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Rapid inverse design of metamaterials based
on prescribed mechanical behavior through
machine learning

ChanSooHa 1,8, DeshengYao 2,3,8, ZhenpengXu2,3, ChenangLiu4,HanLiu 5,
Daniel Elkins1,6, Matthew Kile1, Vikram Deshpande 7 , Zhenyu Kong 6 ,
Mathieu Bauchy3 & Xiaoyu (Rayne) Zheng 1,2,3

Designing andprintingmetamaterials with customizable architectures enables
the realization of unprecedented mechanical behaviors that transcend those
of their constituent materials. These behaviors are recorded in the form of
response curves, with stress-strain curves describing their quasi-static foot-
print. However, existing inverse design approaches are yetmatured to capture
the full desired behaviors due to challenges stemmed from multiple design
objectives, nonlinear behavior, and process-dependent manufacturing errors.
Here, we report a rapid inverse design methodology, leveraging generative
machine learning and desktop additive manufacturing, which enables the
creation of nearly all possible uniaxial compressive stress‒strain curve cases
while accounting for process-dependent errors from printing. Results show
thatmechanical behaviorwith full tailorability canbe achievedwith nearly 90%
fidelity between target and experimentally measured results. Our approach
represents a startingpoint to inverse designmaterials thatmeet prescribed yet
complex behaviors and potentially bypasses iterative design-manufacturing
cycles.

The intrinsic mechanical behavior of bulk materials (e.g., metals,
ceramics, polymers) can be experimentally characterized by the
application of force and the measurement of the resulting deforma-
tion, yielding stress‒strain curves. For example, under tensile loading,
the mechanical behavior of brittle materials such as ceramics is char-
acterized by a stress–strain curve with a linear region followed by a
sharp termination; elastomers display superelasticity, characterizedby
a rapidly rising concave-up stress‒strain curve without a noticeable
linear region. For homogenousmaterials such asmetals, ceramics, and
polymers, responses to loading are dictated by intrinsic micro-
structure, such as crystal structure, atomic bonding, and the size and
mass of the constituent molecules/atoms, in addition to the presence

of stochastic microscopic defects. As a result, there is little room to
tailor these materials’ responses to loads besides altering the intrinsic
microstructure of the base materials.

Additive manufacturing (AM) allows mechanical properties to be
tailored in ways that are impossible in bulk materials, via the micro-
architecture design of three-dimensional (3D) metamaterials. These
materials can exhibit unusual properties such as negative Poisson’s
ratio1–3, negative compressibility4,5, ultralightness and ultrastiffness,
shape recoverability6–8, andmultiple stable states9–11. These architected
materials achieve previously unattainable region in the material
selection chart (e.g., so-called Ashby charts of density vs. Young’s
modulus or strength)12,13. Architected materials manifesting these
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properties have been typically designed by forward design approa-
ches, topology optimizations14,15 and, more recently, machine learning
(ML)16–22. The forward approaches iteratively adjust design parameters
of architected materials (such as unit cell size, wall thickness, and so
forth) untilmeasuredor simulatedproperties satisfy prescribeddesign
criteria, which usually require substantial prior knowledge of experi-
enced designers. While the topology optimizations and ML-based
design approaches have shown the potential to yield designs that
provide desiredproperty values, they haveyet to accurately capture all
of the required mechanical behaviors in practice, due to non-unique
response-to-design mapping and challenges in simultaneously repre-
senting a large number of variables. These design approaches are
further complicated by the presence of manufacturing defects, pro-
cess variabilities, and uncertainties23,24, which necessitate substantial
calibrations to account for defects in additivelymanufactured samples
with hundreds to millions of spatial constituents as each member
independently contributes to the realizationof target responses25,26. As
a result of these challenges, the actual mechanical properties of fab-
ricated samples often substantially deviate from the designed
properties25,26, which, if not considered, could lead to suboptimal or
catastrophic failure on application.

In this work, we present a rapid inverse design methodology that
canproducedesigns that replicate tailoredmechanical behaviorsupon
loading via ML and desktop 3D printing. Our approach leverages
generative inverse and surrogate forward neural network (NN)models
(details of the ML workflow shown in Fig. 1a), where the input com-
prises a user-defined uniaxial compressive stress‒strain curve (in the
form of curve features {XT}) and fabrication parameters (themaximum
build volume dimensions (L3) and minimum printable feature size

(smin) of a given 3D printer). The output is a set of optimal design
parameters {Y} that describes a digital lattice design that, once 3D-
printed and tested, will replicate the prescribed stress‒strain curve
(Fig. 1b–e). To achieve this, we develop a family of architectural unit
cells capable of capturing distinct curve shapes under bothmonotonic
and cyclic compressive loadings that cover a wide range ofmechanical
behaviors of a cellular solid. These cells serve as building blocks for
creating training data sets differentiated by two distinct (brittle and
flexible) polymeric base materials, from which our ML pipeline learns
the relationship between variousmechanical behaviors, topology, and
process-dependent manufacturing errors, and generates printable
lattice replicating the target stress‒strain curve. We demonstrate the
inverse design of arbitrary stress‒strain curves which represent the
entire mechanical responses under monotonic and cyclic loading. We
also show experimentally that additional tailored mechanical beha-
viors can be realized by graphically modifying the local geometric
features of a stress‒strain curve. Thismethodology allows for the rapid
creation of materials with fully tailorable mechanical behavior while
accounting for manufacturing process errors and nonlinear behavior.

Results
Overview of the generative ML approach
We implemented a generative ML pipeline composed of inverse pre-
diction and forward validation modules where each module is com-
posed of five distinct NN models (Fig. 1a; details of the ML pipeline
provided in Supplementary Note 1). Each NN model in the inverse
prediction module predicts a set of design parameters {Y} for a given
target curve feature {XT}, whereas the forward validation module
outputs the predicted curve features {XP} for each set of the predicted
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Fig. 1 | Overview of the ML-based rapid inverse design methodology.
a Schematic of the generative ML pipeline presented in this work. By taking the
target uniaxial compressive behavior in the form of curve features {XT} as the input
data, the inverse predictionmodule of ourML approach predicts five sets of design
candidates {Yk} (described by the cell type (Tcell), characteristic angle (ϕ) and
radius-to-length ratio (r1/L1)), where k ranges from 1 to 5. These design candidates
are then passed to forward validation module to estimate the response {XPk} of the
design candidates. Each of these responses {XPk} is compared to the target curve

feature {XT} for selection of the optimal design. b CAD model generated based on
the optimal design selected in a. c A schematic of 3D printing system with specific
fabrication parameters (minimal feature size smin and maximum printing volume
L3). d Printed sample based on the optimal design predicted by the generative ML
pipeline under compressive loading. e A comparison between the target (black)
andmeasured (red) compressive stress‒strain curves. Theuncertainty region (blue-
shaded area) represents the process variability obtained through the testing of
multiple samples.
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design parameters and determines the optimal set via evaluating the
differences between predicted and target curve features (details of
optimal design selection process in Supplementary Note 1.2). This
embedded approach solves the non-unique response-to-design map-
ping challenge in inverse design27,28 (e.g., several micro-architectural
features may give same output curves). During this process, the curve
type classifier in the forward validation module estimates the type of
predicted stress–strain curves using the design parameters predicted
from the inverse design module. This curve type along with such
predicted design parameters are fed into each NN model of the for-
ward module for the prediction of stress–strain curve features {XP}.
Thereby, as the optimal design is chosen via a direct comparison of
curve features, our approach ensures the uniqueness of the solution
and hence bypasses the potential one-to-manymapping issue that can
occur in the typical inverse design approach.

Curve design space
The design region of our generative ML approach was formulated as a
dimensionless design space enclosing the arbitrary mechanical beha-
vior of cellular materials under both monotonic and cyclic uniaxial
compression, where the x-axis specifies the strain ε and the y-axis
specifies the relative compressive strength normalized to the yield
strength of a given polymeric base material σ/σys (the full curve design
space is highlighted by a black dotted region in Fig. 2a). This dimen-
sionless design space comprises a series of subdesign spaces classified
by the elastic limit (εys or σys/Es) of each available polymeric base
material (gray envelopes in Fig. 2a). This representation allows for the
inclusion and visualization of nearly all possible stress‒strain curve
shapes depending on the choice of polymeric base materials. Envel-
opes of the subdesign space were specified by the theoretical upper
bounds of the elastic stiffness29 and the yield strength30 of isotropic
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Fig. 2 | Design space, plottable stress–strain curve paths and architectural
cells. a Full stress‒strain curve design space composed of a series of subdesign
spaces in a dimensionless plot, where the x axis specifies the strain and the y axis
specifies the relative compressive strength σ/σys (σys denotes the yield strength of
the base material). Each subdesign space is associated with a unique base material
described by its elastic limit εys and constructed with three boundaries (Ⓐ, Ⓑ, and Ⓒ

in inset). A representative subdesign space is shown as a blue envelop. Example
stress‒strain curves are also shown in the inset figure. b Design rules for plotting
target stress‒strain curves. A target curve, described by control points (εi, σi), starts
with a straight line, followed by peaks and valleys. Error bars represent bounds of
thepeaks and valleys determinedby the tangentmoduluswhich is lower or equal to

the linear-elastic slope (i.e., |(dσpvi)/(dεi)|≤(dσy1)/(dε1), where i = 2,…, max(Npv) and
max(Npv) denotes the maximum number of the peaks and valleys). c Architectural
cells with cubic symmetry. A variation in the characteristic angle (ϕ) from −45 to 90
degrees results in an architectural transformation from a compound truss com-
prising simple and body-centered cubic trusses (Tcell = 1), to an auxetic truss
(Tcell = 2), to a reinforced face-centered truss (Tcell = 3), to a simple cubic truss
combinedwith convex square pyramids truss (Tcell = 4), and to a simple cubic truss
(Tcell = 5). Each cell occupies an identical representative (black dotted) volume and
comprises two types of struts: inclined (red) and support (gray) struts. These struts
are related via a constant C, defined as the ratio of the radius of the inclined strut to
the radius of the support strut (i.e., C = r1/r2).
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cellular materials (Ⓐ and Ⓑ) and an approximated failure bound (Ⓒ),
assuming that available polymeric base materials are isotropic and
their post-yield behavior is negligible (inset of Fig. 2a; details of these
boundaries described in Supplementary Note 2).

Stress‒strain input curve
Within the full design space formulated above, our generative ML
approach takes an arbitrary compressive stress‒strain curve, either
monotonic or cyclic, as the input. This target curve is constructed via
sequentially connecting control points assigned by the user, starting
from the origin to linear-elastic limit, followed by local maxima and/or
minima, and terminating at the endpoint (the design rules are shown in
Fig. 2b; see Supplementary Fig. 4 for an example of the stress‒strain
curve input process). The first segment of the target curve is a straight
line described by two control points at the origin and the linear-elastic
limit (i.e., (ε0, σ0) and (ε1, σ1)), representing linear-elastic behavior, and
the slope of this straight segment (E0) denotes the elastic modulus of
the material under compression. After the linear-elastic segment, the
subsequent segments between successive control points (εi, σi) denote
the nonlinear behavior of thematerial, where themaximumnumber of
control point index i is dictated by the initial slope (E0) and given print
parameters (see Supplementary Note 3 for details). These control
points of the stress–strain curve, along with load type (Tload) (either
monotonic or cyclic), strain energy (ΔU) (area enclosed by the curve),
and slope (Ei) between two adjacent control points, forms a total of 46
curve features {X} and used as the input to the ML pipeline (details of
the curve parameterization presented in Supplementary Note 4).

Architectural cells for training
We developed a family of cubic symmetric, strut-based architectural
unit cells to generate training data sets of our ML approach (Fig. 2c).
The cells are represented by design parameters {Y} that describe a
lattice architecture, namely, the cell type (Y1 or Tcell), the characteristic
angle (Y2orϕ), and the radius-to-length ratio of the inclined strut (Y3or
r1/L1) (Fig. 2c). The evolution of ϕ, together with r1/L1 tuning, not only
changes the relationships among tensile and compressive load-bearing
strutmembers, nodal connectivity, and strut slenderness ratio but also
controls thedeformationmechanismof the cells, thereby giving rise to
distinct stress–strain curves (the rational of the developed cells dis-
cussed inSupplementaryNote 5; their architectural evolution shown in
Supplementary Movie 1; mechanical performance assessment pro-
vided in Supplementary Fig. 6; size effects shown in Supplementary
Figs. 7, 8). In addition, due to the inherent cubic symmetry of the
reported architectural cells, theirmechanical behaviors are invariant in
three orthogonal directions. This characteristic enables an effective,
direct tessellation across different architectures for the creation of
compound lattices (i.e., a lattice made of different unit cells) offering
enhanced stress–strain curve tunability. Hence, the developed unit
cells allow our ML approach to capture diverse stress‒strain curve
paths while occupying nearly the full range of the design space.

Training dataset generation
Next, using the developed architectural cells, we generated a training
dataset containing design parameters {Y} and their corresponding
stress‒strain curve features {X} (i.e., {X}-{Y} pairs). We first discretized
ϕ (or Y2) and r1/L1 (or Y3) into a number of intervals to create hundreds
of basic architectural configurations (training dataset structure listed
in Supplementary Table 2). Each configuration was tessellated in three
principal directions to create a 3D lattice digital model with the overall
dimension of 20 × 20 × 20mm3 (two unit cells in each orthogonal
direction). Three samples were fabricated for each digital model using
digital light 3D printing with a brittle polymer (see Methods for its
chemical formulation). Stress‒strain curves of the as-printed lattice
samples were measured by monotonic compression and cyclic com-
pression experiments (measured stress‒strain curves illustrated in

Supplementary Fig. 9). The measured stress‒strain curve of each
architectural configuration was then parameterized into 46 curve
feature variables {Xi, i = 1 … 46} and paired with the corresponding
design parameters27, leading to 1212 {X}-{Y} pairs in the pristine data-
set. As these pairs provide links between the curve features of the
experimentally measured curves and the corresponding lattice
designs, the training dataset inherently accounts for process variability
(e.g., uncertainty and imperfections) stemming from fabrication and
experimental measurements. Additionally, as the forward module
performs “many-to-one” mapping, we carried out data augmentation
on these pairs to account for prediction fluctuation, resulting in 9360
{X}-{Y} pairs in the augmented dataset (details presented in Supple-
mentary Note 6).

Machine learning model training
For training of our generative ML approach, we first trained the for-
ward module with the augmented dataset. The forward validation
module predicts the curve type (via a curve type classifier) and curve
features {XP} (via a curve feature regressor) of given lattice design
(details of the forward validation module described in Supplementary
Notes 7.1–7.2; details of NN models provided in Supplementary
Note 7.4). This forward module effectively acts as a surrogate model
that replaces conventional simulations used to evaluate the responses
of a design. As compared to the conventional simulation typically
requiring hours to compute the mechanical behavior of a 3D lattice
design, this forward module takes a few seconds to evaluate the
mechanical behavior, which greatly shortens the time span of the
entire design process.

Once the forward module was trained, this module was kept fro-
zen (i.e., the weight and bias parameters of all surrogate models were
fixed) and was then used to train the inverse prediction module with
the pristine training dataset. In the entire training process of the
inverse module, the cost function fc = (XP – XT)2, which evaluates the
difference between the predicted stress‒strain curve features {XP} and
the target curve features {XT} for a given architecture {Y}, was used to
optimize the hyperparameters of all the NN models. This strategy
prevents any instability during training, which could otherwise cause
{Y} to become a meaningless latent space variable (details of the
inverse module described in Supplementary Note 7.3). Our ML
approach with the optimized hyperparameters showed satisfactory
overall prediction accuracy via a typical cross-validation technique
(i.e., random 70/30 train/test split). Specifically, each NN model
reaches a plateauing loss and eventually features prediction accuracy
(~90%) when the training size exceeds about 50% of the dataset with
minimal signature of over- and under-fitting, indicating that the
training data size is adequate to reasonably satisfy the design goal
(training results in Supplementary Fig. 10 for the curve type classifier;
Supplementary Fig. 11 for the forward validation module; Supple-
mentary Fig. 14 for the inverse prediction module).

Inverse design based on various stress‒strain curves
Next, using our ML approach, we demonstrated the inverse design of
representative stress–strain curve paths of a cellular solid subjected to
monotonic and cyclic compression. As illustrated in Fig. 3a, these
target curve paths include (i) a linear-elastic section followed by a
negative stiffness section, depicting buckling (cases I and V); (ii) a
linear-elastic section followed by positive and nearly zero stiffness
sections, illustrating strain hardening andplateau regions, respectively
(cases II and VI); (iii) a linear-elastic section followed by immediate
fracture, characterizing brittle behavior (cases III and VII); and (iv) a
linear-elastic section followed by controlled post-buckling, showing a
snap-through response (cases IV and VII). These target curve paths
(gray solid curves) were significantly different from any curves in the
training dataset, which guarantees that our ML approach does not
have explicit prior knowledgeof these curves (the curve similarity tests
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between the target curves and all training curves provided in Supple-
mentary Note 7.6; Supplementary Fig. 19d). We fed the curve paths
into our ML pipeline to obtain the optimal design parameters, from
which ten samples for each curve path were additively manufactured
via the same 3D printing apparatus used for our training database
generation. Representative printed samples and the predicted optimal
design parameters are shown in Fig. 3b.

Results of the inverse design of the representative stress-train
curve paths are shown in Fig. 3a. In this figure, the bestmatching curve
(black dotted curve) from ten measured stress–strain curves for each
case is compared against the corresponding target curve (gray solid
curves), and a blue-shaded uncertainty zone, describing the distribu-
tion of the test curves from ten printed samples, represents manu-
facturing variability. We found excellent similarity between the target

Tcell = 1, ϕ= -45º, r1/L1 = 0.0434 Tcell = 1, ϕ= -45º, r1/L1 = 0.0669 Tcell = 4, ϕ= 10º, r1/L1 = 0.0750 Tcell = 4, ϕ= 18º, r1/L1 = 0.0536

Tcell = 1, ϕ= -45º, r1/L1 = 0.0433 Tcell = 3, ϕ= 0º, r1/L1 = 0.0366 Tcell = 1, ϕ= -45º, r1/L1 = 0.0622 Tcell = 4, ϕ= 14º, r1/L1 = 0.0613

I II III IV

V VI VII VIII

b

a

0

10

20

30

40

50

0 0.04 0.08 0.12

St
re

ss
(k

Pa
)

Strain (-)

0

5

10

15

20

0 0.02 0.04 0.06

0

10

20

30

40

50

0 0.04 0.08

0

5

10

15

20

0 0.02 0.04 0.06 0.08 0.1
0

4

8

12

0 0.02 0.04

VIIIVIV

III

Targetcurve
Measuredcurve

Uncertainty region

III

0

1

2

3

4

0 0.02 0.04 0.06 0.08 0.1

IV

0

250

500

0 0.04 0.08

VII

0

250

500

0 0.02 0.04 0.06

NRMSE= 0.1013 NRMSE= 0.0458 NRMSE= 0.0371 NRMSE= 0.1327

NRMSE= 0.0678 NRMSE= 0.0955 NRMSE= 0.0671 NRMSE= 0.1002

Fig. 3 | Inverse design based on representative target stress‒strain curves and
experimental design validation. a Inverse design based on representative target
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modulus to a multislope tangent modulus, in response to monotonic (I~IV) and
cyclic (V~VIII) uniaxial compression loadings. The gray curves denote the target
curves, whereas the black dotted curves represent selectedmeasured curves (from
ten measured curves) of the printed samples. The uncertainty region, highlighted

by blue shading, covers the distribution of ten experimentally measured curves,
illustrating process variability. The normalized root-mean-square error (NRMSE)
quantifies the curve similarity between the target and all the measured curves (0:
identical curve pair; 1: completely dissimilar curve pair). b Photographs of the
printed samples inversely designed by the presented ML pipeline in response to
each target curve shown in a. The ML-predicted design parameters are listed. The
scale bar is 10mm.
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curve and best matching curve for all cases (highlighted by the com-
puted normalized root-mean-square error close to zero), revealing
that our method can automatically take into account various manu-
facturing defects in stereolithography, which vary sample by sample
and even strut by strut. This scope is very challenging or impractical to
capture with other approaches, such as topology optimization24.

Our ML approach is also applicable to other polymer-based AM
platforms exhibiting larger process variabilities with minimal decrea-
ses in reliability.When the process variability (η), defined as the ratio of
the deviation to averaged value of mechanical properties of printed
samples, increased by a factor of ~2.6, which makes the printing pro-
cess used in this study comparable to that of the selective laser sin-
tering process31–34, the overall prediction accuracy of ourML approach
was reduced by ~7%, resulting in an acceptable uncertainty region for
the inverse design (details of our process variability study described in
Supplementary Note 8; Supplementary Figs. 20–23). While accuracies
for recreating materials in response to larger processing errors could
be compensated by incorporating larger training data sets, other
manufacturing defects, such as anisotropy, porosity, shrinkage, and
micro-structural evolution that are unique to metal additive manu-
facturing not accounted for in the present method (see Discussion
section).

Tailorability of stress‒strain curves
Architected materials that meet multiple target properties could be
inversely designed via graphically tailoring curve features of a target
stress‒strain curve, for example by adjusting stiffness, peak stress,

compressibility, and/or nonlinear response (Fig. 4a). To demonstrate
tailorability of our design process, we inversely designed an archi-
tected shoe midsole by graphically tailoring stress‒strain curves
measured from a commercial midsole (i.e., baseline curves) for
enhanced running performance (detail of baseline curve acquisition
described in Supplementary Note 9.1). The midsole was partitioned
into four sections upon different levels of loads during heel-toe
running35, and the target stress–strain curve for each section was cre-
ated by tailoring a baseline curve for the purpose of maximizing run-
ning propulsion and cushioning (Fig. 4b, c; the measured baseline
curves shown in Supplementary Fig. 24; the design rationale discussed
in Supplementary Note 9.2). The tailoredmidsole consists of a stiff but
comfortable toe section, firmer and higher propulsion forefoot sec-
tion, and stiffer yet energy dissipative heel section. Moreover, the
target curves were scaled according to the scaling relationship of the
base material (TMPTA) between strain rate and its mechanical prop-
erties so that dynamic responses in running scenario can be inversely
designed using quasistatic training data (the detailed inverse design of
non-quasistatic strain rates illustrated in Supplementary Figs. 25a–d).
The as-fabricated midsole sample with optimal design parameters for
each section is shown in Fig. 4c (the predicted design parameters in
Supplementary Fig. 25e). The results revealed excellent agreement
(>90% average prediction accuracy) between the experimentally tes-
ted curves and target curves of each tailored section (Fig. 4d; their
cyclic responses shown in Supplementary Fig. 25f), indicating that the
ML pipeline is capable of creatingmaterials satisfyingmultiple tailored
mechanical responses under different loading conditions.
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Fig. 4 | Tailorability of stress‒strain curves demonstrated by inverse design of
anarchitected shoemidsole. aAschematic of the tailoring process to improve the
energy absorption behavior. b Relative load distribution of the midsole during
running32. c A photograph of the ML-designed architected midsole sample, where
each section was designed to exhibit disparate target behaviors. The scale bar is
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sample. The baseline response of the commercial midsole (gray curves) for each
section was tailored to achieve a specific design target aiming at an improved
running performance (blue curves). The tailored curves were then fed into our ML
pipeline to obtain optimal designs for each design target, fromwhich the predicted
designs were verified via experiments (black dotted curves).
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Enhanced tailorability via compound lattices
The inverse design of architectedmaterials canbe further expanded to
include advanced curve features that do not exist in natural materials,
such as variable tangent modulus, controllable softening/hardening
effects, and multiple peaks and valleys. These curve features offer
improved crushing behavior and energy absorption performance and
could be realized by inversely designing compound lattices (non-uni-
form lattice comprised of design parameters varying by location) with
tailorablemechanical behaviors that go beyondmechanical responses
from uniform lattices (lattice materials comprised of identical unit
cells throughout the lattice) (see Supplementary Note 10.1; Supple-
mentary Fig. 26). Hence, we created a training dataset containing
compound lattices made of a flexible polymeric base material via FE
simulations (see Methods). Instead of being represented by uniform
design parameters, these compound lattices were described by varia-
tion of design parameters (topology gradients) within a confined lat-
tice volume, such as the unit cell type (G1), strut aspect ratio (G2),
inclined strut diameter (G3), and cell size (G4) gradients (full descrip-
tion of gradient labels described in Supplementary Note 10.2). Addi-
tionally, to adopt the structure of the gradient labels, we employed a
sequential integrated strategy for the inverse design process (Sup-
plementary Fig. 27).

To showcase inverse design of advanced curve features discussed
earlier, we fed three sets of stress–strain curves into our revised ML
pipeline separately, where each case focuses on separately tailoring
tangent modulus, first peak stress, and second peak stress (Fig. 5a–c).
The corresponding inversely designed 3D digital models describing
compound lattices and the spreads of their gradient labels describing
the variation of the gradient labels within the lattice in terms of the
coefficient of variance are also presented in this figure (the predicted
gradient labels in Supplementary Tables 6–8). The ML-predicted
results revealed that manipulating pairs of gradient labels indepen-
dently modulate advanced curve features, including multiple peak
stresses and signs of the tangent modulus. This enables fine control of
a variety of sectioned stress‒strain curves (Fig. 5a–c) not seen with
uniform lattices. For example, in the case of tuning tangent modulus
(Fig. 5a), we noticed negligible variation in unit cell and strut radius
ratio gradients (G1 and G2), indicating the sign of the tangent modulus
is mainly controlled by a combination of the inclined strut radius and
unit cell size gradients (G3 and G4). Similarly, G1 and G2 together
modulated the first peak stress (Fig. 5b). Additionally, in the case of
tuning second peak stress (Fig. 5c), significant variation in G2 was
observed while the other three gradients almost remained the same,
indicating G2 were mainly responsible for the second peak stress
manipulation.

Next, we experimentally validated the efficacy of our approach via
inversely designing three stress–strain curves which feature different
numbers of stress peak and valley events as well as a controlled tan-
gent modulus. These target curves can be found in the insets of
Fig. 5d–f, and the primary graphs show the re-created stress‒strain
curves of the predicted designs (the predicted gradient labels and
printed samples in Supplementary Table 8 and Supplementary Fig. 28,
respectively; their associated in situ uniaxial compression tests pro-
vided in SupplementaryMovies 2–4). For the target curvewith a nearly
zero tangent modulus (the inset of Fig. 5d), the predicted gradient
labels indicated minimal variation (Supplementary Table 9), and
homogeneous deformation of a designed compound lattice was
observed (Supplementary Movie 2). The target curve in the inset of
Fig. 5d was then tailored to exhibit a negative tangent modulus after
the first peak (the inset of Fig. 5e). The measuredmechanical behavior
shown in Fig. 5e revealed the localized nonaffine deformation (see
Supplementary Fig. 28, SupplementaryMovie 3) and corroborated the
role of the gradient labels discussed earlier; the first peak stress was
dominated by G1 and G2, followed by a subsequent shifting/snapping
event with a negative tangent modulus controlled by G3 and G4

(the predicted gradient labels listed in Supplementary Table 9). The
target curve shown in the inset of Fig. 5ewas further tailored to contain
a second peak stress (the inset of Fig. 5f), while keeping all preceding
curve features. The predicted gradient labels included a change in G2

(~50%) substantially different from that of the former lattice shown
in Fig. 5e, confirming the role of this gradient in peak stress manip-
ulation (the gradient labels listed in Supplementary Table 9; nonaffine
deformation shown in Supplementary Fig. 28 and Supplementary
Movie 4).

These advanced, inversely designed stress‒strain curves featuring
successive peak stresses and coordinated collapse mechanisms toge-
ther with tailored softening effects make the inversely designed
compound lattice shown in Fig. 5f an excellent candidate for ML-
designed custom padding materials for energy absorption. To test its
energy absorption performance, drop tests were conducted on the
sample (Supplementary Fig. 29a), showcasing that the measured
acceleration andpotential energy due to impactwere reduced by ~30%
and ~25%, respectively, as a result of the compound lattice (Supple-
mentary Figs. 29b, c). In the normalized energy absorption vs. trans-
mitted strength propertymap ((U/Es)/ p vs. (σtr/σys)/ p), this compound
lattice shows energy absorbing performance outperforming that of
previously reported lattice materials36–42 (Supplementary Fig. 29d; the
values used in this figure provided in Supplementary Table 10).

Discussion
This work presents an ML-based rapid inverse design methodology
to recreate and tailor mechanical behavior based on stress‒strain
curves. Our generativeML strategy is capable of mimicking nearly all
possible uniaxial compressive stress‒strain curves of architected
materials, including linear elasticity, strain softening/hardening,
tunable tangent modulus, yielding, fracture, tailorable stress peaks
and valleys, energy absorption, while accounting for existing 3D
process defects, resolutions, and uncertainty. We demonstrated the
inverse design of the architected shoe midsole with tunable dynamic
performance with spatially tailored sections described by specific
stress‒strain responses, and also showed enhanced stress–strain
curve tailorability by incorporating gradient labels in theMLpipeline,
enabling advanced curve features with programmed stepwise energy
absorption. Moreover, our ML approach permits optimized struc-
tures to be produced with less experimental testing and fast eva-
luation time. Indeed, a nonlinear stress‒strain curve can be analyzed
and inversely designed into a 3D digital model from a typical con-
sumer desktop computer within a few seconds with the reported
approach, compared to simulations and optimization approaches
that would otherwise take days without even taking full account of
manufacturing variabilities. Furthermore, while the current work is
limited to design compressive behaviors, our ML pipeline could be
adapted to inverse design other mechanical responses separately or
simultaneously, when accompanied with a family of training data of
which each describes a specific loading case (e.g., tensile, compres-
sive, bending, shear, and so on). This is attributed to the fact that the
stress–strain curve was adopted as the input, which can describe
mechanical behaviors under other types of loading (details in Sup-
plementary Note 12). We also envision that our ML strategy is not
limited to mechanical behaviors and can be extended to other
complex behavior such as acoustic,magnetic, and electromechanical
responses when such responses are expressed in form of a curve
similar to the stress–strain curve (e.g., absorbance-frequency,
magnetization-magnetic field, polarization-voltage and so on). This
work represents progress toward a rapid inverse design and manu-
facturingmethodology that allows for prescribing the full spatial and
temporal behaviors of a product that can be printed via a simple
desktop computer. It has direct implications for future development
of protective wears, automobile and aircraft parts, energy absorbers,
and smart materials via simplified design-manufacturing cycle.
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We demonstrated that experimental data for ML automatically
learns processing incurred errors; as a result, the re-created meta-
materials replicate the prescribed mechanical behaviors with high
accuracy after printing. We note that the experiments in this work
were carried out via a mass-consumer based, desktop printing
technique using projectionmicro-stereolithographywith polymeric
materials, which comes with inherently higher fabrication accuracy
compared to other additive manufacturing processes (e.g., laser
sintering for metal printing). While one can project that method
such as using a higher amount of training data or employing transfer
learning to other printing methods (e.g., metal printing) to mitigate
potentially larger errors from manufacturing, it remains a future

topic of study how variations of base material property that are
inherent to metal processing, such as sintering, anisotropy and
micro-structures of metals, will influence the fidelity of the repli-
cation process43. This could potentially be mitigated by adding
process parameters as the input, such as energy density and powder
size, which could help our ML pipeline account for the variabilities
brought by stochastic interaction between mass and energy in the
process. Additionally, the current study didn’t add features
including property evolution and anisotropy effect resulting from
material processing, where such effects are minimal in the process
employed here but could have larger variations in other processing
methods.
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Methods
Sample fabrication
All lattices presented in this work were created as 3D digital models
using commercial computer-aided design software (Autodesk Inven-
tor 2022). Two distinct basematerials were used for fabrication, where
each base material was assigned to a unique dataset. A brittle base
material, denoted by TMPTA, was a photosensitive resin consisting
of trimethylolpropane triacrylate (Sigma‒Aldrich Inc., St. Louis, MO)
with 0.0125wt% photoabsorber and 2wt% phenylbis(2,4,6-tri-
methylbenzoyl) phosphine oxide photoinitiator (Sigma‒Aldrich Inc.,
St. Louis,MO), whereas a flexible basematerial was a commercial resin
(Flexible 80A, Formlabs Inc., Somerville, MA) and used as received. A
digital light 3D printer (Anycubic Photon S, Anycubic Inc., Shenzhen,
China) was used to fabricate brittle samples using TMPTA, and a cus-
tomized projection stereolithography system was built and used for
printing flexible samples. At least three samples for each model were
tested during the validation process. After fabrication, all samples
were cleaned with ethanol and dried in a dark environment for
24 hours.

Experimental testing
All quasistatic compression tests were performed by using the Instron
5944 universal testing machine (Instron Corporation, Norwood, MA).
The printed lattice samples were compressed between the stationary
and moving steel plates. The loads were measured by the Instron load
cell with a load capacity of 2000 N (serial no.: 150821), and the dis-
placements weremeasured by the built-in encoder associatedwith the
crosshead movement. For the monotonic compression test, stress‒
strain curves of the samples were recorded up to the onset of the first
appearance of failure. For the cyclic compression test, hysteresis loops
with three different strain levels were recorded while ensuring elastic
recovery of the samples. The strain rate for all tests was set as 10−3s−1.
Stress was computed as the measured load divided by the effective
area (Llattice)2, and strain was calculated as the displacement divided by
Llattice, where Llattice refers to the side length of the sample.

Drop tests were performed by dropping a deadweight (massm of
500 g) onto the test samples fromdifferent heights, h. The sample size
used in the drop tests was nominally 60 × 60 × 60mm3 in volume. The
drop height was between 50 and 150mm to measure energy absorp-
tion while preventing damage to the test samples. The impact force
was recorded by a force transducer fixed directly underneath the
bottom of a flat, rigid steel plate. The transmitted force wasmeasured
in a similar manner but with the sample fixed on the top of the rigid
plate. Both measurements were taken at a sampling rate of 100Hz
using the Instron data acquisition hardware. Impact acceleration was
calculated using Newton’s second law, a = F/m, where F is the mea-
sured force andm is themass of the deadweight. The potential energy
was computed as P = Fh.

ML model setups and evaluation
The ML models in the inverse prediction module and forward valida-
tion module were implemented using common NN models (a gen-
erativemodel and surrogatemodel, respectively) on Python 3.7 for the
general applicability of our ML approach. During training, hyperpara-
meter settings for all models were optimized by a stochastic gradient
descent optimizer (Supplementary Note 7). Prediction accuracy of the
ML pipeline was evaluated by adopting a typical 10-fold cross-valida-
tion technique with the optimized hyperparameters and all training
data instances, which is equivalent to a training/testing split ratio of
70:30 with interchangeable switching of the training and testing sets
(results of the 10-fold cross-validation in Supplementary Note 7).

Sequential integration strategy for compound lattice prediction
The sequential integration strategy was adopted for inverse design of
compound lattices (i.e., lattices with dissimilar unit cells), where a

subset of the previously predicted design gradients was utilized as a
part of the input in subsequent prediction stages. Specifically, in the
first step of training of the ML model comprising two classifiers and
two regressors (Supplementary Fig. 27), the unit cell gradient (G1) was
estimated via a classifier for curve features {X} parameterized from a
target stress‒strain curve. Then, a compound descriptor combining
{X} and the predicted G1 were used to determine the strut radius ratio
gradient (G2) via regression. A subsequent regression task was per-
formed to estimate the inclined strut radius gradient (G3) using
another compounddescriptor combining {X} and the predictedG1 and
G2. As the last step, the unit cell size gradient (G4) was classified by
using a compound vector composed of {X} and the predicted G1, G2,
and G3. This process can be summarized as follows: (i) C1(X)→ G1; (ii)
R1(X, G1)→G2; (iii) R2(X, G1, G2)→G3; and (iv) C2(X, G1, G2, G3)→G4, whereC
and R denote classification and regression, respectively.

Finite element simulations
FE simulations of the stress‒strain curves of lattices were conducted
using ABAQUS 6.14. Lattices at low- and mid-relative densities
(p ≤0.15) were discretized using 2-node linear Timoshenko beam ele-
ments (B31 of ABAQUS), whereas second-order tetrahedral elements
(C3D10Mof ABAQUS)were used to discretize lattices at higher relative
densities (p ≥0.15) (Supplementary Fig. 30). This is attributed to the
fact that the beam element is not capable of accurately describing the
warping of cross-section of stubby struts whereas 3D stress element is
able to precisely capture the deformation of the lattices with high
relative densities44. The mesh seed sizes for both the beam and solid
models were determined from our mesh sensitivity study; each strut
modeled by between 15 and 30 elements depending on its length. Each
lattice was compressed between a fixed and a moving, flat, rigid sur-
face discretized by rigid bilinear quadrilateral elements (R3D4 of
ABAQUS). The explicit solver was used while keeping the kinetic
energy less than 1% of the total internal energy to ensure a quasistatic
loading condition. A 10% percentage of mode shapes (eigenmodes) of
the lattice were applied to the simulation to prevent bifurcation issue
at the buckling point, which might cause non-convergence solution in
the numerical analysis. Contact effects were modeled using a hard
contact behavior for the normal direction and finite sliding in the
tangential direction with a coefficient of friction of 0.8. For the con-
stituent material models, TMPTA, used to create periodic lattices, was
modeled as an elastic‒plastic material (a short plastic region after
linear-elastic region representing brittle fracture) with isotropic hard-
ening, Poisson’s ratio νs of 0.3, and a fracture strain of 0.044. Formlabs
Flexible, used to create compound lattices, was modeled as a linear-
elastic material with Poisson’s ratio νs of 0.48 and a fracture strain of
0.424. These material models were verified by the measured tensile
response of the dogbone test samples printedwith suchbasematerials
(Supplementary Fig. 31).

Data availability
The data supporting the findings of this study are available in
the Supplementary Information. The pristine and augmented training
data sets used in this work are available at https://doi.org/10.5281/
zenodo.8210037.

Code availability
The source code used in this work is available at https://doi.org/10.
5281/zenodo.8210037. The setup and hyperparameters can be found
in Supplementary Note 7.
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