Saijo 2

Plant-associated fungi show diverse lifestyles from pathogenic to mutualistic
to the host; however, the principles andmechanisms through which they shift
the lifestyles require elucidation. The root fungusColletotrichum tofieldiae (Ct)
promotes Arabidopsis thaliana growth under phosphate limiting conditions.
Here we describe a Ct strain, designated Ct3, that severely inhibits plant
growth. Ct3 pathogenesis occurs through activation of host abscisic acid
pathways via a fungal secondary metabolism gene cluster related to the bio-
synthesis of sesquiterpenemetabolites, including botrydial. Cluster activation
during root infection suppresses host nutrient uptake-related genes and
changes mineral contents, suggesting a role in manipulating host nutrition
state. Conversely, disruption or environmental suppression of the cluster
renders Ct3 beneficial for plant growth, in a manner dependent on host
phosphate starvation response regulators. Our findings indicate that a fungal
metabolism cluster provides a means by which infectious fungi modulate
lifestyles along the parasitic–mutualistic continuum in fluctuating
environments.

Plants associate intimately with diversemicrobes, including pathogens,
nonpathogenic commensals, and beneficial (mutualistic) microbes that
promote plant growth. Plant–microbe interactions are typically con-
text-dependent, as these microbes dynamically change their infection
modes according to the environment and host conditions1,2. One
microbe can switch between pathogenic and beneficial infectionmodes
even in the same host, depending on the host and environmental

conditions, without changing the microbial genomic sequences3,4.
These findings imply that different lifestyles of plant-associated
microbes are continuous within the same plant species and even
coexist within the plant individual. Moreover, these microbes possess
the capacity to refine infection strategies according to the given host
environments5,6. However, the mechanisms by which infectious
microbes transit between their contrasting lifestyles remain elusive.
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Plants have evolved an elaborate system called phosphate star-
vation response (PSR) to cope with low inorganic phosphate (Pi)
conditions7. Under low Pi, A. thaliana plants induce extensive tran-
scriptome reprogramming, mainly through the R2R3-MYB family
transcription factors PHOSPHATE RESPONSE1 (AtPHR1) and related
PHR1-LIKE1 (AtPHL1)8,9. Plant adaptation to Pi deficit involves the acti-
vation of genes that promote phosphate absorption, allocation, and
usage. A. thaliana plants also accommodate beneficial root-associated
endophytic fungus Colletotrichum tofieldiae (Ct) that helps nutrient
acquisition. Their hyphae acquire and transfer phosphorus to the host,
providing an extension of the plant root system3. AtPHR1 and AtPHL1
positively regulate phosphate transporter genes during Ct coloniza-
tion and are required for Ct-mediated plant growth promotion under
low Pi3. AtPHR1/AtPHL1 restricts fungal overgrowth and potential
virulence during beneficial interactions with Ct3, whereas negatively
regulating plant immunity against bacteria10,11. However, our knowl-
edge on the mechanisms by which AtPHR1/AtPHL1 play varied roles in
different plant-microbe associations or host PSR influences microbial
lifestyles is limited.

Microbes have evolved an enormous repository of secondary
metabolites, including plant hormonemimics for auxin and gibberellic
and abscisic acid (ABA). Whereas more than half of the genes are
organized in operons in bacteria, functionally related genes are typi-
cally distributed across the genome in eukaryotic fungi12. However,
fungal secondary metabolite biosynthetic genes, as well as their reg-
ulatory genes, are often clustered in genetic loci13,14. The necrotrophic
fungal pathogen, Botrytis cinerea, harbors a cluster of biosynthetic
genes for ABA and produces ABA in culture15–17. There is a good cor-
relation between the fungal ABA production and the host ABA sig-
naling activation during B. cinerea infection, which facilitates the
suppression of immune-related genes in A. thaliana18,19. However, the
expression patterns of fungal ABA biosynthesis genes during plant
infection remain elusive. The possible significance also remains to be
explored for these ABA and/or other secondary metabolite biosynth-
esis genes in the activation of host ABA pathways and fungal virulence.
Furthermore, these secondary metabolism genes are often not
expressed even during host interactions in conventional laboratory
settings20,21. Consistently, disruptions of individual genes in secondary
metabolism clusters typically do not alter fungal phenotypes in-
planta22. These limitations have hampered the precise determination
of the roles of secondary metabolism clusters in plant-infecting fungi.

In the present study, we describe a pathogenic strain, Ct3, causing
severe plant growth inhibition, in contrast to beneficial strains pre-
vailing in Ct. Comparative genomics and functional analyses between
these Ct strains indicate that, following root colonization, Ct3 displays
transcriptional activation of biosynthesis gene clusters, putatively for
ABA and the associated sesquiterpene metabolite botrydial (desig-
nated ABA-BOT), thereby promoting root infection and pathogenesis.
Conversely, Ct3 colonization gives the host benefits when this fungal
cluster is genetically disrupted or transcriptionally suppressed at
mildly elevated temperatures in a manner dependent on
AtPHR1/AtPHL1. These findings highlight the key role of fungal sec-
ondary metabolites in the infection-mode transition of plant-
associated fungi.

Results
A Ct strain severely inhibits plant growth in a nutrient-
dependent manner
A Ct strain, Ct61, isolated from a wild A. thaliana population in Spain,
promotes plant growth under low Pi conditions by transferring phos-
phorus to the host3. In addition to Ct61, five different Ct strains have
been isolated from various plant species and geographical locations
(Supplementary Table 1)23,24. Molecular phylogenetic analysis using six
molecular markers conventionally utilized for the identification of
Colletotrichum species21,23–26 is consistent with the view that the tested

six Ct strains belong to the same species (Supplementary Fig. 1).
Notably, however, these five strains exhibited different growth mor-
phology during in vitro growth (Fig. 1a and Supplementary Fig. 2a).

This prompted us to investigate the possible intraspecies varia-
tions of Ct in plant infection effects and strategies.We compared sixCt
strains in their inoculation effects on A. thaliana Col-0 under gnoto-
biotic low Pi conditions (50μM KH2PO4). Five of the tested Ct strains,
including Ct61, significantly promoted plant growth, indicated by
primary root length and shoot fresh weight (Fig. 1b, c and Supple-
mentary Fig. 2b, c). The results suggest that plant growth-promoting
(PGP) function under low Pi, at least discernible in A. thaliana, is
extensively shared by Ct strains from various host and geographical
niches. Notably, in contrast to these PGP strains, Ct3 severely inhibited
shoot growth under lowPi (Fig. 1b, c and Supplementary Fig. 2b, c). Ct3
inhibited plant growth in additional 15 A. thaliana accessions (Sup-
plementary Fig. 2d) and also in Brassica rapa var. perviridis (Supple-
mentary Fig. 2f, Left), whose growth was promoted by beneficial Ct4
(Supplementary Fig. 2f, Right), on unsterilized low nutrient soil. These
results suggest that Ct3 pathogenic lifestyle is common in a broad
diversity of Brassicaceae species, at least under the tested conditions.

Since Ct61 PGP function is specific to low Pi3, we tested whether
phosphate availability influences Ct3 and Ct4 infection phenotypes.
Under normal Pi conditions (625 µM), Ct3 caused plant growth inhi-
bition and leaf chlorosis (Fig. 1d and Supplementary Fig. 2c, g),
whereas Ct4 did not cause plant growth inhibition or leaf chlorosis
(Fig. 1c, d). Under low Pi, Ct3 compromised plant growth but did not
cause leaf chlorosis or reduce leaf chlorophyll contents (Fig. 1c, d;
Supplementary Fig. 2c, g). In contrast to Ct3, Ct4 promoted plant
growth (Fig. 1d). Since sucrose increased and accelerated Ct3 growth
but not Ct4 growth in culture (Supplementary Fig. 2h), we hypothe-
size that Ct3 pathogenesis is dependent on host photosynthate
supply and is alleviated when its supply is likely reduced under
phosphate deficiency.

To trace fungal colonization dynamics, we generated transgenic
fungal strains expressing cytoplasmic GFP (Ct3-GFP or Ct4-GFP) under
constitutive GPDA regulatory DNA sequences3. Conidia of the trans-
genic Ct strains were then inoculated onto A. thaliana roots, expres-
sing an aquaporin PIP2A fused with mCherry, a plasma membrane/ER
marker in living host cells3. Up to 5 days post-inoculation (dpi), both
Ct3 and Ct4 hyphae both reached the cortex cell layer in the root
(Fig. 1e, f, Supplementary Movie 1, Supplementary Movie 2). The
intracellular hyphae of Ct3 and Ct4 were weakly labeled with the
mCherry-expressing plant plasma membrane, indicating that these Ct
strains colonize inside the roots of A. thaliana, as previously described
for Ct613. The results indicate thatCt3 andCt4 are either pathogenic or
beneficial fungi colonizing A. thaliana, respectively, under the tested
conditions.

To grasp the genomic basis for the intraspecies variations
between pathogenic Ct3 and beneficial Ct4, we determined their
whole-genome sequences using a long-read generating PacBio
sequencing platform. PacBio long reads provided high-quality genome
assemblies for all strains, ranging from 53 to 55Mb, with similar gene
numbers for candidate effector proteins, carbohydrate-active
enzymes, and secondary metabolism clusters (Supplementary
Table 2). Whole-genome alignment between Ct3 and Ct4 showed a
high degree (Median: >98.6%) of nucleotide identity between the two
genomes, despite their contrast infection strategies. In contrast, a
comparison between the beneficial strains Ct61 and Ct4 showed
numerous genomic rearrangements and a lesser degree of nucleotide
identity (88.9%), implying a genome-wide divergence between Ct61
and Ct4, despite their similarities in host benefits (Fig. 2a). These
results suggest that nucleotide identity scores largely reflect the geo-
graphical distances of their origins. However, a molecular phyloge-
netic analysis using the conserved 1509 single-copy genes among the
tested 71 fungal species suggests that beneficial Ct strains have evolved
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from their pathogenic relatives, such as C. incanum (Fig. 2b; Supple-
mentaryData 1). It seems likely that beneficial lifestyles have evolved in
pathogenic ancestors of Ct species.

Pathogenic Ct3 activates host PSRs and ABA signaling pathways
during early root infection
We next investigated plant responses following root inoculation with
beneficial and pathogenic Ct strains via RNA-seq analysis at two-time
points, 10 dpi and 24 dpi (Fig. 3a). At 10 dpi, Ct3 caused plant growth
inhibition under both normal and low Pi conditions, whereas PGP

effects of beneficial Ct strains were not yet apparent (Supplementary
Fig. 3a). At 24 dpi, the degree of plant growth inhibition by Ct3 was
lowered under Pi deficiency compared with Pi sufficiency (Supple-
mentary Fig. 3b), whereas PGP by beneficial Ct61 and Ct4 became
discernible only under Pi deficiency (Fig. 1b and Supplementary
Fig. 3b). In contrast to these Ct strains, the KHC strain (previously
classified as C. tofieldiae), closely related to C. higginsianum (Fig. 2b
and Supplementary Fig. 1), did not alter plant growth under low Pi
condition (Fig. 3a and Supplementary Fig. 3b), displaying a non-
pathogenic lifestyle.
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We first focused on the divergence in plant responses between
these Ct strains at 10 dpi, when Ct3 already caused plant growth
inhibition (Supplementary Fig. 3a). Multidimensional scaling analysis
indicated a clear separation of plant transcriptome in response to Ct3
compared to beneficial Ct and nonpathogenic KHC strains, suggesting
distinct plant responses to Ct3 at this stage (Fig. 3b). The results
revealed 758A. thaliana genes that were differentially upregulated in
Ct3-infected roots compared with beneficial Ct strains, under normal
or low Pi conditions (log2FC> 1, FDR < 0.05, Supplementary Data 2).
K-means clustering classified these differentially expressed genes
(DEGs) into three different clusters (Fig. 3c and SupplementaryData 3).
In Clusters 1 and 2, Gene Ontology (GO) categories related to ABA
signaling were overrepresented (Fig. 3c and Supplementary Data 3),
suggesting that Ct3 specifically induces host ABA responses. ABA
promotes plant adaptation to water deficit27 and influences immunity
or susceptibility-related pathways28. qRT-PCR analyses validated the
increased expression of ABA-responsive plant genes, AtRD29A29 and
AtMAPKKK1830, during pathogenic Ct3 infection (Fig. 3d, e). ABA
accumulation also increased in roots following Ct3, but not Ct4,
colonization (Fig. 3f). The results indicate that Ct3, but not Ct4,
strongly induces ABA responses in roots. We then tested whether and
how host ABA contributes to Ct3-mediated plant growth inhibition,
with plant mutants disrupted in ABA signaling, abi1-1C; ABA bio-
synthesis, aba1 and aba2-12; and ABA perception, pyr1-1 pyl1 pyl2 pyl4
pyl5. Ct3-mediated plant growth inhibitionwas alleviated in theseABA-
defective mutants under low Pi (Fig. 3g). In contrast, plant growth
promotion via beneficial Ct4 under low Pi was not affected in abi1-1C
(Supplementary Fig. 3c). These analyses suggest that pathogenic but
not beneficial lifestyles of Ct3 are dependent on the core ABA bio-
synthetic and response pathways of the host.

During beneficial interactions under low Pi, Ct61 induced a subset
of PSR-related genes in plants, including phosphate transporter AtPHT
genes, at 24 dpi3. Since PSR-related transcriptional reprogramming
largely relies on AtPHR1 and AtPHL19, we next assessed the possible
impact of beneficial Ct strains on AtPHR1/AtPHL1-regulated PSR-
related genes under low Pi at 24 dpi when PGP by beneficial Ct61
and Ct4 became discernible. Cross-referencing our data with pre-
viously described 193 AtPHR1/AtPHL1 regulons9 indicated increased
expression for approximately half of them [88 of 193 genes (Ct61), or
99 of 193 genes (Ct4), FDR <0.05] during beneficial Ct interactions
compared with the mock controls, specifically under low Pi (Supple-
mentary Fig. 3d). In contrast, PSR gene activation was not increased
during pathogenic or nonpathogenic interaction with Ct3 or KHC,
respectively, at 24 dpi (Supplementary Fig. 3d). At 10 dpi, however,
Ct3 strongly upregulated a subset of PSR-related genes under low Pi
compared with the mock controls (Supplementary Fig. 3e, 146 of 193
genes, FDR<0.05), indicated by the induction of Clusters 2 and 3
genes related to PSRs, in which GOs overrepresented “Cellular
response to starvation (Cluster 2)” and “cellular response to phosphate
starvation (Cluster 3)” (Fig. 3c and Supplementary Data 3).

Upregulation of PSR genes was associated with an increase in shoot P
concentrations followingCt3 inoculation under lowPi (Supplementary
Fig. 3f), coincident with alleviated pathogenesis. Notably, Ct3 inocu-
lation upregulated a subset of AtPHR1/AtPHL1 regulons, which were
otherwise not induced, under Pi sufficient conditions (Fig. 3c
(Cluster 3) and Supplementary Fig. 3e, 69 of 193 genes, FDR <0.05).
The results suggested that Ct3 infection results in AtPHR1/AtPHL1
regulon activation, at least during an early infection phase, despite the
eventual negative effects on plant growth.

We then examined howAtPHR1/AtPHL1-dependent PSR influences
pathogenic Ct3 lifestyles by testing for Ct3 inoculation phenotypes in
phr1 phl1 plants. Compared to WT, phr1 phl1 displayed severe growth
inhibition following Ct3 inoculation under low Pi (Supplementary
Fig. 3g). The results indicate a critical role for AtPHR1/AtPHL1 in the
alleviation of plant growth inhibition under low Pi. Together with the
transcriptome analyses above (Supplementary Fig. 3), we infer from
the results that activation of AtPHR1/AtPHL1 regulons serves to restrict
Ct3 pathogenesis.

PutativeABAandBOTbiosynthesis gene clusters aredistributed
across plant-associated fungi, possibly along with fungal
virulence
To assess the basis for transcriptional activation of host ABA respon-
ses, we examined fungal transcriptome profiles during pathogenic Ct3
infection (Supplementary Data 4). As Ct3-mediated ABA response
activation and plant growth inhibition were pronounced at 10 dpi
(Fig. 3c and Supplementary Fig. 2g), we assembled Ct3 genes that were
differentially upregulated at 10 dpi compared to 24 dpi. This resulted
in 304 fungal genes upregulated in an early phase under normal or low
Pi conditions (Fig. 4a, log2FC > 1, FDR <0.05). The number of these
geneswas greater under normal Pi than low Pi (Fig. 4a), consistentwith
enhanced Ct3 impacts on plant growth under normal Pi (Fig. 1).

Interestingly, 92 among 304 Ct3 genes were only expressed at 10
dpi under both Pi conditions, but their expression was below detect-
able levels at 24 dpi, coincident with fungal pathogenesis that was
pronounced at 10 dpi (Supplementary Data 5). We noticed that puta-
tive ABA biosynthesis genes (Ct3ABA1, Ct3ABA2, and Ct3ABA3) were
included in the 92 pathogenesis-associated genes. They show high
sequence similarity to ABA biosynthesis genes (BcABA1-BcABA3) in B.
cinerea (Supplementary Data 4). BcABA1 and BcABA2 encode cyto-
chrome P450, and BcABA3 encodes sesquiterpene synthase catalyzing
the initial step from farnesyl diphosphate (FPP), in a fungal ABA bio-
synthesis pathway that is entirely different from that of plants16,17,31.
Interestingly, in Ct3, these putative ABA biosynthesis genes are clus-
tered together with those highly related to the biosynthesis of botry-
dial (BOT), an ABA-related sesquiterpene metabolite in B. cinerea
(Fig. 4b, Supplementary Table 3)32,33. Five BOT biosynthesis genes
(named BOT1-BOT5) were co-activated with the three putative ABA
biosynthesis genes during root colonization in Ct3 but not in other
beneficial Ct strains (Fig. 4c, Supplementary Table 4), despite the high

Fig. 1 | Root infectionof a Colletotrichum tofieldiae strain (Ct3) severely inhibits
plant growth in A. thaliana. a Growth of Ct strains identified from various geo-
graphical locations inMathur’s nutrientmedia after 3 days of incubation. Bar = 1 cm.
b Determination of A. thaliana shoots fresh weight following fungal inoculation
under lowPi, 24 days after seed germination in the presence of the indicated fungal
strains. Boxplot represents combined results from three independent experiments.
Each dot represents individual plant samples (Mock: n = 51, Ct61: n = 42, Ct49:
n = 43, Ct127: n = 39, Ct130: n = 44, Ct4: n = 44, Ct3: n = 41 biologically independent
samples). The median values are described within each boxplot. Asterisks indicate
significantly different means betweenmock and fungal-inoculated plants (p <0.01,
two-tailed t-test). c A. thaliana plants grown in normal or low Pi conditions with or
without fungal inoculation (24 dpi). d Shoot chlorophyll a and b contents with or
without Ct3 or Ct4 inoculation under normal and low Pi (n = 3 for Ct3_Low Pi or
n = 4 for others biologically independent samples). Asterisks indicate significantly

different means between mock and Ct3-inoculated plants (±SD, p <0.0001, two-
tailed t-test). e–hConfocal microscopic images of Ct3 (e, g) or Ct4 (f, h) expressing
cytoplasmic GFP (green) and root cells of A. thaliana expressing PIP2A-mCherry
(magenta). These experiments were repeated three times with similar results.
Maximumprojection of z-stack images shows Ct3 (e) or Ct4 (f) hypha penetrating a
root epidermal cell surrounded by PIP2A-mCherry-labeled host membranes
(arrowheads). Representatives of hyphal penetrations are shown as enlarged pro-
jected images of different optical sections and orthogonal views made from areas
indicated by white dotted line. Maximum projection of z-stack images shows Ct3
(g) or Ct4 (h) hypha elongating intra- or inter-cellular spaces. Intra- or inter-cellular
hyphaewere indicated by white arrowheads and orthogonal views weremade from
areas indicated by white dotted line. Cells allowing elongation of intra-cellular
hypha or contacting with inter-cellular hypha were surrounded by a yellow dotted
line. Bar = 10μm.
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conservation of their cluster across these Ct genomes. Their encoded
amino acid sequences were nearly identical (particularly in Ct4; Sup-
plementary Fig. 4o: see below). These genes were silenced at 24 dpi
when plant growth inhibited by Ct3 was alleviated (Supplementary
Fig. 2g; Supplementary Table 4). Furthermore, pathogenic C. incanum
displayed an upregulation of CiABA3 and CiBOT5 during root infection
(Supplementary Fig. 4a). Therefore, co-activation of putative ABA and
BOT biosynthesis genes was specifically associated with pathogenic
lifestyles in the root-infecting Colletotrichum species.

Our comparative genomic analysis indicated that putative ABA
and BOT biosynthesis genes are conserved as a single cluster in ben-
eficial and pathogenic Ct genomes but are separate in the B. cinerea
genome (Fig. 4b). Furthermore, these genes, in particular of the BOT
cluster genes, show very high degrees of sequence conservation
between Colletotrichum spp. (class Sordariomycetes) and B. cinerea
(class Leotiomycetes). Such sequence conservation was unexpected,
given the considerable phylogenetic distance between the two fungal
lineages, which diverged approximately 261.6 million years ago21.
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To assess the evolutionary origin(s) of putative ABA and BOT
biosynthesis genes, we generated molecular phylogenetic trees for
these genes from the Colletotrichum strains (Ct3, Ct4, C. liriopes, C.
spaethianum34, belonging to the spaethianum clade), and from the
GenBank non-redundant protein sequences (NR) database (Fig. 4d,
Supplementary Data 6 and 7). Phylogenetic analyses showed (1) that
putative ABA and BOT cluster genes were distributed across distantly
related plant-associated fungi in a manner different from their phylo-
genic relationships (Supplementary Fig. 4b–m), (2) that putative ABA
and BOT cluster genes each formed monophyletic groups (Supple-
mentary Fig. 4b–m), (3) that genes in the putative ABA or BOT cluster
each have similar evolutionary histories (Supplementary Fig. 4b–m),

but (4) that the putative ABA and BOT clusters have different evolu-
tionary histories, indicated by their divergence in molecular phyloge-
netic trees (Fig. 4d and Supplementary Fig. 4b–m). The substantial
differences between species and gene trees suggest horizontal gene
transfers (HGTs) distributing the putative ABA and BOT biosynthesis
gene clusters among these plant-associated fungi. Our comparative
genomic analysis revealed that Diaporthe helianthi, a plant pathogen,
also possesses a single putative ABA-BOT biosynthesis gene cluster of
high synteny when compared with Ct (Supplementary Fig. 4n). On an
assumption that the putative ABA-BOT cluster originated only once
according to the principle of parsimony, the results suggest a HGT of
the BOT cluster to Botrytis, (Fig. 4d and Supplementary Fig. 4m, n).
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Given that the putative ABA and BOT clusters have likely arisen mul-
tiple times in different phytopathogenic fungi, it is conceivable that
the acquisition of putative ABA and BOT biosynthesis gene cluster(s)
contributes to pathogenesis evolution in plant-associated fungi.

Gene composition in putative ABA and BOT biosynthesis clus-
ters was slightly different across species. The putative ABA bio-
synthesis cluster consists ofABA1-ABA3 in, e.g., Ct,C. incanum, andD.
helianthi or ABA1-ABA4 in, e.g., B. cinerea (Fig. 4d, Supplementary
Fig. 4b–e, and 4m, n). CtABA4 was separately located in Ct genomes
(Fig. 4b), and unlike Ct3ABA1-Ct3ABA3, its expression was not
detected in Ct3 during root colonization (Supplementary Table 4),
suggesting that Ct3ABA4 is dispensable for Ct3 root colonization or
pathogenesis in Ct3. The BOT gene cluster typically consists of BOT1-
BOT7, where BOT6 and BOT7 correspond to Zn_clus (Zn2Cys6 tran-
scription factor) and Adh_short (retinol dehydrogenase 8) genes,
respectively, named in B. cinerea33. BOT6 and BOT7 show similar
phylogenetic distributions with the other five BOT genes within
Colletotrichum and Botrytis strains, indicating functional coupling of
these genes in these fungal lineages (Supplementary Fig. 4f–n). We
confirmed that Ct3BOT6 and Ct3BOT7 were strongly expressed dur-
ing Ct3 pathogenesis (Supplementary Table 4).

Ct3 produces intermediate metabolites of BOT biosynthesis
during culture growth
Our phylogenetic analyses revealed a previously unsuspected diversity
in the repertories of biosynthetic genes for putative ABA and BOT
among plant-associated fungi. We examined whether the biosynthetic
genes inCt3mediate the productionof thesemetabolites aspredicted,
like in B. cinerea. We generated fungal knockout mutants for Ct3ABA2,
Ct3ABA3, and Ct3BOT5 via homologous recombination. We then pro-
filed metabolites related to BOT biosynthesis in the WT, Ct3Δaba2,
Ct3Δaba3, and Ct3Δbot5 strains when cultivated in three distinct
nutrient media (Mathurs, MPY, rice-based media). This detected two
previously reported intermediatemetabolites in BOT biosynthesis, 4β-
acetoxyprobotryan-9β-ol (9) and 4β-acetoxyprobotryane-9β,15α-diol
(10)35,36, previously reported in B. cinerea in Ct3 (Fig. 5; Supplementary
Fig. 5), specifically when cultivated in rice-based media (Fig. 5).
Importantly, the accumulation of these metabolites was abolished in
Ct3Δbot5, disrupted at a putative catalyzing step upstream of their
production, whereas it was unaffected in Ct3Δaba (Fig. 5). The results
indicate that the Ct3BOT contributes to the biosynthesis of BOT (6). In
contrast, ABA (S1) or related precursor metabolites (S3, S5) were not
detected under the conditions tested (Supplementary Fig. 6), implying
a separation between ABA and BOT gene functioning, despite their co-
clustering in the fungal genome and transcriptional co-regulation
during root colonization. Alternatively, this may imply that the gene
cluster is involved in the production of a metabolite or metabolites
other than ABA.

Genetic disruption of putative fungal ABA and BOTbiosynthesis
genes leads to switching from pathogenic to beneficial lifestyles
in Ct3
We next tested whether putative fungal ABA and BOT biosynthesis
genes are required for Ct3 pathogenesis. Ct3Δaba2, Ct3Δaba3,
Ct3Δbot1, Ct3Δbot3, and Ct3Δbot5 mutant fungi showed WT-like
growth and spore formation on nutrient-rich media and WT-like
hyphal growth on glass slides (Supplementary Fig. 7a–c). Ct3Δaba2,
Ct3Δaba3, and Ct3Δbot5 fungi showed WT-like growth on normal or
low Pi media under our conditions (Fig. 6a), suggesting that these
genes are dispensable for culture growth in Ct3.

We next examined a possible role for these fungal genes in the
induction of host ABA responses after root inoculation. Compared to
WT fungi, ABA-dependent AtMAPKKK18 induction was reduced in the
roots inoculated with Ct3Δaba2 and Ct3Δaba3 fungi, suggesting that
the fungal ABA biosynthesis genes are required for the host ABA

responses (Fig. 6b). Interestingly, AtMAPKKK18 induction was also
absent in the roots inoculated with Ct3Δbot fungi (Fig. 6b), suggesting
a role for Ct3BOT genes in activating plant ABA responses. Further-
more, root fungal biomass was dramatically reduced for Ct3Δaba and
Ct3Δbot fungi compared with WT fungi (Fig. 6c and Supplementary
Fig. 7d-e). indicating that these fungal genes contribute to root infec-
tion of Ct3. Since Ct3 but not Ct4 increases fungal growth in the pre-
sence of sucrose (Supplementary Fig. 2h), we tested whether Ct3 root
infection influences sucrose accumulation in the host. Ct3 colonization
resulted in the accumulation of sucrose in roots,whichwas found tobe
dependent on the Ct3ABA2 and Ct3BOT5 genes (Supplementary
Fig. 7f). These observations suggest that activation of the putative
ABA-BOT cluster promotes sugar accumulation, which may turn, be
exploited by Ct3 for extensive fungal growth in roots.

Plant growth inhibition was also reduced when inoculated with
Ct3Δaba2 and Ct3Δaba3 fungi compared with WT fungi (Fig. 6d and
Supplementary Fig. 7g, h). Ct3 virulence was, however, restored when
ABA was exogenously applied (Supplementary Fig. 7i). Ct3ABA3-
mediated plant growth inhibition was reduced in the host mutants
defective in ABAsignaling orbiosynthesis (Fig. 6d). The results suggest
that biosynthesis ofABAbyCt3 requires the plant ABAcore pathway to
promote fungal pathogenesis. Notably, exogenous ABA application
also suppressedbothplant growth andCt4-mediated PGP under low Pi
conditions (Supplementary Fig. 7j). The results are consistent with
fungal-derived ABA playing a role in shifting from a beneficial to a
pathogenic lifestyle in Ct. Remarkably, Ct3Δbot5 fungi did not inhibit
but rather promoted plant growth under low Pi, reminiscent of Ct4
(Fig. 6e and Supplementary Fig. 7k). The mutation effects were abol-
ished when Ct3BOT5 was introduced back into the Ct3Δbot5 (Supple-
mentary Fig. 7l). The results suggest that BOT biosynthesis is required
for Ct3 virulence, and its disruption even renders Ct3 beneficial for
the host.

Ct3 shifts between pathogenic and beneficial lifestyles in a
manner dependent on the temperature andhostAtPHR1/AtPHL1
We noticed that Ct3 inoculation promoted plant growth under low Pi
at 26 °C (Fig. 7a). This was accompanied by a decrease in fungal root
colonization at 26 °C compared to 22 °C (Fig. 7b). Plant growth pro-
motion and fungal colonization at high temperatures were unaf-
fected for Ct3Δaba3 or Ct3Δbot5 fungi (Fig. 7a), consistent with a
great decrease in Ct3ABA3 and Ct3BOT5 expression during root
colonization at 26 °C (Fig. 7c). Limitation of Ct3 root colonization at
high temperatures was thus associated with low expression of the
putative fungal ABA-BOT cluster genes. However, in phr1phl1 plants,
Ct3 inhibited plant growth even at 26 °C in a manner dependent on
the putative ABA-BOT cluster (Fig. 7a), suggesting that the suppres-
sion of fungal pathogenesis via the putative ABA-BOT at high tem-
peratures requires the host AtPHR1/AtPHL1. Consistently, Ct3Δaba3
and Ct3Δbot5 fungi both promoted plant growth even in phr1 phl1
plants at 26 °C (Fig. 7a). This also suggests that AtPHR1/AtPHL1 are
not required for PGP per se at high temperatures when the putative
fungal ABA-BOT cluster is disrupted. Non-inoculated WT and phr1
phl1 plants were indistinguishable in shoot growth at 26 °C even
under low Pi, at least in our settings (Fig. 7a). These results indicate a
critical role for the putative ABA–BOT cluster and its negative reg-
ulation by host AtPHR1/AtPHL1, in the pathogen-mutualist transition
of Ct3.

Host nitrogen and iron uptake genes are targeted by the puta-
tive fungal ABA-BOT cluster
CtABA1, CtABA2, CtBOT1, CtBOT3, and CtBOT4, all annotated to encode
P450, constitute a large monophyletic group (Fig. 8a and Supple-
mentary Fig. 8a). The simultaneous expression of these genes in con-
junction with other Ct3 genes, suggests their interdependent
regulation. Initially, we examinedwhether the expression of the 92 Ct3

Article https://doi.org/10.1038/s41467-023-40867-w

Nature Communications |         (2023) 14:5288 8



genes, which were co-expressed with putative ABA and BOT genes
during pathogenesis, was altered in the Ct3Δaba2, Ct3Δaba3, and
Ct3Δbot5 mutant strains in comparison to the wild type (WT) (Sup-
plementary Data 8). Our findings indicate that the expression levels of
these Ct3 genes remained largely unaffected in the mutant strains
(Supplementary Data 9), implying a separate regulation of putative
ABA and BOT genes from the other genes.

The requirements of putative ABA and BOT genes for activating
the plant core ABA pathway during Ct3 infection implied the existence
of a common host target(s) for the two fungal biosynthesis pathways.
To gain insight into the host pathways affected by the putative fungal
ABA-BOT cluster, we next assembled A. thaliana genes specifically
induced or repressed by pathogenic Ct3, but not beneficial Ct4, in a

manner dependent on the putative Ct3 ABA-BOT cluster.We examined
root transcriptome at 10 dpi with WT, Ct3Δaba2, Ct3Δaba3, and
Ct3Δbot5 of Ct3, and with WT Ct4 under low Pi, where the
Ct3ABA/Ct3BOT expression status greatly influences Ct3 lifestyles
(Supplementary Data 10).

Plant responses were similar among Ct3Δaba, Ct3Δbot, and Ct4
(Supplementary Fig. 8b), consistent with their PGP effects under low
Pi (Fig. 6e). Plant DEGs following inoculation with WT Ct3, compared
with Ct3Δaba2, Ct3Δaba3, and Ct3Δbot5 mutants and WT Ct4,
included 288 Ct3-induced genes and 375 Ct3-repressed genes
(Fig. 8b–c and Supplementary Data 11 and 12). Ct3-induced genes
were overrepresented with the genes responsive to oxidative stress,
chitin, ABA, and cellular response to phosphate starvation. DNA
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motif analysis revealed DNA sequences bound by NAC transcription
factors related to drought tolerance37 being enriched within 1000bp
upstream of their transcription initiation sites (Supplementary
Fig. 8c). Notably, the RNA-seq analyses also indicated that PSR gene
activation at 10 dpi with Ct3 was dependent on the putative fungal
ABA-BOT cluster (Fig. 8d). We further showed that expression of
AtAT4, an AtPHR1-regulon during PSR, was significantly lowered in
abi1-1C and aba2 plants when colonized with Ct3 (Supplementary
Fig. 8d), indicating a role for the host ABA pathway in Ct3 induction
of host PSR genes. Interestingly, a large subset of GOs over-
represented in the 375 Ct3-repressed plant genes were related to
hosting nutrition, such as inorganic anion transport, cation home-
ostasis, and inorganic ion homeostasis (Supplementary Data 12 and
Fig. 8c, e). Consistently, Ct3 root colonization changed host shoot
nutrition status depending on putative ABA-BOT (Supplementary
Fig. 8e). The results suggest that Ct3 root infection suppresses host
nutrient uptake and impacts host mineral homeostasis.

To test the biological significance of this suppression, we exam-
inedwhether the genes repressed by Ct3ABA and Ct3BOT genes and by
host ABA pathways under low Pi contribute to plant growth (Fig. 8e).
Ct3-repressible genes included AtNRT1.1 and AtNRT2.1, two major
transporters for nitrate uptake38, and AtFIT, FER-like iron deficiency-
induced transcription factor inducing Fe uptake genes39. Ct3 repres-
sion of AtNRT1.1 and AtNRT2.1 expression was alleviated in aba2 and
abi1-1C plants, respectively, pointing to its dependence on ABA (Sup-
plementary Fig. 8f, g). Disruption of AtNRT1.1, AtNRT2.1, or AtFIT
resulted in strong growth deficits or chlorosis under normal Pi in the
absence of Ct3, whereas their disruption did not show significant
effects under low Pi (Fig. 8f and Supplementary Fig. 8h, i). Although
this has hampered assessing Ct3 infection phenotypes in thesemutant
plants, the results suggest that these nutrition-related genes are rate-
limiting in plant growth under Pi sufficiency and that they define a host
target for the fungal ABA-BOT cluster during Ct3-mediated plant
growth inhibition.

Fig. 6 | Disruption of the putative fungal ABA and BOT biosynthesis genes
results in a pathogen-to-mutualist lifestyle transition in Ct3 under low Pi.
a Fungal colony diameter under normal Pi and low Pi conditions. Bars represent
±SD (n = 25 biologically independent samples). b AtMAPKKK18 expression at 10 dpi
with the indicated Ct genotypes under low Pi (±SD, n = 3 biologically independent
samples). c Fungal biomass indicated by Colletotrichum ACTIN relative abundance
in A. thaliana roots at 10 dpi under low Pi (±SD, n = 3 biologically independent
samples). The photos represent the roots at 16 dpi with Ct3, Δaba3, and Δbot5. Ct
hyphaewere stained byWGA-Lectin (Bars = 100 µm).Asterisks indicate significantly
different means compared with Ct3 (n = 3 biologically independent samples,

p <0.05, two-tailed t-test) in (b, c). d, e Shoot fresh weight at 24 dpi with the
indicated fungi under normal Pi (d) and low Pi (e). Themedian values are described
within each boxplot. Numerals indicate theΔaba3 /Ct3 ratio, and asterisks indicate a
significant difference compared to Col-0 (p <0.05, two-tailed t-test) in (d) (n = 17 or
18 (Col-0_Mock, aba2_Mock, and aba2_Ct3) biologically independent samples).
Different letters indicate significantly different statistical groups in (e) (ANOVA,
Tukey-HSD test, p <0.05 (Mock: n = 66, Ct3: n = 68, Ct3Δaba2: n = 61, Ct3Δaba3:
n = 56, Ct3Δbot5: n = 60, Ct4: n = 60 biologically independent samples)). Repre-
sentative plant photos are shown (Bar = 1 cm).
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Discussion
In this study, we obtain evidence in a Ct strain (Ct3) that a dynamic
transition from pathogenic to mutualistic lifestyles during the root
colonization is achieved by altering the expression of a single fungal
secondary metabolism cluster (putative ABA-BOT) (Fig. 9). It has been
well documented that the presence or absence of one genetic com-
ponent(s) in the genome, e.g., an island, plasmid, or (mini) chromo-
some, is associated with the distinction between pathogenic and
nonpathogenic (or potentially beneficial) lifestyles in different bacteria
and fungi40–42. In contrast, our studies reveal that the beneficial and
pathogenic Ct strains share a nearly identical putative ABA-BOT cluster
in their genomes and that its expression status plays a critical role in
the diversification of fungal lifestyles.

Our studies further indicate that altering Ct3 putative ABA-BOT
cluster expression enables its lifestyle transition on the same host. The
divergencebetween adapted and non-adapted (nonpathogenic) fungal
pathogens was often attributed to transcriptional induction of
virulence-related genes in the former43,44. Our findings extend this view
that the loss of the putative ABA-BOT cluster not only results in the
suppression of Ct3 pathogenesis but the expression of PGP function
under low Pi, reminiscent of other beneficial Ct strains. This is also the
case at high temperatures, where not only Ct3 virulence suppression
but PGP is also achieved, likely through the host AtPHR1/AtPHL1-
dependent suppression of putative ABA-BOT cluster expression. The
results highlight an important role played by a secondary metabolism
gene cluster in the plastic lifestyle transition of plant-infecting fungi
and the convergence of environmental and host modulations on its
transcriptional regulation. Notably, the investigated Ct strains, albeit
classified into the Ct species through the widely accepted method for
Colletotrichum species, harbor substantial genomic sequence varia-
tions. Although there are no sequence differences in the putative ABA-
BOT region, there are subtle variations outside the putative ABA-BOT
region between beneficial and pathogenic Ct strains, which might
contribute to the divergence in the expressionprofiles of putative ABA-
BOT genes and in fungal infection modes. Further studies are war-
ranted to examine this hypothesis and the underlying mechanisms.

How does the Ct3 putative ABA-BOT cluster inhibit plant growth?
Under our conditions, Ct3 and Ct4 are largely indistinguishable in root
colonization levels (Fig. 1e–h, Fig. 6c), making it unlikely that Ct3
pathogenesis is caused by fungal overgrowth in the roots. It has been
described that bacterial and fungal pathogens mobilize the host ABA
pathway to suppress plant immunity, in particular, salicylic acid (SA)-
based defenses28. However, our transcriptomic analyses on Ct3 wild-
type and Ct3Δaba/Ct3Δbot fungi did not detect ABA/BOT-dependent
alterations in plant induction of defense-related genes. Consistently,
beneficial Ct61 promotes plant growth in the plants simultaneously
disrupted with defense-related hormones, SA, jasmonate, ethylene,
and defense regulator AtPAD4, as well as in the WT plants, without
fungal overgrowth3. These data suggest that Ct3-mediated virulence is
not expressed through ABA-SA antagonism. Rather, our transcriptome
and genetic data suggest thatCt3 utilizes the putative ABA-BOT cluster
to suppress the host genes required for the acquisition of different key
nutrients, such as nitrogen, iron, and zinc, which are rate-limiting in
plant growth, particularly when phosphate is sufficient. These results
suggest that Ct3 virulence via putative ABA-BOT occurs at least in part
through perturbation of host nutrition. Indeed, Ct3 putative ABA-BOT
contributes to sucrose accumulation in the host roots (Supplementary
Fig. 7f),which is likely effectively exploitedby the fungus for increasing
hyphal growth.

Host plants require AtPHR1/AtPHL1 for suppression of fungal
overgrowth inbeneficial interactionswithCt61, a prerequisite for PGP3.
This work further shows the critical role of AtPHR1/AtPHL1 in restrict-
ing Ct3 pathogenesis. Consistently, PSR-related AtPHR1/AtPHL1 reg-
ulons are induced during both pathogenic and beneficial interactions,
albeit at different timings. In Ct3, putative ABA-BOT genes serve to
accelerate the early induction of host PSR-related genes (at 10 dpi)
even under Pi-sufficient conditions, likely through the host ABA core
pathways. This may reflect a positive role for ABA in PSR under low
Pi45,46. In contrast, beneficial Ct strains induce host PSR-related genes,
specifically under low Pi, at a later phase (24 dpi), coincident with the
appearance of PGP effects. Given the absence of CtABA/CtBOT gene
expression in beneficial Ct strains, their PSR activation seems

Fig. 7 | Dynamic pathogenic-to-mutualistic lifestyle transitioning in Ct3
dependent on temperature and AtPHR1/AtPHL1. a Shoot fresh weight at 24 dpi
with the indicated fungi at 26 °C under low Pi. The median values are described
within each boxplot. Asterisks indicate significantly different mean (Mock_Col-0:
n = 32, Ct3_Col-0: n = 28, Ct3Δaba3_Col-0:n = 30,Ct3Δbot5_Col-0:n = 32,Mock_phr1
phl1: n = 20, Ct3_phr1 phl1: n = 19, Ct3Δaba3_phr1 phl1: n = 22, Ct3Δbot5_phr1 phl1:
n = 18 biologically independent samples,Mock vs. Ct3 (Col-0): p <0.05, two tailed t-

test).b Fungal biomass in roots at 24dpiwith the indicated fungi at 22 °C and 26 °C,
indicated by RT-qPCR analysis (Ct ACTIN/Plant ACTIN) (±SD, Ct3: n = 4, Ct3Δaba3:
n = 4, Ct3Δbot5: n = 4, Ct3_22: n = 3 biologically independent samples, p =0.034187,
two-tailed t-test). c, d Ct3ABA3 or Ct3BOT5mRNA levels relative to CtACTIN in roots
at 22 °C and 26 °C (±SD, Ct3: n = 4, Ct3Δaba3: n = 4, Ct3Δbot5: n = 4, Ct3_22: n = 3
biologically independent samples, p =0.000106 (c), p =0.002197 (d), two tailed
t-test).
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Fig. 8 | Ct3ABA-BOT gene cluster suppresses nitrogen uptake genes while
activating PSR genes in the host during Ct3 colonization. a Maximum Like-
lihood tree of ABA and BOT genes in Cytochrome P450 family using IQ-TREE ver-
sion 1.6.11. Ct3: C. tofieldiae Ct3; Bc: B. cinerea B05.10; Hs:Homo sapiens. Homologs
to CYP7A1 were used as an outgroup. The phylogenetic relationship of the ABA and
BOT genes and other 409 P450 genes in C. tofieldiae, B. cinerea, and H. sapiens is
indicated in Supplementary Fig. 8a. Ultrabootstrap probability is shown on the
branches. The scale bar represents substitutions per site. b Venn diagram repre-
senting significantly up (Upper)- or down (Down)-regulatedArabidopsisgenes at 10
dpi with Ct3 comparedwith the other Ct genotypes (Ct4, Ct3Δaba2, Ct3Δaba3, and
Ct3Δbot5) ( | log2FC | >1, FDR <0.05) under low Pi. c Transcript profiling of 288
commonly up-regulated and 375 commonly down-regulated Arabidopsis genes in
the roots following inoculation with all the examined Ct genotypes. Over-
represented (red to yellow) and underrepresented (yellow to blue) modules are
depicted as log10 (fpkm+ 1). The major enriched GOs of 288 or 375 genes IDs are

enlisted, respectively. Red and blue lines next to the gene IDs represent their
upregulation or downregulation, respectively. d Hierarchical clustering of A.
thaliana PSR-related 193 genes. Overrepresented (red to yellow) and under-
represented (yellow to blue) modules are depicted as log10 (fpkm+ 1).
e Hierarchical clustering of A. thaliana genes related to nutrient uptake and sup-
pressed by Ct3 through the ABA-BOT cluster (FDR <0.05). Overrepresented (red to
yellow) and underrepresented (yellow to blue) modules are depicted as log10
(fpkm+ 1). f Shoot fresh weight of the indicated Arabidopsis genotypes under
normal (+) or low (−) Pi at 24 days (Col-0: n = 18, nrt1.1_1: n = 15, nrt1.1_2: n = 17, nrt2.1
nrt2.2: n = 18, Col-0_low Pi: n = 18, nrt1.1_1_low Pi: n = 17, nrt1.1_2_low Pi: n = 16, nrt2.1
nrt2.2_low Pi: n = 15 biologically independent samples). The median values are
described within each boxplot. The fresh weight of each plant was measured after
24 days of incubation. Different letters indicate significantly different statistical
groups (ANOVA, Tukey-HSD test, p <0.05).
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independent of putative fungal ABA or BOT biosynthesis genes.
Indeed, like Ct3, beneficial Ct strains efficiently colonize A. thaliana
roots under low Pi without expressing CtABA/CtBOT genes (Figs. 1e, f
and 6c). Therefore, separate fungal mechanisms, in terms of ABA
dependence, are likely to confer host PSR activation between patho-
genic Ct3 and beneficial Ct interactions. Conversely, AtPHR1/AtPHL1
restricts fungal growth under low Pi through the suppression of
separate fungal infection strategies between Ct3 and beneficial Ct
strains, diverging in putative ABA-BOT dependence. Our evidence
attributes AtPHR1/AtPHL1-mediated alleviation of Ct3 pathogenesis to
the suppression of fungal putative ABA-BOT expression, under low Pi
and at high temperatures. Plant transcriptome data not detecting
differential defense gene regulation imply that AtPHR1/AtPHL1-medi-
ated control of fungal growth is also distinct from their suppression of
pattern-triggered immunity10,11.

Interestingly, the loss of AtPHR1/AtPHL1 allows Ct3Δaba3 and
Ct3Δbot5 fungi to promote plant growth in phr1 phl1 at elevated
temperatures, which is not seen in the WT plants (Fig. 7a). This indi-
cates thatAtPHR1/AtPHL1 are not required for the PGPper se conferred
by Ct3 at high temperatures when the putative ABA-BOT cluster is
disrupted. In addition to stimulating host ABA signaling, putative ABA-
BOT may suppress the PGP function through promoting host Pi
acquisition, which is conserved in Ct species, including Ct3 (suggested
by Fig. 7a). This also seems to apply to pathogenicC. incanum, in which
inherent putative ABA-BOT expression is associated with a massive
decrease in phosphorus transfer to the host compared to beneficial
Ct613. Notably, however, in Ct3, this PGP function is likely suppressed
byAtPHR1/AtPHL1, suggestedby the absence of PGP inWTplantswhen
inoculated with Ct3Δaba3/Ct3Δbot5 fungi (Fig. 7a). It is conceivable
that ABA-dependent activation ofAtPHR1/AtPHL1 regulons activated at
10 dpi with Ct3 contributes to the suppression of PGP, given the pre-
viously described negative role for AtPHR1 in nitrate transporter
expression, including AtNRT1.1, required for plant growth47,48. The
mechanisms underlying the multifaceted functions of AtPHR1/AtPHL1
in the complex host–fungus interactions require further studies.

Consistent with our molecular phylogenetic analysis that the
beneficial strains are derived from the pathogenic ancestors (e.g., C.
incanum or C. liriopes), the present evidence indicates that the acqui-
sition and expression of putative ABA-BOT gene cluster (or putative
ABA and BOT gene clusters) contribute to fungal pathogenesis, likely
through the activation of host ABA biosynthesis and signaling during
infection. It seems that putative ABA and BOT gene clusters also con-
tribute to fungal pathogenesis in Botrytis, as shown for Ct since host
ABA signaling is required for the infection and pathogenesis of the
necrotrophic fungus18,19. Although definite proof remains to be
obtained, putative ABA-BOTgene clusters are likely to confer virulence
in phylogenetically diverse fungi beyond Ct species. The additional
requirements for host ABA biosynthesis in fungal pathogenesis imply
that these fungal genes alone are not sufficient for effective ABA bio-
synthesis and virulence. Future studieswill be required to elucidate the
precise mechanisms by which fungal and plant ABA pathways work in
concert to promote fungal virulence.

Methods
Plant material and growth conditions
Arabidopsis thaliana Col-0, the abi1-1C27, aba149, aba2-1250, pyr1-1 pyl1
pyl2 pyl4 pyl551, phf152, phr1 phl19, nrt1.1 (chl1-553), nrt2.1nrt2.254, and fit1-
239 mutants (Col-0 background) and nrt1.1_2 (Ler background) were
used in this study. We also used 15 A. thaliana WT accessions as
described in Supplementary Fig. 2. Seeds were surface sterilized with
70% ethanol for the 30 s, followed by 6% sodium hypochlorite with
0.01% Triton X. After being washed three times in sterilized water,
seeds were placed in cold treatment at 4 °C for 24 h before sowing.

Fungal inoculation assay
Sterilized A. thaliana seeds were sowed on half-strength MS agarose
medium containing defined Pi concentrations. Ct spores (3μL of
1 × 104/ml) were inoculated 3 cm below the sowed seeds. Plates were
placed vertically in a plant growth chamber under a 10:12 h light: dark
cycle at ~22 °C ( ± 1 °C) (80μmol/m2s) around 50% humidity unless

Ct3

22oC 26oC

ABA / BOT

botrydial

AtPYL

AtABI1

PSRSugar

AtABA

Growth promotion

Growth inhibition

Putative ABA-BOT cluster 
activated

AtNRTs
AtFit

Ct4
Ct61

Putative ABA-BOT cluster 
silenced

Ct3

Growth promotion

Beneficial Pathogenic
22oC AtPHR1/AtPHL1

Putative ABA-BOT cluster 
silenced

ABA core pathway

Fig. 9 | Amodeldepicting thepathogenic-mutualistic lifestyle transition inCt3.
Unlike beneficial Ct strains (Ct4 and Ct61), Ct3 induces putative ABA-BOT gene
expression during an initial phase of root colonization. This putatively leads to
fungal production of ABA, its precursors, and/or relatedmetabolites from the ABA
biosynthetic genes as summarized previously16 and botrydial production from the
BOT biosynthetic genes as shown in Fig. 5. These metabolites, in turn, involve the

host ABA core pathway, thereby leading to the suppression of nutrient uptake-
related genes and the activation of PSR-related genes inA. thaliana. Perturbation of
the host nutrition pathways is then associated with sucrose accumulation in the
roots, which is likely to facilitate Ct3 hyphal growth. At 26 °C, Ct3 colonizes the
roots with the putative ABA-BOT genes silenced through the host AtPHR1/AtPHL1
and promotes plant growth under low Pi.
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otherwise described. For 26 °C assays, plants were incubated in a plant
growth chamber under a 10:12 h light: dark cycle at ~26 °C (80μmol/
m2s) during light and ~22 °C during dark. Effects on plant growth by
fungal inoculation were evaluated by measuring shoot fresh weight,
root length, or chlorophyll a and b from ~15 plants per experiment. Ct
hyphae were mixed with soils for soil inoculation, and B. rapa seeds
were incubated for 24 days on the soils before measuring shoot fresh
weight (SFW).

Plant growth conditions
Half-strength MSmedium used in this study is based on the previous
work55, with minor modifications. Agar granulated (Difco) was initi-
ally used as an agar containing limited phosphate in this study.
However, as the new batches of the agars caused unstable growth in
mock-treated plants under low Pi, INA Agar BA-10 (INA food) with
further limited phosphate was used as an alternative. pH was adjus-
ted to 5.1. 55ml of the mixture was then poured into square Petri
plates (15 × 15 cm, Greiner). For Ct inoculation in soils, Ct spores
(50mL of 1 × 104/ml) or distilled water (mock treatment) were incu-
bated on mixtures of autoclaved 180 g sawdust, 60 g rice bran, 60 g
bran, and 180ml water for 2 weeks, where mixtures with or without
Ct hyphae were mixed with soils containing Kanuma soil, Exo sand,
and black soil (15:42.5:42.5) with 3-5% weight. Before measuring SFW,
B. rapa var. perviridis seeds (ʻMisakiʼ, Sakata seeds) were then sowed
in the soil and incubated for 24 days.

Fungal growth assay in vitro
Agar plugs of ten-day-old fungal cultures grown on Mathur’s media
were transferred to new Mathur’s plates. Alternatively, 3 µL of fungal
spore suspension, comprising approximately 1 × 104/ml, was put onto
standard Pi media (625 µM KH2PO4) and low Pi media (50 µM KH2PO4)
without sucrose. Colony formation was determined three days after
inoculation by measuring the colony radius from center to edge.
Fungal spore counts were conducted as described previously56. For
fungal growth on glass slides, fungal spores were placed on glass slides
and incubated for 3 days.

Leaf chlorophyll measurements
The method of chlorophyll quantification was adapted from the pre-
vious report57. Samples were prepared from ~100mg of leaf tissue
pooled from ~4 plants per sample and weighed. Chlorophyll was
extracted by adding 800 µL chilled cold 100% acetone, and samples
were shaken for 10min until plant tissue was transparent. After the
samples were diluted four times with 80% acetone, the absorbance of
tissue-free chlorophyll extract was measured at 646 nm, 663 nm, and
750 nm with an Eppendorf Biospectrometer following the formula.

A: Chlorophyll a (µg/ml) = 12.25 × (OD663.6 −OD750) − 2.85 ×
(OD646.6 −OD750)

B: Chlorophyll b (µg/ml) = 20.31 × (OD646.6 −OD750) − 4.91 ×
(OD663.6 −OD750)

Quantitative real-time PCR
cDNA was synthesized from 300 to 500 ng total RNA using the Pri-
meScript RT Master Mix (Takara) in a volume of 10 µL. We then
amplified 3 µL of cDNA (10 ng/µL) in Power SYBR (Thermo) with 1.6 µM
primers using theAriaMx real-time PCR system (Agilent) in a volumeof
12 µL. Primers used in this study are listed in Supplementary Table 5.

Fungal transformation via Agrobacterium-mediated
transformation
For targeted gene replacement, we used the previously described
method3. Briefly, to generate replacement mutants lacking Ct3 puta-
tive ABA biosynthesis genes (ABA2 and ABA3) or BOT biosynthesis
genes (BOT1, BOT3, and BOT5), we constructed a plasmid in which the
Hyg resistance gene cassette was inserted between DNA sequences

flanking the target gene. Around 1.5-kb fragments of 5′ (5 F) and 3′
sequences (3 F) flanking the gene ORF were amplified from Ct3
genomic DNA by PrimeSTAR HS DNA polymerase (TaKaRa). The pur-
ified PCR products 5 F and 3 F were mixed with SalI-treated
pBIG4MRHrev for In-Fusion reactions. This generated plasmid was
then introduced into Agrobacterium C58C1 strains by electroporation
using the default setting for the Eppendorf Eporator. The transformed
Agrobacterium strains (OD600 = 0.4) were mixed with Ct3 spores
(1 × 107) in a 1:1 ratio on a paper filter attached to incubation media
containing 200μM acetosyringone (BLD Pharm). Selection of hygro-
mycin (150 µM)-resistant strains was conducted by transferring the
paper filter to PDAmediawithHyg, cefotaxime, and spectinomycin (all
at 50μg/mL) and incubated for two days before the paper was elimi-
nated from themedia. The resistant strains from themediawere tested
by PCR using primers targeting the outside sequence and a Hyg
sequence to determine whether the Hyg resistance cassette success-
fully replaced the interesting genes. The PCR primers used are listed in
Supplementary Table 5. The Ct3 and Ct4 lines constitutively expres-
sing GFP were generated as previously described3.

Fluorescence microscopy
Inoculated A. thaliana roots were observed through confocal micro-
scopy. To trace the colonization process of Ct3-GFP or Ct4-GFP in the
roots,weutilized a confocal laser scanningmicroscope (NikonC2plus)
equipped with filters optimized for visualization of GFP or mCherry to
distinguish fungal hyphae and plant plasma membranes. Fungal lectin
staining was performed using a confocal laser scanning microscope
Olympus FV1000with filter settings suitable forfluorescein (FITC), i.e.,
blue excitation light. WGA-FITC conjugate (Sigma) was used to specify
the fungal cellwalls. Fungal-inoculated rootswere incubatedovernight
in a 1:3 mixture of chloroform and ethanol. Then, the roots were
transferred to chloral hydrate (2 g/mL in water) and incubated for 2 h.
After PBS washed roots, the roots were incubated in wheat germ
agglutinin (WGA) conjugated to a FITC solution (5 µg/ml; Sigma) for 1 h
at room temperature.

Genome sequencing and assembly
DNAextraction, genomesequencing, and assemblywere conducted as
described34. De novo assembly of Ct4 genomes was conducted by
FALCON-integrate (v. 1.8.18). Illumina HiSeq for 100bp paired-end
short reads against Ct4 genomes was also conducted by Macrogen
(TrueSeq DNA PCR-Free kit), resulting in 59 million filtered reads. The
filtered sequence reads were used for error collection by mapping
Hiseq reads to the PacBio assembly using Pilon (v. 1.21).

Syntenies of Ct3, Ct4, and Ct61 genomes
Syntenies of Ct3, Ct4, and Ct61 genomes were detected as locally
collinear blocks (LCB) partly by performing whole-genome alignment
in the Mauve program v1.1.158. The location of LCBs and synteny cor-
relations were visualized as circos diagram by package circlize
v.0.4.359 in R.

Phylogenetic tree analyses for fungal classification
Themaximum-likelihood phylogenetic tree was reconstructed using 6
fungal marker nucleotide sequences of 34 strains in 12 species of the
genus Colletotrichum. The 6 sequences used were the nuclear 5.8 S
ribosomal RNA genewith the two flanking internal transcribed spacers
(ITS), a 200-bp intron of the glyceraldehyde-3-phosphate dehy-
drogenase gene (GAPDH), partial sequences of the actin (ACT), chitin
synthase 1 (CHS-1), beta-tubulin (TUB2), histone 3 (HIS3) genes, as used
previously to identify the species and species complexes of the genus
Colletotrichum23,25. Sequence information for all the strains was
retrievedusingBLAST.The sequences ofC. incanumMAFF 238704 and
C. liriopes MAFF 242679 in GenBank were also used. Nucleotide
sequences were aligned using MAFFT60 and concatenated manually.
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The maximum-likelihood phylogenetic tree was reconstructed using
IQ-TREE (v.2.1.2) with the options -m MFP -T AUTO -B 100061.

The maximum-likelihood phylogenetic tree was also recon-
structed using single-copy orthologs of all genomes of the genus
Colletotrichum in GenBank, those obtained in this study, and that of B.
cinerea B5.10 as an outgroup. The predicted proteins of the 71 fungal
strains were clustered into single-copy orthologous groups using
Orthofinder v.2.5.562 and Mirlo (https://github.com/mthon/mirlo).
Amino-acid sequences of the 1,509 single-copy orthologous groups
were aligned using MAFFT with default settings60. The maximum-
likelihood tree was reconstructed using IQ-TREE (v.2.0.3) with the
options -m MFP -B 100061.

Construction of phylogenetic trees of ABA and BOT biosynth-
esis genes
For this analysis, we re-annotated putative ABA and BOT biosynthesis
Ct (Ct3, Ct4, and Ct61) genes based on both genome assembly and
RNA-seq expression data for each gene. Sequences similar to ABA and
BOT genes of Colletotrichum strains, B. cinerea, and some other strains
were collected with BLASTP search using Biopython (v.1.7.6; E-value:
1e-4 or 1e-5) against newly analyzed genomes in this study, Homo
sapiens genome assembly GRCh38.p13, and GenBank NR database on
February/March 2020. Those containing large indels or that were
highly diverged were omitted from the data set of sequences
(Supplementary Table 3). Sequences were aligned with MAFFT using
the E-INS-i strategy (v.7.273)60. Phylogenetic analysis was conducted
with IQ-TREE (v.1.6.11; -mMFP -nt AUTO -b 100)61. Microsynteny of ABA
and BOT genes was analyzed with GenomeMatcher (v.3.00)63. The
fungal species tree in Fig. 4m is followed by64.

RNA extraction and RNA-sequencing analyses
Total RNA was extracted from the whole root compartments using
the NucleoSpin RNA Plant kit (Macherey-Nagel). RNA samples (1 µg
each)were then sent to BGI for quality assurance, library preparation,
and subsequent sequencing using their default process. The gener-
ated libraries were sequenced by HiSeq-illumina, resulting in
approximately 40 million reads per sample, paired-end 150 bp
(Figs. 3 and 4) or BGIseq (Fig. 8), resulting in about 40 million reads
per sample, paired-end 100 bp. Tophat2 with default settings, except
that average fragment size was specified65, was used for sequence
mapping based on the A. thaliana genome (TAIR10) or fungal gen-
omes. The generated BAM files from the Tophat2 platformwere used
to analyze DEGs by cuffdiff with default settings66. The following
statistical analysis and data visualization were conducted in R Bio-
conductor packages, such as Cummerbund, gplots, and ggplot266,67.
As judged by the Cummerbund platform, DEGs were identified using
an FDR threshold of < 0.05. Heatmaps representing gene expression
profiles were generated with the R package heatmap.2 in gplots. GO
analysis for A. thaliana genes was conducted by AgriGO v. 2
(FDR < 0.0568). Motif analysis was conducted by CentriMo69 with the
default setting using 1000bp upstream of the target A. thaliana
genes extracted via TAIR Bulk Data Retrieval.

Profiling fungal metabolites during liquid culture growth
Themycelia of Ct were inoculated into 1mL of bothMPY andMathur’s
medium in a 5mL test tube. The cultureswere incubated at 25 °Cwith a
constant rotational speed of 200 rpm for a period of 5 days. Following
extraction with 2mL of acetone, the extracts were evaporated. Sub-
sequently, 1M-HCl was added to themixture, and the resultingmixture
was extracted with ethyl acetate. The crude extracts were then dis-
solved in methanol.

For botrydial intermediates
Afterfiltration of the crude extracts, thefiltrateswere directly analyzed
by a GC-MS equipped with a Beta DEXTM 120 fused silica capillary

column (0.25mm×30m, 0.25μm film thickness; SUPELCO) in the
following conditions (Method A); 100 °C for 3min, 100-230 °C (rate:
14 °C/min), 230 °C for 5min at a flow rate of 1.2mL/min (helium carrier
gas). The followings are summary of other setting conditions; Column
Oven Temp.: 100 °C, Injection Temp.: 230 °C, Pressure: 89.4 kPa, Total
Flow: 28.1mL/min, Column Flow: 1.2mL/min, Linear Velocity: 40.7 cm/
sec, Purge Flow: 3.0mL/min, Split Ratio: 20.0, Ion Source Temp.:
200 °C, Interface Temp.: 230 °C, Solvent Cut Time: 2.5min,Micro Scan
Width: 0 u, and Mass range: 50-500. GCMSsolution software (version
4.45) was used for data acquisition and data analysis.

For ABA intermediates
Afterfiltration of the crude extracts, thefiltrateswere directly analyzed
by a UPLC-MS equipped with ACQUITY UPLC BEH C18 (2.1 × 50mm) in
the following conditions (Method B); 0-1min = 10% B, 1-3min = 10-95%
B, 3-5min = 95% B (A: H2O+0.1% of formic acid, B: CH3CN+0.1% of
formic acid) at a flow rate of 0.7mL/min; column temp. 40 °C. The
followings are a summaryof other setting conditions; λRange: 210 nm-
400nm, Resolution: 1.2 nm, Sampling Rate: 20 points/s, Filter Time
Constant: 0.2 s, Exposure Time: auto. MassLynx V4.1 was used for data
acquisition and data analysis.

Profiling fungal metabolites during solid medium incubation
Mycelia of Ct was inoculated into a solid medium containing polished
rice (1 g) in a 5mL test tube. The culture was incubated at 25 °C for
5 days. After extraction with Ethyl acetate, the extract was con-
centrated in vacuo to afford crude extracts.

For botrydial intermediates
Afterfiltration of the crude extracts, thefiltrateswere directly analyzed
by a GC-MS in Method A (see above).

For ABA intermediates
The crude extracts were evaporated, and the residues were then dis-
solved in MeOH. After filtration, the filtrates were directly analyzed by
a UPLC-MS in Method B (see above).

Isolation of the biosynthetic intermediates
The ABA biosynthetic intermediates were isolated from the transfor-
mants constructed in our previous studies17,70. The BOT biosynthetic
intermediates, 9 and 10, were isolated from the A. oryzae transfor-
mants possessing either BcBOT2/4/5 or BcBOT1/2/3/4/5, which were
constructed by incorporating those biosynthetic genes into A. oryzae
applying an established hot spot-knock-in method. Their 1H- and
13C-NMR spectra were in good agreement with the reported data35,36.

ABA measurement in plants
Extraction, purification, and quantification of ABA were carried out as
described in the previous report71 using around 5-mg dry weights of
around 10-day-seedling roots per replicate (equivalent to around 260
(Mock or Ct4)-320 (Ct3) roots).

Mineral measurements
Plant samplesweredried for 3days in a 70 °Coven.Dried sampleswere
set as 10-15mg in one biological sample. Each sample was digested
with nitric acid and hydrogen peroxide. The dried pellets, after
digestion,weredissolved in0.08MHNO3. Elemental concentrations in
samples were measured by inductively coupled plasma mass spec-
trometry (ICP-MS) Agilent 7800 (Agilent Technologies Co., Ltd., Japan)
according to the manufacturer’s instructions. To determine the con-
centration of P, ICP-MS NexION 350 S (PerkinElmer, Waltham, MA,
USA) was used. Clustering analysis was done by using mineral con-
centrations of the samples. NbClust package (version 3.0) of R was
used for k-means clustering (Hartigan-Wong algorithm). An optimal
number of clusters was determined by silhouette score.
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Sucrose measurement in plants
Sucrose extraction from the freeze-dried sample and its derivatiza-
tion for GC/MS analysis were essentially carried out as previously
described71. GC-EIMS used in this study was a 7890B GC-MS system
(Agilent Technologies) equipped with a DB-5 MS + Dura Guard
(30m ×0.25mm i.d., film thickness of 0.5 μm and 10m Dura Guard,
Agilent Technologies). The injection temperature was 250 °C, and
the helium gas flow rate through the column was 0.9mL/min. The
column temperature was held at 60 °C for 1min and then was raised
by 10 °C/min to 325 °C and was held there for 10min isothermally.
The retention time for sucrose-8TMS was 16.4min under the
condition.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Accession codes: Newly obtained fungal whole-genome data have
been deposited in DDBJ/NCBI (Ct61: BQXX01, Ct3: BQXV01, Ct4:
BQXW01, KHC23: BPPY01, C. liriopes: BPPX01). Additionally, raw
sequencing data of RNA-seq transcriptomic data have been deposited
in DDBJ (DRA012868, DRA012867). Microscopic pictures have been
deposited inBioImageArchived (S-BIAD827). Sourcedata areprovided
in this paper.
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