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MYC Deregulation and PTEN Loss Model
Tumor and Stromal Heterogeneity of
Aggressive Triple-Negative Breast Cancer

Zinab O. Doha1,2,13, Xiaoyan Wang1,13, Nicholas L. Calistri 3, Jennifer Eng 1,3,4,
Colin J. Daniel1, Luke Ternes3, Eun Na Kim3, Carl Pelz1,5, Michael Munks5,6,
Courtney Betts7, Sunjong Kwon3,4, Elmar Bucher3,4, Xi Li8, Trent Waugh1,
Zuzana Tatarova3,4, Dylan Blumberg3,4, Aaron Ko6, Nell Kirchberger7,
Jennifer A. Pietenpol9,10, Melinda E. Sanders10,11, Ellen M. Langer 1,
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Triple-negative breast cancer (TNBC) patients have a poor prognosis and few
treatment options. Mouse models of TNBC are important for development of
new therapies, however, fewmousemodels represent the complexity of TNBC.
Here, we develop a female TNBC murine model by mimicking two common
TNBCmutations with high co-occurrence: amplification of the oncogeneMYC
and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops
heterogeneous triple-negative mammary tumors that display histological and
molecular features commonly found in human TNBC. Our research involves
deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and
single-cell RNA-sequencing, and multiplex tissue-imaging. Through compar-
ison with human TNBC, we demonstrate that this genetic mouse model
develops mammary tumors with differential survival and therapeutic respon-
ses that closely resemble the inter- and intra-tumoral andmicroenvironmental
heterogeneity of human TNBC, providing a pre-clinical tool for assessing the
spectrum of patient TNBC biology and drug response.

TNBC represents 10–15% of all breast carcinomas with poor clinical
outcomes and greater mortality compared with non-TNBC1–4. With
current standard therapies, the median OS for the disease is 10.2
months, with a 5-year survival rate of ~65% for patients with regional
tumors and 11% for thosewith the disease spread todistant organs5,6. In
addition to the aggressive nature of TNBC, the limited, targeted ther-
apy options and lack of sensitivity to endocrine agents contribute to
significantly shorter disease-free and overall survival (OS)1,4. Although
therapeutic options such as targeting immune checkpoints and PARP
inhibitors are changing the landscape, TNBC is still currently the worst
outcomeof breast cancer. Together this indicates an urgent need for a

deeper understanding of this disease that can lead to the identification
of more effective therapeutic strategies.

Approximately 70% of triple-negative tumors are molecularly
classified as basal-like7–9, a subtype characterized by aggressive phe-
notypes with higher rates of proliferation, poor differentiation, and
increased metastatic capability10. More recent studies have defined
four TNBC subtypes: luminal androgen receptor, mesenchymal, basal-
like immune-suppressed, and basal-like immune-activated11,12, empha-
sizing the need for a deeper understanding of the drivers of TNBC to
improve treatments for these different patient populations that pre-
sent with TNBC. Accomplishing these goals requires robust laboratory
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models that capture this heterogeneity to support developing new
treatment strategies.

Genetically engineered mouse models (GEMMs) that phenocopy
breast cancer provide a powerful platform for testing hypotheses
regarding tumor development and progression, interaction with the
microenvironment, and therapeutic response. Numerous GEMMs have
been engineered with inducible, conditional, or constitutively active
oncogenes or loss of tumor suppressor genes13–16. While useful, these
existing models include properties not commonly found in human
TNBC, including lack of progression to metastatic disease17, rare his-
tological features, and non-representative genetic drivers18. As such,
current TNBC models do not capture the full molecular complexity of
human TNBC.

Amplification of the MYC oncogene occurs more frequently in
TNBC tumors (~60%) than other breast cancer subtypes and is also
associated with worse outcomes19–21. Additionally, increased phos-
phorylation of MYC at Ser62 (p-S62-MYC) leads to increased MYC
protein stability and transactivation of target genes in human breast
tumors and cell lines22–24. Upregulation of MAPK and PI3K pathways,
frequently observed in breast cancer, leads to increased p-S62-MYC25.
MYC also stimulates signaling through the PI3K–AKT pathway via up-
regulation of micro-RNAs that downregulate the tumor suppressor
phosphatase PTEN26–29. In addition, PTEN deficiency occurs frequently
in TNBC and is linked with aggressive tumors that display high MYC
and PI3K pathways and also increased drug resistance30. Together,
these findings raise the hypothesis that MYC gain and PTEN loss may
cooperate to drive aggressive TNBC.

In thiswork, wedevelop a genetically engineeredmousemodel to
replicateMYC activation and PTEN loss in human TNBCby combining a
RosaLSL-Myc/LSL-Myc;Blg-Cre strain with the Ptenfl/fl-conditional
knockout mouse model, designated Myc;Ptenfl. The combination of
MYC deregulation and PTEN loss results in the accelerated develop-
ment of metastatic, heterogeneous triple-negative mammary tumors
resembling multiple human TNBC subtypes. We perform compre-
hensive histological, molecular, and transcriptional analyses together
with immune composition and localization to show that Myc;Ptenfl
mammary tumors recapitulate inter- and intra-tumoral heterogeneity.
Single-cell RNA sequencing (scRNA-seq) reveals differential signatures
between the different tumor subtypes, providing insights into putative
mechanisms of tumor-microenvironment co-evolution. Together,
Myc;Ptenfl tumors effectively recapitulate the different levels of
immune microenvironment activity and differential response to
standard-of-care therapy observed in human TNBC, highlighting the
utility of our Myc;Penfl TNBC model to capture clinically-relevant
variation observed in TNBC patients.

Results
The combination of deregulated MYC and PTEN loss in mam-
mary epithelium drives rapid triple-negative mammary tumors
Copy number aberrations (CNAs) ofMYC are frequent in breast cancer.
Examining the METABRIC cohort31 of 2500 primary breast tumors, we
found that low-level gain and high-level amplification occur in 48% of
all breast cancer (Supplemental Fig. S1A). Among breast cancers clas-
sified as TNBC (309/2500)31, 57% hadMYC gain or amplification (Fig. 1A
and Supplemental Fig. S1A), as well as increased MYC mRNA (Fig. 1B)
and decreased survival (Supplemental Fig. S1B, HR = 1.4, 95% CI:
1.0–1.9, p < 0.05). Among TNBCs, 36% showed loss of heterozygosity
(LOH) or homozygous deletion for PTEN (Fig. 1A), resulting in
decreased PTEN mRNA expression (Fig. 1B). PTEN and MYC CNAs fre-
quently co-occurred (Fig. 1C, odds ratio (OR) = 4.1, p <0.001), and 65%
of TNBCs hadalteredMYC, altered PTEN, or both (Fig. 1A).MYCCNAs in
the presence of PTEN loss correlated with poor survival (Fig. 1D).

These observations motivated our investigation of the impact of
MYCderegulation andPTEN loss in themammarygland.We generated
Myc;Ptenfl (Rosa;LSL-Myc/LSL-MycPten;flox/floxBlg-Cre) mice by crossing the

RosaLSL-Myc/LSL-Myc mice that express two copies of Cre-inducible Myc
driven by the Rosa26 promoter, which results in constitutive MYC
expression at about twofold above normal mammary gland32,
relevant to theupregulationofMYC inCNAbreast cancer (Fig. 1B)with
Ptenflox/flox mice for Cre-inducible knockout of Pten33 (Fig. 1E). The β-
lactoglobulin-Cre (Blg-Cre) transgenic mice were used for mammary-
specific Cre expression during late pregnancy and lactation34. We
monitored tumor development in female mice that had passed two
cycles of pregnancy/lactation to induce Blg-Cre activation at around
10–12 weeks of age. We compared tumor-free survival of the Myc;P-
tenflmice relative toMyc deregulated only and Pten loss only mice, all
in an FVB genetic background. Mice bearing only the deregulatedMyc
did not developmammary tumors by 24 weeks after Blg-Cre activation
(Fig. 1F), consistent with our previous work using Rosa;LSL-Myc/LSL-MycWAP-
or Blg-Cre mice where we found homozygous knockin of Myc at the
Rosa26 locus was insufficient to drive tumorigenesis after monitoring
for 54 weeks23,32. Pten loss-only mice developed mammary tumors
between 110 and 140 days post Blg-Cre activation. Combination of
deregulated Myc with Pten loss substantially accelerated tumorigen-
esis, and these Myc;Ptenflmice developed mammary tumors between
4 and 135 days, average of 50 days, post Blg-Cre activation (Fig. 1F).

We isolated tumors from the Pten loss only and Myc;Ptenfl mice
and stained them for ER, PR, and HER2. Pten loss-only tumors express
ERα, PR, and HER2 receptors and show adenosquamous histology,
while combination Myc;Ptenfl mammary tumors are 100% triple-
negative for these markers (Fig. 1G). In addition, and similar to human
TNBC, Myc;Ptenfl tumors show histologic heterogeneity with distinct
tumor morphology and degrees of stromal involvement not observed
with Pten loss alone (Fig. 1G). TheMyc;Ptenfl tumors, based on stromal
desmoplasia, fall into two broad classes: Stromal-Rich (SR), which has
abundant stroma and displays more heterogenous features; and
Stromal-Poor (SP), which is a solid-pattern invasive ductal carcinoma
(IDC), the most common architectural pattern seen in TNBC patients35

(Fig. 1G). Staining by immunohistochemistry (IHC) also revealed that
SR tumors express higher stromal collagen by Trichrome stain and
smooth muscle actin (SMA), basal marker Cytokeratin 5 (KRT5) and
phosphorylated Smad3, which can promote epithelial–mesenchymal
transition (EMT)36, compared with SP tumors (Supplemental Fig. S1C).
We also observed increased expression of post-translationally stabi-
lized S62 phosphorylated MYC in SP relative to SR tumors (Supple-
mental Fig. S1D).

Along with accelerated tumor onset and triple-negative status,
Myc;Ptenfl tumors were also more metastatic at the IACUC-defined
endpoint, with a 52% and 60% metastasis rate to the lymph node and/
or lung, in SR and SP, respectively, compared with only 16% overall
metastatic rate for Ptenfl endpoint tumors (Fig. 1H, and Supplement
Fig. S1E). Together, these data indicate that the Myc;Ptenflmice are an
in vivo model of heterogeneous, aggressive TNBC.

Myc;Ptenfl tumors show molecular and histologic subtype
heterogeneity
We performed gene expression profiling on 13 Myc;Ptenfl tumors and
3 control (no Cre) normal mammary glands by RNA sequencing (RNA-
Seq) to examine their molecular characteristics. Unsupervised hier-
archical clustering on normalized gene expression data recapitulated
the SP and SR histologic groupings (Fig. 2A, clusters 1 vs. 2), with
several molecular subclusters for SR (cluster2), which is the more
heterogenous subtype. Genotype-blinded analysis by two board-
certified pathologists identified histologically distinct features in the
SR tumors that molecularly subclustered within the SR cluster
(Fig. 2A). These included IDC with lobular features, sufficient squa-
mous differentiation to be classified as IDC with squamous features,
andmetaplastic IDC withmixed cell phenotypes including spindle-like
cells (Fig. 2B, C). SP tumorsweremarked as solid IDCwith little stromal
desmoplasia (Fig. 2B, C). In a histological analysis of 123 Myc;Ptenfl

Article https://doi.org/10.1038/s41467-023-40841-6

Nature Communications |         (2023) 14:5665 2



tumors, we found a distribution of 77% SR subtypes (predominately
IDC with lobular features 60%, squamous 15% andmetaplastic 2%) and
23% SP subtype tumors (Fig. 2C). Thus, they follow human tumors
where metaplastic is rare and accounts for 0.2–5% of all breast
cancers37. The two distinct histologic subtypes are also separated via
principal component analysis (Fig. 2D, E). Overall, the bulk

transcriptional analysis suggests that the SP samples are associated
with a tightly regulated transcriptional state, whereas the stromal-rich
samples demonstrate more heterogeneity in both principal compo-
nent and gene space.

Mice-bearing SR tumors developed tumors earlier than SP, about
52 days after Blg-Cre activation (Fig. 2F), however, these SR tumors
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took an average of 55 days to reach 2 cm diameter tumors (Fig. 2G).
AlthoughmicebearingSP tumors took anaverageof 102days afterBlg-
Cre activation to develop tumors (Fig. 2F), SP tumors grew faster than
SR tumors, with an average of 33 days to reach the 2 cm diameter end-
point size (Fig. 2G). We also examined the response to the commonly
used standard-o-care chemotherapy, Paclitaxel (Fig. 2H). Mice bearing
SR tumors were sensitive to Paclitaxel, while mice with SP tumors
displayed resistance; histology was determined from end-point
tumors (Fig. 2H). The ratios of SP and SR tumors found after therapy
are comparable to the ratios in the control-treated mice and in the
model overall. As a result, even though the histology of these tumors
prior to treatment remains unknown, we anticipate that it has not
changed. Altogether, SP tumors are the more aggressive subtype with
poor OS and resistance to standard-of-care therapy as compared to SR
tumors.

To investigate whether the histologically heterogeneous Myc;P-
tenfl subtypes originated from similar or distinct tumor phenotypes at
an early stage, we examined 32 small (diameter < 3mm) tumors. We
observed solid ductal carcinoma and SR histologies, including papil-
lary, lobular, and adenosquamous, with high expression of the basal
marker KRT14; and all were ER, PR, and HER2 negative (Supplemental
Fig. S2A–C). These data suggest that this model may provide a unique
resource for examining early events that generate distinct TNBC
subtypes.

We used genes set enrichment analysis (GSEA)38 to assess differ-
ences in Cancer Hallmark39 pathway activity between Myc;Ptenfl SR
and SP tumors. This demonstrated that the SR tumors are enriched for
pathways related to EMT, angiogenesis, allograft rejection, and
inflammatory response, whereas the SP tumors are enriched in gene
sets related to Interferon (IFN) response and oxidative phosphoryla-
tion (OXPHOS) (Fig. 2I and Supplemental Fig. S3A, Source Data).
OXPHOS is important for theproductionofbiosynthetic intermediates
necessary to support the rapid proliferation of cancer cells and asso-
ciatedwith high lethality in TNBC40, whichmayexplain thehighgrowth
rate and poor prognoses observed in the SP subtype.

We assessed the expression of published gene signatures that
classify human TNBCs into one of four subtypes12. The correlation
between our Myc;Ptenfl tumor samples and the gene signature cen-
troids demonstrated that the SR tumorsweremore correlatedwith the
human TNBC Mesenchymal (MES) subtype, whereas SP tumors were
better correlatedwith the basal like immune activated (BLIA) and basal
like immune suppressed (BLIS) human TNBC subtypes (Fig. 2J). The SR
assigned MycPten;fl tumor (sample b11) was both an outlier for cor-
relation to the LAR subtype (spearman correlation =0.3, mean across
all samples = −0.02) and PC2 embedding, suggesting the pattern
picked up by PC2 may be related to the LAR TNBC subtype. IHC
staining for AR agreed with the lack of correlation to the human
luminal androgen receptor (LAR) subtype, with <1%AR staining in both
SP and SR tumors (Supplemental Fig. S3B).

GSEA results (Fig. 2I) indicated that inflammatory response is one
of the topHallmark pathways enriched in the SR phenotype, which has

a better survival post tumor detection. SP was enriched with IFN
response genes, which have been associated with metastatic TNBC41.
To investigate if immune cells might be differentially recruited across
Myc;Ptenfl tumor subtypes, we evaluated the expression of chemo-
tactic cytokines among the subgroups of Myc;Ptenfl mouse model
tumors42. The SR subtype had significantly higher (Log2FC > 1.5 and
padj < 0.05) chemotactic chemokine gene expression than the SP
subgroup for 5 out of 7 chemotactic cytokines associated with prog-
nosis in human breast cancer (Fig. 2K).

Multiplexed immunohistochemistry platform identifies distinct
immune complexity profiles across Myc;Ptefl subtype tumors
We utilize a multiplexed immunohistochemistry (mIHC) approach
to characterize the immune contexture and the spatial distribution
of immune cells among the subgroups of the Myc;Ptenfl mouse
tumors. The mIHC platform comprises a validated panel of 23
antibodies in a sequential staining method for the identification of
lymphoid and myeloid immune cell lineages, functional markers,
and epithelial markers in a single FFPE tissue section (Fig. 3A and
Source Data)43,44. Qualitatively, SR tumors show higher infiltration
of lymphoid and myeloid immune cell lineage, including T-cells
markers (CD3, CD8, and CD4), B cells marker (CD45R), Treg cell
marker (Foxp3), and macrophages marker (CD68) than SP tumors
(Fig. 3A, B).

We utilized an image analysis pipeline45 for quantitative assess-
ment of the 23-plex images and analyzed three spatial regions: tumor
periphery, tumor border, and tumor core46 (Fig. 3B, Supplemental
Fig. S4). As predicted, for both subgroups, we observed the lowest
density of CD45+ immune cells in the tumor core as compared to the
border and periphery regions (Fig. 3B). However, SR tumors had
significantly higher total immune cell density in all tumor cores,
border, and periphery compartments compared to SP. We employed
an unsupervised hierarchical clustering approach and observed two
distinct immune complexity profiles for SR and SP tumors across
spatial compartments, where lymphoid and myeloid lineage cells
were differentially present between the groups, indicating distinct
immune contexture by subtype (Fig. 3B). When performing super-
vised analyses, we observed that SR tumors had trending higher
densities of Ly6G+ granulocytes, B220+ B cells, CD11c+ DCs, and CD4+

and CD8+ T cells in all spatial compartments, with significantly higher
density of Ly6G+ granulocytes and CD8+ T and DC cells in tumor
border and periphery, respectively (Supplemental Fig. S4C–E). The
proportion of FoxP3+ Tregs within the CD4+ T cells was greater in SR
(Supplemental Fig. S4F, G). Sankey diagrams showing the relative
density of the indicated cell types by spatial compartment indicate
that PanCK+ neoplastic cells dominate in all spatial categories with an
increase toward the tumor core in both subtypes (Fig. 3C). As
expected, the SP group shows a very high abundance of PanCK+

neoplastic cells in the tumor core. Notably, CD4+ and CD8+ T cells
(light blue and dark blue lines, respectively) aremost abundant in the
periphery and border, particularly in SR tumors, dropping in

Fig. 1 | Deregulated Myc combination with delated Pten in mammary gland
accelerates triple-negativemammary tumorigenesis. ACopy number alteration
(CNA) in MYC showing amplification or gain and PTEN showing shallow or deep
deletion and B mRNA expression of MYC and PTEN in 309 ER−/HER2− patients
from 2500 breast cancer patients—METABRIC Data31 (* represent significant two-
tailed p value < 0.05, n.s represent a non-significant p value). C Total 101 PTEN
deletion in 309 ER-/HER2- patients with 77% MYC amplification or gain; the rest,
198 ER-/HER2- PTEN diploid patients, with 45% MYC amplification or gain, (two-
tailed p value = 0.001). D Survival in 101 ER−/HER2− patients from METABRIC
Data with PTEN loss and with (red dotted line) or without (green line) MYC
amplification or gain (p value = 0.0187 using Gehan–Breslow–Wilcoxon test).
E Diagram for generation of Myc;Ptenfl (Rosa;LSL-Myc/LSL-MycPten;fl/flBlg-Cre) mice by
breeding the RosaLSL-Myc/LSL-Myc conditional knockin and Ptenfl/fl conditional knock-

out mice with Blg-Cre transgenic mice. F Mammary gland tumor incidence from
Myc (Rosa;LSL-Myc/LSL-MycBlg-Cre), Ptenfl (Pten;fl/flBlg-Cre) and Myc;Ptenfl mice post-
breeding and lactation for Blg-Cre activation (p value = 0.00001 using
Gehan–Breslow–Wilcoxon test). Myc;Ptenfl (N = 26), Ptenfl (N = 10), and Myc
(N = 15). G H&E staining for Myc;Ptenfl tumors, and Immunohistochemistry
staining with anti-PR, anti-HER2, and Anti-estrogen receptor a (ERa). Repre-
sentative images of 27 mammary gland tumors from Myc;Ptenfl mice and 10
tumors from Ptenfl mice. Scale bar = 100 µm. H Representative H&E staining for
macro lymph node and lung metastases and micro lung metastasis from 38
Myc;Ptenflmice and 19 Ptenflmice.Metastasis rates: Ptenfl: 3/19 = 16%.Myc;Ptenfl
stromal-rich:Macro9/23 = 39%;Micro 3/23 = 13%.Myc;Ptenfl stromal-poor:Macro
5/15 = 33.3%; Micro 4/15 = 26.7%. Scale bars = 1mm (Top), 200 µm (middle),
100 µm (bottom).
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abundance in the tumor core, while macrophages dominate in all
spatial categories (maroon line) (Fig. 3C). SR tumors contain a higher
abundance of multiple immune cell types and trends toward more
lymphocytes compared to SP tumors. Particularly, CD8+ T cells are
significantly higher in the SR tumor periphery than in the SP per-
iphery (Supplemental Fig. 4E, p-value = 0.05). Thus, SR tumor

immune contexture is consistent with studies showing that high
levels of stromal T cells are associated with improved OS and better
response to therapy in human TNBC11,47,48. These findings indicate
that the Myc;Ptenfl model may provide a unique tool for assessing a
spectrum of immune cell mechanisms in triple-negative tumor biol-
ogy and drug response.
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Morphological feature extraction identifies shared morpholo-
gies between human breast cancer and Myc;Ptenfl mammary
tumors
To compare the morphological features of Myc;Ptenfl tumors with
human patient TNBC, we compared several tissuemicroarrays (TMAs),
one generated from our TNBC mouse model and two generated from
human breast cancer. To assess the morphological features, TMA H&E
images were tiled into 28 regions per core. We used a variational
autoencoder (VAE)49,50—an unsupervised deep learning (DL)-based
method for representation learning and feature extraction (Fig. 4A,
Supplemental Fig. S5A). Fromeach normalizedH&E tile, we extracted a
morphological feature vector to establish a comparison between each
tile, cores, and tissue origins. Tiles were compared using UMAP
embedding51,52 as well as k-means clustering analysis of the latent fea-
ture vectors. The regional H&E tile images on UMAP showed distinct
morphological feature differences, and density maps for human and
mouse tiles showed overlapping regions in UMAP embedding space,
highlighting shared morphological features between human and
mouse TNBC (Fig. 4B). K-means clustering identified eight repre-
sentative groups (Fig. 4C). Representative tile images near the cluster
center and single high-resolution tiles within each cluster illustrate
their distinct morphologies, including carcinoma with discohesive
growth pattern (cluster a), IDC high grade (cluster d), and fibrotic
stroma (cluster f) (Fig. 4D). Overall, quantitative cluster analysis shows
a high level of overlap between human and mouse tiles (Fig. 4E). The
most prominent human morphologies (clusters a, d, and f), which
comprise 72% of all human tiles, also have a high representation of
mouse tiles. Clusters that show a high class imbalance (clusters b and
e) comprise a much smaller portion of the total tile population. While
TNBC was the predominant subtype on the human TMAs, ER+ and
TNBC subtypes overlappedwith each other inmorphologies identified
by the VAE (Supplemental Fig. S5B).

We compared histologic features of mice and human TMAs
annotated by a pathologist (Supplemental Fig. S6 and Source Data).
TheMyc;Ptenfl tumors showa diverse histologic spectrum fromductal
carcinoma not otherwise specified (NOS) to various metaplastic ele-
ments, similar to the typical characteristics of human TNBC53,54.
Myc:Ptenfl tumors showed IDC, histologic grade 2 (low-grade nuclear
features) (21.25%), histologic grade 3 (high-grade nuclear features)
with marked nuclear pleomorphism and prominent nucleoli (17.5%),
solid sheet-like growth pattern without tubule formation (12.5%),
stromal proliferation with lymphocytic infiltrate (33.75%), geographic
necrosis (21.25%)55, and myoepithelial proliferation (41.25%). Like
human TNBC, various metaplastic changes such as sarcomatoid
change with spindle cells (12.5%) and squamoid change with keratin
pearls (47.5%) were observed56. Although it was not identified in the

human TNBC TMA cores of this study, clear cell change (11.25%)57 and
thick trabeculae suggestive of neuroendocrine differentiation
(1.25%)58, which are reported as very rare human TNBC, were also
observed in the Myc;Ptenfl samples.

Notably, themost abundant histological features in theMyc;Ptenfl
SR subtype are squamoid metaplasia, myoepithelial proliferation, and
stromal lymphocytic infiltrate with 59.37%, 51.56%, and 39% frequency,
respectively. Although metaplastic tumors have been shown to be
highly chemoresistant and aggressive, the stromal lymphocytic infil-
trate phenotype has been associated with improved survival59–63. In
contrast, the most frequent histological features in the Myc;Ptenfl SP
phenotype, which has a poorer prognosis, are low- and high-grade
nuclear features and a solid growth pattern with 50%, 37.5%, and 50%
frequency, respectively. Indeed, human TNBC studies showed that a
solid growth pattern and high-grade nuclear features are typically
associated with poor TNBC prognosis, resistance to standard-of-care
therapy, and histological features of aggressive TNBC59–62. These
results indicate that our mouse model recapitulates the histological
heterogeneity and corresponding spectrum of prognostic features
seen in TNBC patients.

Shared tumor and microenvironment cellular phenotypes in
Myc;Ptenfl TNBC tumors and human TNBC
We used cyclic immunofluorescence (CyCIF) with 20 markers to
examine epithelial and stromal cell phenotypes in Myc;Ptenfl TNBC
tumors (SourceData). CyCIF staining of theMyc;PtenflTMAconfirmed
thehistologic SR and SP subtypeswith increased stromal cells in the SR
tumors and increased epithelial cells in the SP tumors (Fig. 5A).
Quantitative image analysis with themplexable software64, followedby
gating on cell-type specific markers determined frequencies of epi-
thelial, immune, and stromal cells (Fig. 5B and Supplemental
Fig. S7A–C). To compare our data to human TNBC, we obtained a
publicly available human TNBC multiplex ion beam imaging (MIBI)
dataset65. Gating on cell-type specific markers identified epithelial,
immune, and stromal cells in the human tissue (Supplemental
Fig. S7D–H). Clustering of mice and human tissues based on cell fre-
quency and further annotation by the levels of epithelial, immune, and
stromal non-immune cell types into clusters revealed three general
phenotypes: SP, SR-immune-rich (SR-IR), and SR-immune-poor (SR-IP)
(see Methods, Fig. 5C–E, and Supplemental Fig. S8A–G). Further
splitting the SP phenotype into SP+ with the lowest stroma demon-
strated significant association with the mouse histology SP and SR
subgroup designations (Supplemental Fig. S8D, E) (chi-squared
p = 2.2e−6). Importantly, the mean frequency of epithelial, immune,
and stromal cell types in eachof the three SR-IR, SR-IP, and SP subtypes
was similar between mouse and human TNBC (Fig. 5E). Additionally,

Fig. 2 | Multiple molecular and histologic subtypes are present in Myc;Ptenfl
tumors with human TNBC subtype-specific transcriptomic signatures.
A Unsupervised hierarchical clustering of RNA expression from 13 Myc;Ptenfl
mammary gland tumors and 3 normal mammary glands. Tumor clusters and
histologies indicated. B Histology of tumors from A in cluster 1-solid (reproduce
and represent 28 mice bearing tumor) and cluster 2 (reproduce and represent a
total of 95 mice bearing tumor; 18 squamous, 3 Metaplastic, and 74 lobular fea-
tures). Scale bars = 200 µm. C Pie chart of an extended histological analysis of 123
tumors from Myc;Ptenfl mice indicating the frequency of histological subtypes.
D Principal Component Analysis of RNAseq from 13 Myc;Ptenfl tumors; SR (blue),
SP (red). Axes scaled by the proportion of variance (PC value divided by the pro-
portion of variance for that principal component). E Gene expression heatmap for
top 1000 variable genes (genes used for PCA), color-coded to indicate positive or
negative weight for PC1. Gene expression is computed as counts with VST nor-
malization and then z-scored across samples. F Days from the end of pregnancy/
lactation, when Blg-Cre activated, to detection of mammary gland tumor in
Myc;Ptenfl mice. Tumor histology group stromal-rich and stromal-poor indicated.
Stromal-Poor (red, N = 15), Stromal-Rich (blue, N = 14), and Myc-Blg (black, N = 15).

G Survival after tumor detection for stromal-rich tumor-bearing mice vs. the mice
with stromal-poor tumors. Stromal-Poor (SP) (red, N = 6) and Stromal-Rich (SR)
(blue, N = 5). H Tumor volume during Paclitaxel treatment (10mg/kg); Stromal-
Poor (red, N = 4) and Stromal-Rich (blue, N = 11), or vehicle-treated controls;
Stromal-Poor (dark red, N = 5) and Stromal-Rich (dark blue, N = 14), Data are pre-
sented asmean values ± SD. F–H using Gehan–Breslow–Wilcoxon test. I Bar plot to
visualize the significantly enriched (Adjusted p value < 0.05) MSigDB hallmarks for
SR vs. SP differentially expressed genes. The x-axis is the normalized enrichment
score, and y-axis shows the enriched hallmark geneset (Source data are provided as
a Source Data file). J Spearman correlation of MycPten;fl tumors to human TNBC
subtype centroids. Centroid signatures filtered to 60 homologous genes mapped
between mouse and human transcriptomes (60/77 = 78%) to identify the similarity
of MycPten;fl subtypes to four prognostically-distinct human TNBC subtypes;
basal-like immune-activated (BLIA), basal-like immunosuppressed (BLIS), luminal
androgen receptor (LAR), andmesenchymal (MES).KGene expression heatmap for
seven chemotactic cytokines associated with prognosis in human breast cancer.
Gene expression is computed as counts with VST normalization and then z-scored
across samples.
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the SP and SR subtypes were prognostic in human MIBI data, with SP
having shorter OS compared with the SR subtypes, consistent with
subtype survival in our TNBC mouse model (Fig. 5F, Supplemental
Fig. S8H).

We compared the mean single-cell expression of markers in
stromal and epithelial cells in the three subtypes in human andmouse
tumors and found similar differences (Fig. 5G–J, Supplemental
Fig. S9A, B). In both human and mouse tumors, the SR-IR subtype had

greater stromal pan-immune CD45, T regulatory FoxP3, and dendritic
CD11c expression, consistent with the multiplex IHC platform
(Fig. 5G, I). InmouseandhumanSP tumors, the stromal cells expressed
relatively more of the endothelial marker CD31 (Fig. 5G, I). Stromal
proliferation, as measured by Ki67 expression, was lowest in SR-IP
tumors in mice and humans, but there was no difference in epithelial
Ki67 (Fig. 5G–J). Human and mouse epithelial cells from SR-IR tumors
showed higher expression of the mesenchymal marker vimentin
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Fig. 3 | Immune contexture across Myc;Ptenfl subtypes. A Example of multiplex
immunohistochemistry (mIHC) images from Myc;Ptenfl Stromal-rich (n = 21) and
Stromal-poor tumors (n = 13)withMyeloidmarkers expressionon theexpressionof
the left and lymphoid marker on the right. Scale bars = 100 µm. B Total immune
cells by CD45+ density in Stromal-rich tumor (n = 21 biologically independent
samples) periphery, border, and core compared to Stromal-poor tumors (n = 13
biologically independent samples). Left graph; box-and-whisker plots showmedian
and interquartile range (* represent significantp value < 0.05using two-wayANOVA
(mixed model)), the centerline of the boxplots represents the median value (50th

percentile), and the box encapsulates the range from the 25th to the 75th per-
centiles of the dataset. The whiskers extend from the minimum to the maximum
values, showcasing the full spread of the data. Middle image; Tumor border was
determined by CD45 and PANCK expression (supplemental S4A and B. Scale
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sentation using a variational autoencoder (VAE). Tiles from both mice and human
TMAs are used to train a VAE, then a latent encoding vector is computed for each
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shown to illustrate each cluster dominant morphology; main histologic features of
each center: [a] carcinomawith discohesivegrowthpattern; [b] carcinomawith thin
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[f] fibrotic stroma, scattered single tumor cells; [g] sarcomatoid change of tumor
cells and inflammatory cell infiltration; and [h] tumor with hyperchromatic and
coarse chromatin with frequent atypical mitosis (The figure includes 92 mice TMA
cores, representative of 80mice, and 172 human TMA cores, corresponding to 172
patients). E Relative abundance of human and mouse tumor tiles is calculated for
each cluster using the ratio of tiles in a cluster to total tiles from the given TMA
source.
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(Fig. 5H, J). Mouse SR subtypes had higher nuclear eccentricity and
lower expression of the epithelial markers E-cadherin and EpCAM
compared to SP (Fig. 5H), consistent with themouse bulk RNAseq data
demonstrating that SR tumors had more mesenchymal gene expres-
sion and correlated with the mesenchymal human TNBC subtype.
Consistent with the original IHC staining (Supplemental Fig. S1C, D),

the histologically designated SR subtype showed high expression of
αSMA and the basal marker CK5 compared to the SP, while phospho-
MYC was higher in the SP subtype epithelial cells (Fig. 5K).

We further analyzed the co-expression of phenotypic markers in
the mouse TMA via unsupervised clustering of single cells with the
Leiden algorithm (Supplementary Fig. S7C). This resulted in 21 clusters

M
ea

n 
In

t. 
in

 E
pi

th
el

.

Human Tissue

Stromal-Poor

Stromal-Rich

Cell type

B

Mouse Subtypes

rooP-lamortShciR-lamortSA

M
ea

n 
Ce

ll 
Fr

eq
.

M
ea

n 
Ce

ll 
Fr

eq
.

I

Ce
ll 

Fr
eq

.

DAPI CD45 Ecad Vimen�n

Mouse Tissue

Ce
ll 

Fr
eq

.

Human Subtypes

E FC D

Mouse Stroma

Human Stroma

M
ea

n 
In

t. 
in

 S
tr

om
a

M
ea

n 
In

t. 
in

 E
pi

th
el

.

M
ea

n 
In

t. 
in

 S
tr

om
a

H

J

M

G

L

Marker

Mouse Cell Types

M
ea

n 
 E

xp
re

ss
io

n 
(Z

-s
co

re
) Mouse Tissue Cell Abundance (Z-score)

Overall Survival

Fr
ac

tio
n 

A
liv

e
Su

bt
yp

e

Mouse

N

M
ea

n 
in

 E
pi

th
el

. N
uc

le
i

Days

K Mouse Epithelial by Histology

M
ea

n 
In

t. 
in

 E
pi

th
el

.

Su
bt

yp
e

Mouse Epithelial

Human Epithelial

Article https://doi.org/10.1038/s41467-023-40841-6

Nature Communications |         (2023) 14:5665 9



which, after artifact removal and combining of similar clusters, pro-
duced 14 distinct annotated cell type clusters (Fig. 5L, Supplemental
Fig. S7C). These cell types captured intratumoral heterogeneity
observed in the images (Supplemental Fig. S10A-B). Hierarchical clus-
tering of tissues based on z-scored cell abundance revealed pheno-
typic heterogeneity within the SP and SR-IP subtypes (Fig. 5M).
Conversely, most of the SR-IR tissues clustered together, driven by a
high abundanceoffibroblasts and immunecells in the tissues (Fig. 5M).
Consistent with our other analyses, SR-IR tumors were enriched in
immune cells, had fewerKi67+proliferating tumorcells, and contained
E-cadherin negative epithelial cells, fitting with a mesenchymal phe-
notype (Fig. 5N). SP tumorswere enriched in Ki67+ tumor cells and de-
enriched in fibroblasts and E-cadherin low/negative tumors, consistent
with their fast-growing, solid pattern (Fig. 5N). Single cells from the
humanMIBI data were clusteredwith the Leiden algorithm resulting in
25 cell-type clusters that were annotated as epithelial, immune, or
stromal (Supplemental Fig. S7F). Similar to mice, human SR-IR tumors
were enriched in immune cell type clusters, with similar patterns of
heterogeneity (Supplemental Fig. S10C–E).

scRNA-seq reveals Myc;Ptenfl tumor subtype-specific distribu-
tions of cell states
We performed deep single-cell RNA sequencing (scRNA-seq) of 11
MycPten;fl tumors (4 SP, 7 SR) (Supplemental Fig. S11A–C. After quality
control thresholding, we retained a total of 14,042 cells (490–5995
cells per tumor) (Supplemental Fig. S12A–C).We used integrative non-
negative matrix factorization (INMF) to identify patterns of transcrip-
tional expression describing malignant and stromal cells within
MycPten;fl tumors (Supplemental Fig. S13A, B)66. We identified cell
clusters using the Leiden algorithm applied to iNMF embeddings with
parameters optimized formaximum silhouette width67,68.Wemanually
assigned cell lineages (epithelial, lymphoid, myeloid, fibroblast,
endothelial, and perivascular) based on the aggregated expression of
canonical markers (Fig. 6A, Source Data). One cluster (cluster 14) was
defined by expression of cell cycle-related genes rather than lineage
signatures, and this cluster was further subclustered to assign each
subcluster to an appropriate lineage (Supplemental Fig. S13C–E).
Consistent with CyCIF, SR tumors formed two groups: one with a high
representation of both immune and non-immune stromal cell types
(SR-IR) and another with a high representation of non-immune stromal
cells but low immune cell representation (SR-IP) (Fig. 6B and see
Supplemental Fig. S13F, G for UMAP and cell frequency representa-
tions by subtype).

To investigate lineage heterogeneity, we performed differential
expression analysis between clusters in same-lineage clusters. Putative
cell types were assigned using an automated cell type classifier and

then manually refined using canonical biomarker genes (Fig. 6C, D,
Supplemental Fig. S14A–C, Source Data)69,70. Enrichment of Gene
Ontology analysis was performed on the differentially upregulated
genes for each cluster (average log2 fold change >0.5 and Bonferroni
adjusted p≦0.05), and these clusters were assigned names to reflect
the themes of theirmost enrichedontologies (Fig. 6C, D).Weobserved
clear distinctions in epithelial and fibroblast cell-type proportions
across the three tumor subtypes, suggesting that the different epi-
thelial and fibroblast states may be involved in stromal expansion and
immune exclusion or recruitment (Fig. 6C, D, Supplemental Fig. S14D).
Epithelial cluster 2was the dominant epithelial state for SP tumors (71%
of SP epithelial cells) and was enriched for metabolism-related pro-
grams, including upregulation of OXPHOS-related ontologies and
luminalmarkers (Fig. 6E, F, Supplemental Fig. S14D, E), which provides
further evidence for SP tumors recapitulating OXPHOS high human
TNBC subtypes. SR-IP tumors instead were mostly comprised of epi-
thelial cells belonging to either cluster 8 or 10 (51% and 44% of SR-IP
epithelial cells, respectively, Fig. 6C, D, Supplemental Fig. S14D). Epi-
thelial cluster 8 was enriched for ontologies related to gland devel-
opment and had high expression of several luminal genes
(Supplemental Fig. S14E)71. Epithelial cluster 10 had enriched ontolo-
gies associated with extracellular matrix modulation and high
expression of Krt5 andKrt14, both of which are associatedwith a basal-
like TNBC subtype (Fig. 6E, F, Supplemental Fig. S14E)71. The final
epithelial cluster 19 was found at the highest rate in SR-IR tumors (27%
of SR-IR epithelial cells, <1% of SR-IP epithelial cells, 2% of SP epithelial
cells) and had enriched ontologies for reactive oxygen species
response and regulation of apoptotic signaling pathways (Fig. 6C–F,
Supplemental Fig. S14D).

The Myc;Ptenfl tumors showed a similar subtype-specific
enrichment of different fibroblast clusters. SP tumors were enri-
ched for cluster 7 fibroblasts, which had high Ctla2a expression
(Fig. 6C, G, H). High Ctla2a in fibroblast has been shown to be asso-
ciated with immune suppression by induction of apoptosis for T-cell
lymphocytes72. SR-IP tumors were found to have a higher fraction of
cluster 12 fibroblasts which uniquely expressed the CAFmarker Col11
and had upregulated gene activity related to ossification and apop-
tosis pathway regulation (Fig. 6C, G, H)73. Fibroblast cluster 17
included signaling related to ameboid cell migration and coagulation
and wasmore common in both the SR-IP and SR-IR subtypes (Fig. 6C,
G, H).

Consistent withmIHC, macrophage cells were themost abundant
immune cells across Myc;Ptenfl subtypes. The SR-IR subtype had a
higher fraction of cells coming from both lymphoid and myeloid
lineages, including neutrophils (cluster 3, Lrg-high and cluster 4, Ccl3-
high), when compared to SR-IP and SP tumors.

Fig. 5 | Tumor and microenvironment cell phenotype comparisons between
Myc;Ptenfl tumors and human TNBC. A Cyclic immunofluorescence (CyCIF)
staining of representative Myc;Ptenfl tissue microarray (TMA) cores (1.5mm dia-
meter) of stromal-rich (left, reproduced n = 59) and stromal-poor (right, repro-
duced n = 10) histology subtypes with the indicated markers. Scale bar = 130 µm.
B Cell type calling defined by gating on cores in (A). C Hierarchical clustering of
Myc;Ptenfl tumor samples based on cell type frequency in each tumor core.
D Hierarchical clustering of human TNBC samples based on cell type frequency in
each region of interest in TNBC tumors imaged with multiplex ion-beam imaging
(MIBI). E Mean frequency of cell types in cell frequency-based subtypes in Myc;P-
tenfl (top) and humanTNBC (bottom) samples.C–E. Heatmap row colors: stromal-
poor (SP, orange), stromal-rich-immune-rich (SR_IR, blue), and stromal-rich-
immune-poor (SR_IP, green) subtypes. F Kaplan–Meier curves of overall survival in
cell frequency-based subtypes in humanTNBCMIBI data. Log-rank p =0.021, n = 38
patients, vertical ticks are censored patients.G Stromal expression of pan-immune
(CD45), Treg (FoxP3), dendritic (CD11c), endothelial (CD31), and proliferation
(Ki67) markers in mouse 3-class subtypes. H Epithelial expression of mesenchymal
(Vim), epithelial (EpCAM, Ecad), proliferation, and nuclear eccentricity markers in
mouse subtypes. I Stromal expression of pan-immune, Treg, dendritic, endothelial,

and proliferation markers in human subtypes. J Epithelial expression of mesench-
ymal (Vimentin) and proliferation markers in human subtypes. G–J P-values are
determined by the Kruskal–WallisH test; the centerline of the boxplots represents
the median value (50th percentile), and the box encapsulates the interquartile
range. The whiskers extend to show the rest of the distribution, except for outliers
defined as 1.5 times the interquartile range. Dots overlaid on boxplots show indi-
vidual cores’mean; N = 70mouse TMA cores (G,H,K) and 40 human patients (I, J).
K Epithelial expression of basal/myoepithelial markers (CK5, alpha-SMA) and
phospho-MYC in mouse histological subtypes. P-values determined by
Mann–Whitney U test. the centerline of the boxplots represents the median value
(50th percentile), and the box encapsulates the interquartile range. The whiskers
extend to show the rest of the distribution, except for outliers defined as 1.5 times
the interquartile range. Stromal-rich (n = 59) and stromal-poor (n = 10). L Mean
marker intensity in each annotated cell type defined by unsupervised Leiden
clustering in Myc;Ptenfl tissues.M Hierarchical clustering of mouse samples based
on detailed cell types. Heatmap column colors: stromal-poor (SP, orange), stromal-
rich-immune-rich (SR_IR, blue), and stromal-rich-immune-poor (SR_IP, green).NBar
plot of the frequency of each cell type in mouse subtypes.
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Myc;Ptenfl tumors have shared transcriptomic signatures with
human TNBC
We next used two methods in parallel to compare the single-cell
transcriptomic data of our murine mammary tumors with human
breast cancer in both a supervised and unsupervisedmanner (Fig. 7A).
In the first method, we trained a cell-type classifier using public

annotated human scRNA-seq breast cancer data74 and evaluated
whether the cell states identified in human disease mapped to those
found within the Myc;Ptenfl model (Fig. 7A). We trained a mixture
discriminant analysis classifier75 on scRNA-seq data from 26 primary
human breast tumors74 (Supplemental Fig. S15). A comparison of the
28 scPred assigned cell types and the 24 original clusters found in the
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analysis of the MycPtenfl tumors showed that most murine-derived
clusters were associated with a single cell type found in human data.
There was a high agreement for stromal cell types falling within the
fibroblast, endothelial, perivascular, lymphoid, and myeloid lineages
with an adjusted rand index (ARI) of 0.408 (Fig. 7B). Notably, cluster 7
mouse fibroblast of SP showed agreement with both human CAFs:
MSC iCAF-like and myCAF-like. Where mouse fibroblast cluster 17 of
SR-IR showed themost agreementwithMSC iCAF-like and cluster 12 of
SR-IP with myCAF-like (Fig. 7B). Epithelial cells had weaker similarity
(ARI: 0.091) between Myc;Ptenfl unsupervised clusters and scPred
assigned class (Fig. 7B, mouse model (MM): c10, 19, 2, 8 and Human
Species (HS): Cancer, LumA/B, Her2, Basal, Progenitor), however the
epithelial states in the human referencedatawere themselves assigned
via a classifier and are therefore not intrinsic to the underlying data.

Due to lowepithelial consensus between the referencehumanand
MycPten;fl scRNA-seq data, we then directly integrated the two data
sets to identify shared transcriptional states in anunsupervised fashion
(Fig. 7A). Data integration and linear dimensionality reduction were
performed simultaneously using Unshared INMF (UINMF)76. In total,
1231 shared orthologs, 1445 human-specific genes, and 268 mouse-
specific genes were reduced to 50 metagene factors. The cell embed-
dings corresponding to these 50 metagene factors were then utilized
for integrated cross-species analysis. Comparison of average UINMF
embedding for each cell type identified in individual species analysis
indicated that the UINMF approach performed well in learning meta-
gene factors representing shared biology conserved across species
(Fig. 7C). Jaccard similarity was computed to identify the overlap in the
top 50weighted genes for each factor and found that groups of factors
were associated with specific cell types or lineages and shared across
the two species (Supplemental Fig. S15A, B).

Unsupervised clustering of the 50 UINMF factors identified 36
integrated clusters (Supplemental Fig. S15C, D). Lineage assignments
for these clusters were largely concordant with our prior analyses
(Fig. 7D and Supplemental Fig. S15D, E). Notably, all 36 integrated
clusters consisted of both human and mouse cells, highlighting the
overlap in transcriptional signature between the Myc;Ptenfl mouse
model and human breast cancer (Fig. 7D–F). Two of the three cross-
species clusters that had a majority (>50%) Myc;Ptenfl cells (c31, c34)
consisted mostly of neutrophils (Fig. 7D-F), which are absent in the
human data set, likely due to difficulties in sequencing primary tumor
neutrophils because of their high RNase content77. The remaining
mouse-specific cluster (c25) primarily consisted of Myc;Ptenfl cells
from the epi_c2_luminal-oxphos cluster (Fig. 7D–F). While this cohort
of human breast scRNA-seq did not include any tumors dominated by
the OXPHOS phenotype, OXPHOS-upregulated tumors have been
reported in human breast cancer and are associated with metastasis
and chemoresistance40. Overall this analysis shows that the MycPten;fl
model faithfully recapitulates both stromal and malignant transcrip-
tional programs directly observed in human disease.

Discussion
Amplification of theMYC gene and loss of the PTEN tumor suppressor
is common in humanTNBC, and themajority of PTEN loss TNBChave a
copy number gain in MYC, which is prognostic for poor overall
survival19–21,30. Here we describe the generation and characterization of
the Myc;Ptenfl GEMM, which was designed to simulate the molecular
and biological complexity of MYC gain and PTEN loss observed in
aggressive human TNBC. A major obstacle to identifying actionable
targets in TNBC is the heterogeneity of the disease, both inter- and
intra-tumoral, highlighting the need for robust in vivo models that
recapitulate the spectrum of molecular and biological characteristics
of TNBC. Our generation of the Myc;Ptenfl mouse model reveals
insights into how deregulation of the MYC oncogene and loss of the
tumor suppresser PTEN can cooperate in vivo to generate TNBC
tumors that recapitulate the heterogeneity of human TNBC subtypes
as evidenced by (1) histology illustrating similar tissue architecture and
cellular morphologies, (2) immunohistology displaying the presence
of a similar spectrum of diverse immune cell types, (3) RNA-seq
showing the percent of similar transcriptomic signatures, (4)multiplex
imaging defining similar tumor and microenvironment cell pheno-
types, and (5) single-cell RNA-seq revealing the presence of multiple
cancer and stromal cell populations and their gene expression profiles.
Myc;Ptenfl tumors recapitulate specific elements of human TNBC
tumors and tumor microenvironments, such as OXPHOS high, ROS
high tumor cells, fibroblast heterogeneity including iCAF and myCAF
populations, and immune low, immune suppressive, and immune high
cell tumors corresponding to the spectrum of human TNBC.

An important feature of our Myc;Ptenfl TNBC model is the
increased inter- and intra-tumoral heterogeneity. This is likely a con-
sequence of the closer to the disease-relevant expression of the two
copies of Rosa-driven Myc knocking genes, which is more similar to
copy number gain in MYC seen in human breast cancer (Fig. 1B and32).
Unlike most Myc transgenic models with strong transcriptional
enhancers, such as MMTV, that can drive tumors on their own, our
model requires additional oncogenic hits to drive tumorigenesis,
allowing for the evolutionof cellular heterogeneity, including different
levels of post-translational MYC stabilization across tumor subtypes.
At a broad histologic assessment, we observe two classes ofMyc;Ptenfl
tumors: Stromal-Rich, with several histological subgroups and 77%
occurrence, and SP with 23% occurrence. The more heterogeneous
group, the SR, recapitulates the human mesenchymal TNBC subtype,
marked by stromal desmoplasia, lobular 60%, squamous 15%, and
metaplastic 2% IDC histologies, highest expression of immune-related
gene signatures and a more inflamed spatial pattern, including adja-
cent, peripheral and tumor-infiltrating immune cells. Gene expression
analysis revealed increased hallmarks of EMT, tumor-promoting
inflammatory response, and apoptosis, consistent with mesenchymal
TNBC78. This provides a biological rationale for using theMyc;Ptenfl-SR
model in drug discovery studies requiring infiltrating immune and

Fig. 6 | Myc;Ptenfl subtypes show distinct cell types and cluster gene enrich-
ments. A UMAP showing scRNA-seq data from Myc;Ptenfl model. Color-coded by
either lineage or unsupervised cluster. UMAP was computed on 50 iNMF factors.
Lineage wasmanually assigned using canonical cell typemarkers (Source Data) for
unsupervised clusters. Unsupervised clusters were identified using the Leiden
algorithm to the same 50 iNMF factors (Resolution = 0.45, optimized for silhouette
width, Supplemental Fig. S13B). B Bar-plot is showing the relative fraction of each
tumor assigned to each cell lineage. Stromal-Rich (SR) and Stromal-Poor (SP)
subtypes were based on initial two-class histology assigned by a pathologist and
cell type fractions, whichwere further divided into Stromal-Rich-Immune-Rich (SR-
IR) and Stromal-Rich-Immune-Poor (SR-IP). C Relative abundance of cell type
clusters for eachMyc;Ptenfl tumor subtype.Mean frequency is the arithmeticmean
across all tumors within that subtype, and error bars represent SEM. D UMAP
visualizations of individual lineages. UMAPs and clustering were computed using

the same 50 factors as global analysis (Fig. 6A, Supplemental Fig. S13C). EHeatmap
showing the top 10 uniquely upregulated genes for each epithelial cluster
(min.pct = 0.1, avg_log2FC >0.5, Bonferroni corrected p≦0.05). F Enrichment
maps showing the top 30 enriched ontologies for each epithelial cluster visualized
as a network. The size of the point indicates the number of genes within the
ontology that were uniquely upregulated in that cluster. Edges connect any
ontologies with a Jaccard similarity greater than 0.2 and edge width scaled to
Jaccard similarity. G Heatmap showing the top 10 uniquely upregulated genes for
each fibroblast cluster (min.pct = 0.1, avg_log2FC>0.5, Bonferroni corrected
p≦0.05). H Enrichment maps showing the top 30 enriched ontologies for each
fibroblast cluster visualizedas a network. The size of thepoint indicates the number
of genes within the ontology that were uniquely upregulated in that cluster. Edges
connect any ontologies with a Jaccard similarity greater than 0.2 and edge width
scaled to Jaccard similarity.
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Fig. 7 | Integrationof TNBCmousemodelwithhumanbreast cancer scRNA-seq.
A Schematic showing classifier and UINMF integration. B Heatmap visualizing the
relationship between Myc;Ptenfl unsupervised clusters and classifier assignment
from amixture discriminant analysis-based classifier built with scPred from human
primary breast cancer scRNA-seq74. Counts were row-normalized to represent the
fraction of each unsupervised cluster assigned to each human cell type class.
C Mean UINMF embedding for each cell type found in the Myc;Ptenfl or human
scRNA-seq as assigned by Wu et al. D Original cell type identity versus integrated
unsupervised cluster assignment. Counts were row normalized and represented

the proportion of each species-specific cell state that was assigned to each cross-
species unsupervised cluster. E UMAP of UINMF integratedMyc;Ptenfl, and human
scRNA-seq data. UMAP was computed from 50 UINMF factors. Lineage was
assigned during the initial analysis of Myc;Ptenfl data (Supplemental Fig. 13C)
(Source Data) or based onWu et al. 74 celltype_major classification. F Unsupervised
clusters of cross-species integrated data computed with the Louvain algorithm
from 50UINMF factors (Supplemental Fig. S15A–C) Note: Point size is increased for
mouse umap.
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tumor-associated stromal cells, such as immune targeting strategies.
The Stromal-Poor subtype recapitulatesmostly humanTNBC subtypes
that molecularly classify asmixed basal-like subtypes. The human data
of Burstein et al. and of Ding et al. identified similar mixed subtypes in
23.7% and 33% of breast cancer samples11,12. SP is marked by solid
invasive ductal carcinoma histology, high pS62MYC expression, a
hallmark of cellular metabolism including OXPHOS, and poor prog-
nosis. Higher MYC stability promotes an immune suppressive envir-
onment and OXPHOS signature epithelial state, which has been shown
to enhancemetastatic lethality and be associated with chemotherapy-
resistant TNBC79. Therefore, the Myc;Ptenfl-SP model can provide
important insights into potentialmechanismsof tumor aggressiveness
and therapeutic failure thatwill guide the future development of novel
therapeutic targets in TNBC.

Interrogation of immune contexture with spatial analysis in our
tumor model revealed higher total immune cells in SR, including both
myeloid and lymphoid lineage cells with significant CD8 T cells in the
periphery compared to SP tumors. Consistently, and similar to human
TNBC, SR tumors were associated with better prognosis, whereas the
SP subtype with OXPHOS metabolism, shown to be important for the
production of biosynthetic intermediates necessary for rapid
proliferation40, is immune low except for macrophages and associated
with poor prognosis. This type of result suggests that SP tumors would
need agents to boost immune cell influx and recruitment, such as
chemotherapy and Dendritic Cell agonists, whereas SR would need
agents to overcome myeloid immune suppression and re-activate
T cells. SP would likely also require this approach once an inflamma-
tory response has been evoked. The ability of the Myc;Ptenfl mouse
models to represent different levels of immune activity suggests that it
may provide a robust platform for TNBC preclinical trials of newly
developed immunotherapies. Currently, immunotherapy using
checkpoint blockade has been shown to produce a long-lasting
response in highly immunogenic cancers80,81. Although breast tumors
generally are not highly immunogenic, TNBC constitutes a varied
spectrum of tumors with different degrees of immunogenicity that
may include a more immunogenic subtype82. This suggests that TNBC
with a higher level of lymphocyte infiltration may be more responsive
to immunotherapy81.

There is a pressing need for pre-clinical models of breast cancer,
which include the complete gamut of tumor microenvironment cell
types to represent human disease and better assess cutting-edge
therapeutic approaches. Our scRNA-seq analysis of the Myc;Ptenfl
tumors revealed the extent of tumor cell and microenvironment het-
erogeneity, and we identified discrete and transcriptionally diverse
populations of epithelial, fibroblast, lymphoid, and myeloid cells.
Comparisonwith histologically assigned tumor subtypes revealed that
the tumor subtype was intrinsically related to each tumor’s dominant
epithelial and fibroblast cluster. We found that the SP tumors were
enriched for epithelial cells with highOXPHOS pathway activity as well
as fibroblasts with increased expression of the immune suppressive
ligand Ctla2a. These results suggest that TNBC with these signatures
are likely to be poor outcomes and drug-resistant. SR tumors with low
immune presence were enriched for a heterogeneousmix of epithelial
cells as well as myofibroblasts. SR tumors with high immune presence
uniquely had epithelial cells with high reactive oxygen species (ROS)
response pathway activity, indicating crosstalk of these epithelial cells
with infiltrating immune cells83. ROS are also able to trigger pro-
grammed cell death (PCD), leading to apoptosis84, a pathway that is
also enriched in SR immune-rich tumors. Furthermore, the SR
immune-rich tumors were also enriched for an inflammatory CAF state
with high expression of pathways related to immune activation and
anti-motility. This comparison can be used to identify novel tumor-
specific targets that may play an important role in tumor growth,
progression, metastasis, and drug vulnerability. Extensive comparison
with a human-trained classifier and integration across species

demonstrates that the cell types and states found in thismurinemodel
of TNBC are fully representative of human disease and share high
transcriptional overlap with patient data74.

Because the Blg-cre activation ofMyc expression and deletion of
Pten requires lactation (expression of Blg), theMycPten;flmodel only
develops tumors in female mice. While females represent >99% of
breast cancer patients in humans85, this does represent an important
caveat when using the MycPten;fl model to evaluate any systems or
therapeutics that are dependent on endogenous levels of male-
associated androgens or other hormones. Additionally, the correla-
tion analysis performed on human TNBC subtype signatures showed
that only 1 of 13 Myc;Ptenfl tumors used for bulk RNA-seq (~8%)
showed correlation to the LAR subtype, and there is less than 1% AR
positive staining in each SP and SR tumors. Due to low representa-
tion, theMycPten;flmodel would be an inefficientmodel to study the
LAR subtype. However, LAR subtypes are found in a significantly
smaller proportion of TNBC cases86. Moreover, it is well-established
that AR expression is most frequently detected in ER-positive BC. In
contrast, AR-positive tumors are considerably less prevalent in
TNBC87.

In summary, the development of cancer models thatmimic TNBC
microenvironment complexities is critical to developing effective
drugs and enhancing disease understanding. This study addresses a
critical need in the field by identifying a murine model that faithfully
mimics human TNBC heterogeneity and establishes a foundation for
future translational studies. The characteristics of our Myc;Ptenfl
model provide insight into themolecular pathways involved in specific
breast cancer subtypes and should serve as a platform for preclinical
drug screening of heterogeneous TNBC with metastasis, including
both cell-intrinsic targeted therapy strategies and the testing of
immunotherapies, and combinations thereof.

Methods
Study approval
The research complies with all relevant ethical regulations. All proto-
cols for mouse experiments described in this study were approved by
the Oregon Health & Science University Animal Care and Use Com-
mittee protocol # IP00001014, Portland, OR.

Antibodies
HER2 (Cell Signaling #2242, 1:50); ERa (Millipore #04-227, 1:50); PR
(Abcam #ab131486, 1:1000); AR (Abcam#ab47563, 1:50); cytokeratin 5
(Abcam#ab52635, 1:100); cytokeratin 14 (Covance#PRB-155P, 1:1000);
pSmad3 (Abcam #ab52903, 1:100); Laminin (Abcam #ab11575, 1:50);
SMA (Abcam #ab5694, 1:100); pS62 Myc rat monoclonal 4B12;88 Ki-67
(Abcam #15580, 1:1000); CSF-1R (Santa Cruz #sc-692, 1:500); F4/80
(Serotec A3-1, 1:200); CD11C (Cell Signaling #97585,1:100); CD4 (Cell
Signaling #25229, 1:100); MHCII (eBioscience #eB14-5321, 1:100); BTK
(LSBio #LS-C180161, 1:100); CD45 (BD Bioscience #550539,1:50); PDL1
(Cell Signaling #13684,1:50); CD8 (eBiosceience #14-0808082, 1:100);
CD3 (Thermo #RM-9107-s, 1:300); CD207 (eBioscience #14-2073-82,
1:100); CD206 (Abcam #64693, 1:1000); B220 (BD Bioscience
#550286, 1:100); RORgt (Abcam #ab207082, 1:100); Foxp3
(eBioscience #14-5773-82, 1:100); GATA3 (Abcam #ab199428, 1:100);
CD11b (Abcam #ab133357,1:100); TCF1/TCF7 (Cell Signaling #2203s,
1:100); TIM3 (Cell Signaling #83882, 1:200); EOMES (Abcam
#ab183991,1:1000); Granzyme B (Abcam #ab4059, 1:200); Ly6G
(eBioscience #551459, 1:200); PAN Keratin (Abcam #ab27988, 1:100).
CK5 (abcam,EP1601Y, 1:100); S100A6 (CST,D9F9D, 1:100); CD11c (CST,
D1V9Y, 1:100); CD103(Biolegend, 2E7, 1:100); aSMA (Santa Cruz, 1A4,
1:100); EpCAM (CST, E6V8Y); CD31 (Abcam,EPR17260, 1:100); ColVI
(MDBiosciences, EPR17072, 1:100); CD11b (Abcam, EPR1344, 1:100);
Ki67 (CST, D3B5, 1:100); FoxP3 (Novus, NB100-39002, 1:100); Vim
(CST, D21H3, 1:100); CD45 (CST, D3F8Q, 1:100); Gal3 (Biolegend,
125408, 1:100); ColIV (MDBiosciences, 203003, 1:100).
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Animal studies
Rosa-LSL-Myc mice32 swere crossed with Ptenflox/flox (Akira Suzuki et al.
Immunity 2001) and Blg-Cre mice (gift from Owen Sansom, Beatson
Institute for Cancer Research, Glasgow, United Kingdom) to generate
mice that express MYC and deleted PTEN in response to Cre-mediated
recombination in the mammary gland. All are female and in an FVB
background. Because the Blg-cre activation of Myc expression and
deletion of Pten requires lactation (expression of Blg), the MycPten;fl
model only develops tumors in female mice. The PTENfl and MYC;P-
TENflmice investigated in thismanuscript are 100% penetrance in FVB
background, and tumors were from independent animals. Tumor-
bearingmicewere treatedwith Paclitaxel at a dose of 5mg/kg/week by
intraperitoneal injection for 30 days, tumor growth was recorded
every 5 days by measuring the diameter in cm. Tumor volume was
calculated using the following formula: large diameter × (small
diameter)2/2. If a tumor impaired an animal’s mobility, became ulcer-
ated, or appeared infected, or a mouse showed hunched posture, the
mousewas euthanized. According to the Institutional Animal Care and
UseCommittee (IACUC) protocol, themaximumallowed tumor size or
burden is 2 × 2 cm. Thus, the maximum permitted tumor volume is
4000mm3. Mice will be euthanized when a single tumor is 2 cm in
diameter or, in the case ofmultiple tumors, 1.5 cm/tumor. In our study,
we remained within this permitted limit and did not exceed it. All the
calculated tumor volumemeasurements for all mice before these were
euthanized are available in the SourceDatafile.We followed the IACUC
policy, utilizing the Carbon dioxide (CO2) inhalation method of
euthanasia. In this approach, compressed gas served as the source of
CO2 for euthanizing rodents, with the home cage serving as the
euthanasia chamber. Additionally, a secondary confirmatory method
of euthanasia, namely Cervical dislocation, was employed following
the CO2method. Tumors were harvested and frozen for RNA and DNA
analysis or embedded in paraffin for immunofluorescence or multiple
immunohistochemistry staining.

The mice in our study were housed at the Oregon Health & Sci-
ence University Animal Care facility, which adheres to rigorous animal
welfare standards and guidelines to ensure the well-being and proper
care of the animals. The housing conditions for themicewere carefully
maintained as follows: Firstly, a 12-h light and 12-h dark cycle was
implemented to simulate the natural light variations that mice
experience in their native environment, providing themwith a suitable
diurnal rhythm. Secondly, the ambient temperature in the housing
facility was consistently maintained within the range of 65–75 °F
(~18–23 °C). This temperature range was chosen to create a comfor-
table and stable environment for the mice, minimizing any potential
stress or discomfort. Lastly, the humidity levels in the housing facility
were carefully regulated to fall between 40 and 60%. This range was
considered optimal for the well-being of the mice, ensuring an
appropriate level of moisture in the air without causing any excessive
humidity-related issues. These housing conditions were implemented
to create an environment that supports the overall welfare and health
of the mice throughout the duration of the study.

H&E staining, immunofluorescence, and immunohistochemistry
H&E staining, immunofluorescence, and immunohistochemistry were
performed as described previously32.

Bulk RNA-sequencing and gene expression analyses
RNA was extracted from Myc;Ptenfl tumor tissue (n = 13) or normal
mammary gland as control (n = 3) using Trizol (Invitrogen). RNA-Seq
libraries were constructed using a NEBNext Ultra Directional RNA
Library Prep Kit for Illumina (New England BioLabs) and then
sequenced on an Illumina HiSeq at the OHSU Massively Parallel
Sequencing shared resource. Gene expression reads per kilobase of
the transcript, per million mapped reads (RPKM), were calculated for
all genes. For hierarchical clustering, we performed Voom (80)

normalization on tumor samples using all genes, then reduced them
to unique gene symbols and used Ward’s clustering to identify
tumor subgroups. Normalized count data was generated using the
standard DESeq2 (v1.36.0) workflow with Variance Stabilizing
Transformation89–91. The top 1000 genes andmost variable genes were
used to perform Principal Component Analysis with the “princomp”
function of R package stats (v4.2.0). To normalize PCA visualization,
PC embedding was scaled by dividing the embedding by the propor-
tion of variance explained by that component. Differential expression
analysis was performed with DESeq2 with LFCshrinkage via apeglm92.
Geneset enrichment analysis (GSEA) was performed using the R
package Clusterprofiler93 (v4.4.4) with the MSigDB39 hallmark gene-
sets, accessed via the R package msigdbr. GSEA results are detailed in
Supplemental data set 1. To perform TNBC subtype correlation ana-
lysis, we first converted the 77 subtype-associated human genes to
murine genes using R package biomaRt (v2.52.0)94,95 The 60 human
genes whichmapped to homologousmurine genes were retained, and
Spearman correlation was used to compare the converted and
z-scored 60-gene TNBC subtype centroid signatures toMycPten;flVST
normalized and z-scored counts12.

Sequential mIHC staining and analysis
Sequential IHC was performed on 5μm FFPE sections as previously
described43,44. Image processing and cell quantification were per-
formed as previously described96,97.

Mouse and human TMAs
The mouse Myc;Ptenfl TNBC TMA was generated by marking tumor
regions of interest on FFPE blocks and punching 1.5mm cores using
TMA Master II (3DHistech, Hungary) for drilling recipient block and
MTA-1 (EstigenTissueScience, Estonia) for tissue coring. The tumors in
the human TMAs were determined to be TNBC by pathologist (MES)
evaluation of IHC staining for ER, PR, and HER2. The human TMAs are
comprised of 60% TNBC, 30% ER+, and 10% HER2+ disease. TMA101
and TMA11-4-09 were constructed from surgically resected primary
tumor samples from patients with breast cancer diagnosed at Van-
derbilt University Medical Center. Onemillimeter tumor core (two per
surgical specimen) were punched from representative areas contain-
ing invasive carcinoma selected by a pathologist. Clinical and patho-
logical data were retrieved frommedical records under institutionally
approved protocols, IRB# 030747 and 130916, for patients in TMA101
and TMA11-4-09, respectively. Participants gave informed consent to
participate in the repository and were not compensated for partici-
pation. Informed written consent was obtained and received from all
the patients involved in this study.

Mouse and human TNBC TMA H&E histologic/morphologic
analysis
Pipeline for generating morphological feature representation using a
variational autoencoder (VAE) to compare tissue microarray (TMA)
from our TNBC mouse model with TMA from Human TNBC. First, raw
Hematoxylin & Eosin (H&E) stained TMA images (92 TMA cores from
mice TMAs and 172 cores from human TMAs) were pre-processed to
account for between-sample intensity variation. H&E pixel intensities
were normalized using the Reinhard method98, where background
pixels are excluded from intensity distributions. One subset of human
cores was used as the target distribution to which each other dataset
was normalized99. For parameter selection and optimization, we
exploredH&E tile sizes of 256 × 256, 512 × 512, 1024 × 1024, 2048 × 2048
(pixels), and latent feature vector dimensions of 32, 64, 128, 256, and 512
to identify meaningful representations of the image dataset. We found
that 1024 × 1024 tile size and a feature vector dimension of 64 captured
meaningful histological features based on visual evaluation and yielded
the lowest reconstruction losses. Tiles from both mice and human
TMAs are used to train aVAE, thena latent encoding vector is computed
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for each tile. Tiles are compared using UMAP embedding and k-means
clustering analysis of the latent features.Density functions for all human
andmouse tiles are calculated within the 2-dimensional UMAP space to
visually compare overlap in embedding space. K-means clusters (n =8)
are computed using latent features and projected into UMAP space for
visualization. The relative abundance of human and mouse TMAs are
calculated for each cluster using the ratio of tiles in a cluster to total tiles
from the given TMA source.

Cyclic multiplexed-immunofluorescence (cmIF) and single-cell
multiplexed analysis
Cyclic immunofluorescence, image processing, and Cyclic IF analysis
were performed as previously described64. Antibody order was chosen
to minimize known artifacts, including channel cross-talk and incom-
plete quenching (see Source Data for panel order and vendor infor-
mation). Specifically, antibodies that stain the same cell in the same
cellular compartment were positioned in non-adjacent rounds and
channels. We used the free and open-source mplexable pipeline for
image registration, quality control, single-cell segmentation, and fea-
ture extraction. The mplexable image processing pipeline parameters
are available as a jupyter notebook at “https://github.com/engjen/MYC-
PTENfl-mouse/blob/main/20210707_RS-mTMA-20220119_mpleximage_
data_extraction_pipeline_bue.ipynb”. As specified in the pipeline note-
book, we used a scaled autofluorescence subtraction strategy, using
round zero (R0) autofluorescence images and round five quenched
(R5Q) autofluorescence images to linearly interpolate and subtract
autofluorescence that is changingover roundsofCyCIF (see ref. 64).We
extracted the pixel intensity values from autofluorescence subtracted
16-bit images using nucleus and cytoplasm segmentation masks to
calculate the mean pixel intensity of each single subcellular compart-
ment. For each marker, we selected the nuclear or cytoplasmic single-
cell mean intensity for analysis depending on the expected intracellular
distribution of that marker. Each marker was validated for specificity
and signal-to-background ratio (SBR) through a visual review of the
images. Twenty markers showing good specificity and SBR were selec-
ted for downstream analysis, including cluster analysis. In addition to
marker QC, each tissue core was inspected, and areas of floating tissue
that created bright imaging artifacts and air bubbles that created dark
artifacts were manually circled using the Napari image viewer and
excluded. Additionally, two percent of cells were filtered from analysis
due to tissue loss (i.e., they were negative for DAPI staining after eight
roundsof staining). Background subtractionwasperformedonmarkers
with high background: CD31, CD45, CD8, ColIV, FoxP3, CD103, CD11b
and CD11c. Background subtracted data were clustered with scanpy100.
Two morphology features (nuclear area and nuclear eccentricity) and
20markerswereused for clustering. AUmapembeddingwasgenerated
using 15 neighbors, and the Leiden algorithmwasused for unsupervised
clustering. We tested three resolution parameters for the Leiden algo-
rithm (0.4, 0.5, and 0.6). We performed clustering and visualized each
cell type cluster’s spatial distribution in the tissue using the jupyter
notebook available here: https://github.com/engjen/MYC-PTENfl-
mouse/blob/main/20211027_RS-TMA_cluster.ipynb. We then visualized
the spatial distribution ofmarkers in the images using the Napari image
viewer to load the multichannel images available here: “https://www.
synapse.org/#!Synapse:syn51314365/files/” and the code available here:
“https://github.com/engjen/MYC-PTENfl-mouse/blob/main/20211022_
RS-TMAs_napari.py”. Thefinal resolution (0.6), resulting in 20 cell types,
was selectedbasedon a visual examinationof clustering results overlaid
on images. Inspection of cluster results in images revealed that 3 of the
clusters were due to imaging artifacts and were excluded. The remain-
ing clusters were evaluated on the images and annotated. Endothelial
cells were separated from mixed endothelial/immune and endothelial/
fibroblast clusters by manually gating based on CD31 expression.

We then performed manual gating to verify our annotated-
cluster cell type calling. A threshold was set for each gating

marker based on positive pixel patterns in images. Endothelial
cells were defined as CD31+. Epithelial cells were positive for 1 or
more of Ecad, EpCAM, CK5, and CD31−. Immune cells were CD45+
CD31− and epithelial marker negative. Stromal cells were all non-
endothelial, non-epithelial, non-immune segmented nuclei. Three
cores had pMYC-positive tumor cells negative for Ecad, EpCAM,
and CK5 (I11, G09, and H11). In these tissues, tumor cells were
defined as any cells negative for all stromal and immune-gating
markers (CD31, CD45, Vim, aSMA, ColIV, ColIV, Gal3).

Cell frequencieswere calculated for gated epithelial, immune, and
stromal cells in each tissue core. Endothelial cells were rare and added
to “stromal” cells for subtyping. We tested four resolution parameters
of the Leiden algorithm (0.2, 0.3, 0.4, and 0.5) to cluster tissues based
on cell frequency. We chose resolution 0.5, resulting in 6 clusters,
because this captured the histological subtypes. Specifically, cluster 5,
the highest in epithelial cells (or stroma poor+, SP+), was significantly
correlated with the SP histological subtype based on H&E evaluation
(chi-squared p = 2.2e−6). We collapsed the 6 clusters into three based
on the correlation between clusters with hierarchical clustering (Sup-
plementary Fig. S8D). Clusters were annotated as Stromal-Rich,
immune-rich (clusters 2 and 4), SR, IP (cluster 0), and SP subtypes
(clusters 1, 3, and 5). Most of the cyclic IF SP samples were also stroma
poor by histology (6/9). Discrepancies between CyCIF subtypes and
histology subtypes were examined (Supplemental Fig. S16) and found
to be a result of tumor-adjacent stroma, lymphocytes in the tumor
core, or significant nuclei-free areas of tissue.

To compare the expression of markers in each subtype, mean
marker expression was calculated in each tissue and compartment
(epithelial or stromal, i.e., immune, endothelial, and non-immune
stromal cells). Distributions were visualized as boxplots, and the
Kruskal Wallis H test or MannWhitney U test, implemented in scipy101,
were used to test for significant differences in the median expression
of markers between groups. To compare detailed cell types (14
annotated cell types from Leiden clustering, described above)
between subtypes, the frequency of each cell type in each subtype was
calculated and displayed as a bar plot. Samples were also clustered
hierarchically based on the z-score of cell abundances.

For human tissue samples, we obtained a publicly available mul-
tiplex ion beam imaging (MIBI) dataset65 at https://github.com/
aalokpatwa/rasp-mibi. The MIBI images were segmented, and single-
cell intensity was extracted by Patwa et al.65. The values represent units
related to the time-of-flight mass spectrometry detector reported by
Patwa et al.65. We used scanpy for single-cell clustering. Thirty-two
markers were used for generating a Umap embedding with 15 neigh-
bors. Unsupervised clustering of cells in the MIBI dataset was per-
formed with the Leiden algorithm using the same resolution
parameter as with the CyCIF dataset (resolution =0.6), resulting in 24
cell types. The code for clustering of MIBI cell types, including visua-
lization of each cluster’s spatial distribution in the tissue, is available
here: “https://github.com/engjen/MYC-PTENfl-mouse/blob/main/
20211109_MIBI_cluster.ipynb”. The cell type clusters were annotated
as epithelial, immune, or stromal. Inspection of cluster results versus
images revealed that some clusters contained mixed immune and
stromal cells. Therefore, epithelial clusters were used to define epi-
thelial cells, and CD45 and CD31 were used to manually gate immune
and endothelial cells within the stromal/immune clusters. Tissues were
clustered on cell type frequencies with the Leiden algorithm, resolu-
tion = 0.1, resulting in 3 subtypes similar to themouse data, annotated
as SR, IR (cluster 0), SP (cluster 1), and SR, IP (cluster 2). Mean marker
expression was calculated in each tissue and compartment, visualized,
and statistically evaluated as described for mouse data above. For
survival analysis, the lifelines102 python software was used. Kaplan-
Meier estimates were generated and plotted for overall survival. The
log-rank test was used to test for significant survival differences
between the subtypes.
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scRNA library preparation and sequencing
Single-cell suspensions of 11 Myc;Ptenfl tumors from 6 mice were
obtained by enzymatic digestion. Tissue was manually minced using
scissors, followed by a 30–60min enzymatic digestion with 2.0mg/ml
collagenase A (Roche), 1.0mg/ml Hyaluronidase (Worthington), and
50U/ml DNase I (Roche) in serum-free Dulbecco’s modified eagles
medium (DMEM) (Invitrogen) and Rock inhibitor at 37 °C using con-
tinuous stirring conditions. Single-cell suspensions from tumor digests
were prepared by passing tissue through 40-mm nylon strainers (BD
Biosciences). Single-cell suspensions from individual tumorswere then
labeled with hashtag oligonucleotides following the manufacturer’s
protocol (TotalSeq B0301–B0306, Biolegend). Each individual tumor
samplewas counted and thenpooled at an equal cell ratiobeforebeing
split into two replicates for library preparation with the Chromium
Single Cell 3’V3 (10×Genomics) following themanufacturer’s protocol
with a targeted recovery of 20,000 cells per library. Libraries were
sequenced on an Illumina NovaSeq. BCL files were converted to fastq
format with bcl2fastq2 (Illumina) and then aligned to mouse genome
build mm10-2020-A (10× Genomics) using Cellranger (10× Genomics,
version 6.0.2).

TotalSeq FVB compatible antibody for cell hashing
The BioLegend TotalSeq B0301-B0306 was used, containing CD45
(clone 30-F11) and MHC-I (clone M1/42). The M1/42 clone (anti-MHC I)
is reported to recognize cells from C57BL/6 (B6) mice, which have the
H-2b haplotype, but it was not tested for cells from FVB mice, which
have the H-2q haplotype. To test whether M1/42 binds FVB poorly or
not at all, we stained both strains with fluorophore-conjugated CD45
(clone 30-F11) and MHC-I (clone M1/42) (Supplemental Fig. S11C).
Single-cell suspensions were stained in FACS buffer (1× PBS, with 2%
FBS and0.1%NaN3) at 4 °C, for 20min, in the dark. Antibodies used are
as follows: CD45 (clone 30-F11) and MHC-I (clone M1/42), EpCAM
(clone G8.8) and TER-119 (clone TER-119). Cells were run on a BD FACS
Symphony A5 (BD Biosciences). Data were analyzed using FlowJo 10.6
(Tree Star, Inc., RRID:SCR_008520). The M1/42 clone stained all B6
cells. CD45+ FVB stained less brightly than B6 cells but were clearly
MHC I+. Some FVB cells were not stained, but of the MHC I negative
cells, nearly all were TER-119+, indicating they are red blood cells that
are expected to lack MHC I staining. Thus, M1/42 appears to cross-
react to FVB cells, with reduced staining intensity but was sufficiently
reactive to use TotalSeq (Biolegend) reagents on FVB cells (Supple-
mental Fig. S11C).

scRNA-seq data processing
The R package SoupX was used to load the UMI gene count matrix for
each library and correct for ambient mRNA contamination using
default parameters (Young and Behjati, 2020). The corrected UMI
gene count matrix was then converted to Seurat Object format using
Seurat (v4.1.0), and the paired HTO count matrix was added. HTO
demultiplexing was performed using the HTODemux function of
Seuratwith parameters: (kfunc = ‘clara’, positive.quantile =0.95) (Satija
et al., 2015; Butler et al., 2018; Stuart et al., 2019; Hao et al., 2021).
Doublets were identified within each library using the R package
DoubletFinder (v2.0.3) with a presumed Poisson doublet rate of 0.075
and 10 principal components(McGinnis, Murrow, and Gartner, 2019).
Only cells with greater than 250 unique genes expressed, less than 25%
mitochondrial RNA, and assigned as a ‘Singlet’ via DoubletFinder were
retained for analysis.

Myc;Ptenfl scRNA-seq normalization, integration, clustering,
and differential expression analysis
UMI counts were log normalized and scaled without centering using
the R package Seurat (v4.1.0). The top 2000 variable features were
identified using the VST method using the R package Seurat. iNMF
integration was performed directly on the Seurat object accessing the

rliger package (v1.0.0) via the SeuratWrapper package (v0.3.0). Opti-
mizeALS was run with the parameters: (k = 50, lambda = 5, nrep = 5,
split.by = ‘library_id’). RunQuantileNormwas performed with the same
split.by setting. UMAP visualization was performed using the resultant
50 iNMF factors. Unsupervised clustering was performed using the
Leiden algorithmwith a resolution of 0.45, which corresponded to the
point of diminished returns for increased silhouette width as esti-
mated by the ‘approxSilhouette’ function of the R package Blus-
ter (v1.2.1).

scRNA-seq differential expression and enrichment of gene
ontology
Differential expression analysis was performed using the Wilcoxon
rank-sum test via Seurat’s ‘FindMarkers’ function, and significantly
differentially, genes for any cluster had at least a log2 fold-change of
0.5, and Bonferroni corrected p value below 0.05. The R package
ClusterProfiler (v4.0.5) was used to identify enriched gene ontologies
from significantly upregulated genes with parameters: (ont = ‘ALL’,
pAdjustMethod = ‘BH’, pvalueCutoff = 0.01, qvalueCutoff = 0.05)93.

Cross-species classifier
Orthologous genes found in both the Wu et al. dataset and
Myc;Ptenfl scRNA-seq data were found using the ‘convert_mouse_
to_human_symbols’ function in NicheNetR (v1.0.0). The Wu
dataset was subset to only include orthologous features, and a
classifier was trained using the mixture discriminant analysis
(MDA) model of scPred (v1.9.2). The classifier was then applied to
the Myc;Ptenfl data with a threshold of 0.55. Adjusted Rand Index
was computed with the R package aricode (v1.0.0) and used to
compare the original labels derived from unsupervised clustering
and transferred classes from scPred classifier.

Cross-species scRNA-seq data integration and analysis
Orthologous genes found in both the Wu et al. dataset and Myc;Ptenfl
scRNA-seq data were found using the ‘convert_mouse_to_human_
symbols’ function in NicheNetR (v1.0.0), and the mouse features were
updated to human symbols. The UMI count matrices for mouse and
human datasets were loaded with rliger (v1.0.0) and log normalized.
Variable genes were found with the ‘selectGenes’ function of rliger
using parameters:(var.thres = 0.3, unshared = TRUE, unshared.thresh =
0.3, unshared.datasets = list(1,2)), and 1231 shared features, 268mouse
features and 1445 human features were selected. Variable features
were scaled without centering in rliger, and then the optimizeALS
function was run to perform matrix factorization using parameters:
(lambda = 5, use.unshared = TRUE, thresh = 1e-10, k = 50, nrep = 5). The
rliger ‘quantile_norm’ functionwas thenused to build the shared factor
graph and normalize with parameter: (ref_dataset = ‘human’). The liger
object was then converted to Seurat format with the rliger function
‘ligerToSeurat.’ The cell embeddings from all 50 UINMF factors were
used forUMAPembedding andunsupervised clustering. Unsupervised
clusteringwas performedusing the Louvain algorithmas implemented
in Seurat, and a resolution of 0.6 was selected as it optimized for
maximum mean silhouette width as estimated with the ‘approxSil-
houette’ function of the R package Bluster (v1.2.1). Unsupervised
clusters were assigned lineage if there was at least 80% agreement of
prior lineage annotation of the cluster’s constitutive cells, otherwise
they were labeled ‘mixed.’

Statistics
Spearman correlation coefficient was used to assess correlations of
percentages and densities among tumor sample lineages. Unsu-
pervised hierarchical clustering was performed with Ward’s minimum
variance method (“hclust” from “R”). All statistical calculations were
per- formed by R software, version 3.5.2 (https://www.r-project.org).
p <0.05 was considered statistically significant.
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Statistical analysis wasperformedusingGraphPadPrism software.
Measurements are presented with sample n and mean ± SD or SEM as
indicated in figure legends. An unpaired two-tailed Student’s t test was
used throughout to compare the two groups. A base p value of <0.05
was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The bulk RNA-sequencing data generated in this study have been
deposited in the Gene Expression Omnibus (GEO) database under
accession number GSE215071. The mIHC data generated in this study
areprovided in the SourceDatafile. The rowdata of themorphological
features of Myc;Ptenfl tumors generated in this study are provided in
the Source Data file. The data used for Cyclic Multiplexed-
Immunofluorescence in this study is available at [https://github.com/
engjen/MYC-PTENfl-mouse] The MIBI publicly available data used in
this study are available through the GitHub65. The single-cell RNA-
sequencing data generated in this study have been deposited in the
Gene Expression Omnibus (GEO) database under accession number
GSE215070. The scRNA-seq publicly available data used in this study
are available through the Gene Expression Omnibus under accession
number GSE17607874. Source data are provided in this paper. The
Single Source Data file is available, containing the following datasets:
Bulk_msigdb_GSEA, Mice Tumor Volume (mm3), mIHC Antibodies,
mTMA-Markers, Myc;Ptenfl mice TMA histologic features, and Cell
type_markers used in the scRNA-seq analysis. Sourcedata are provided
in this paper.

Code availability
RNA-seq analysis code generated for this study is available at: https://
github.com/zdoha/MycPtenfl-TNBC-model. Variational autoencoder
(VAE) code for Histologic/morphologic analysis generated for this
study is available at: https://github.com/schaugf/ImageVAE. The Cyclic
Multiplexed-Immunofluorescence analysis code generated for this
study is available at https://github.com/engjen/MYC-PTENfl-mouse. R
code for analysis of scRNA-seq data generated for this study can be
found at https://github.com/HeiserLab/NatureComms_MycPtenAtlas.
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