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Driver gene combinations dictate cutaneous
squamous cell carcinoma disease continuum
progression
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The molecular basis of disease progression from UV-induced precancerous
actinic keratosis (AK) to malignant invasive cutaneous squamous cell carci-
noma (cSCC) and potentially lethal metastatic disease remains unclear. DNA
sequencing studies have revealed amassivemutational burden but have yet to
illuminate mechanisms of disease progression. Here we perform RNAseq
transcriptomic profiling of 110 patient samples representing normal sun-
exposed skin, AK, primary and metastatic cSCC and reveal a disease con-
tinuum from a differentiated to a progenitor-like state. This is accompanied by
the orchestrated suppression of master regulators of epidermal differentia-
tion, dynamic modulation of the epidermal differentiation complex, remo-
delling of the immune landscape and an increase in the preponderance of
tumour specific keratinocytes. Comparative systems analysis of human cSCC
coupled with the generation of genetically engineered murine models reveal
that combinatorial sequential inactivation of the tumour suppressor genes
Tgfbr2, Trp53, and Notch1 coupled with activation of Ras signalling progres-
sively drives cSCCprogression along a differentiated to progenitor axis. Taken
togetherweprovide a comprehensivemapof the cSCCdisease continuumand
reveal potentially actionable events that promote and accompany disease
progression.

Cutaneous squamous cell carcinoma (cSCC) represents a significant and
rising global health burden1 and one of the commonest malignancies
with metastatic potential2,3. Histological examination is used to assign
clinical definitions of AK premalignant disease or invasive cSCC. Clin-
icopathological staging is an important determinant of clinical pathway
decision making, although current staging systems have limited prog-
nostic utility4–6. Surgical excision or radiotherapy are treatments of

choice for primary cSCC and adjuvant radiotherapy is used in certain
“high-risk”primary tumours7. In locally advanced andmetastatic disease
not suitable for surgery or radiotherapy, responses to chemotherapy
and/or Epidermal Growth factor Receptor (EGFR) inhibitors are limited
and although anti-Programmed Cell Death 1 (PD1) checkpoint immu-
notherapy is nowconsideredfirst line, 50%of individuals fail to respond7

highlighting the need for better treatment modalities.
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The genetic architecture of both premalignant AK and invasive
cSCC is complex, with both displaying high mutational burdens and
mutational heterogeneity, copy number changes and shared genetic
alterations in some common driver genes8–11. Mutations of these driver
genes are also observable in clinically “normal” skin from sun exposed
and other body sites12,13 further complicating the potential of genotype
treatment selection decisions. Current estimates indicate that fewer
than 0.1% of individual AKs will progress to cSCC and that 3–5% of
primary cSCC have the potential to progress to life threatening
metastatic disease14. Previous cross species studies integrating gene
expression and genetic analysis have revealed potential mechanisms
of cSCC disease progression8 but there remains a clear and urgent
need for a deeper understanding of the biological processes that
underpin disease progression not only for improved risk-stratification
to support rational deployment of treatment but also to identify new
possible therapeutic strategies.

Here we perform RNAseq on 110 samples spanning the spectrum
of human cSCC disease from normal sun exposed skin, AK, primary
cSCC andmetastasis and demonstrate that disease progression can be
represented as a continuum from a differentiated to a progenitor like
state. We catalogue the changes in genes, biological pathways, pro-
cesses and cell types through this continuum. Utilising genetically
engineered mouse models we recapitulate these events and demon-
strate that driver gene combinations dictate disease progression.

Results
Transcriptomic analysis defines gene expression profiles asso-
ciated with actinic keratosis (AK) and primary squamous cell
carcinoma (SCC)
To characterise the molecular mechanisms underpinning cSCC pro-
gression we performed bulk RNAseq analysis on 110 treatment-naïve
patient samples representing normal sun exposed skin/peri-lesional
skin (n = 26), AK (n = 14), primary (n = 66) and metastatic cSCC (n = 4)
(Supplementary Data File 1). Principal Component Analysis (PCA)
demonstrated that normal, AK and primary cSCC diverge along
dimension 1 (Supplementary Fig. 1a). To characterise changes in gene
expression between clinical stage we performed differential gene
expression analysis comparing normal versus AK, AK versus primary
cSCC and normal versus primary cSCC (Supplementary Data File 2).
This analysis identified unique subsets of genes defining each clinical
stagewith the normal versus primary cSCC comparison generating the
largest number of differentially expressed genes. Subsequent gene set
enrichment analysis (GSEA) identified severalmolecularpathways and/
or processes significantly enriched in either normal, AK or primary
cSCC samples (Supplementary Fig. 1b–d). These included marked
modulation of metabolic, proliferation and immune signalling pro-
cesses (Supplementary Data File 2). Importantly enrichment in cell
cycle related processes were observed in both the normal to AK and
normal to primary tumour comparisons indicating the hyperproli-
ferative nature of both pre-malignant and malignant disease (Supple-
mentary Fig. 1b, d). Extracellular matrix processes were altered in
normal-AK and AK-primary tumour transitions and cytokine, chemo-
kine and IFN signalling pathways were enriched in primary tumour
samples compared to both normal and AK samples indicating the
potential importance of these events in primary tumour formation
(Supplementary Fig. 1c, d). Our sample set contained several samples
that were collected from the same patients including 25matched pairs
of normal skin and primary tumours (Supplementary Fig. 2a). We
performed matched sample differential gene expression analysis on
these samples (Supplementary Data File 3) and compared this to the
differential gene expression analysis of the whole normal and primary
tumour data set (normal skin n = 26, primary tumour n = 66). There
was considerable overlap of DEGs between these two analyses with
1357 downregulated and 915 upregulated genes (padj <0.05,
log2FC > 1) in primary tumours compared to normal samples in both

analyses (Supplementary Fig. 2b). The whole sample set analysis
revealed an additional 343 downregulated and 567 upregulated genes
whereas the matched analysis revealed an additional 380 down-
regulated and 39 upregulated genes with the additional identification
of neuronal and muscle contraction processes identified in GSEA
analysis of the matched samples and IFNγ and chemokine signalling
additionally identified in the whole sample set analysis (Supplemen-
tary Fig. 1d, 2c) highlighting the strengths of both approaches to reveal
potentially important pathways and processes in disease progression.

A cSCC disease progression continuum is associated with the
orchestrated suppression of epidermal differentiation and the
induction of progenitor-like gene expression
Unsupervised hierarchical clustering and tSNE analysis of our RNaseq
samples revealed that samples clustered into two main distinct clus-
ters designated Class 1 and Class 2 (Supplementary Fig. 3a, b). Class
1 samples comprised predominantly normal skin and AK samples
whereas Class 2 samples comprised predominantly primary SCC and
metastasis samples. GSEA analysis revealed changes in metabolic and
immune processes with epidermis development and keratinization
highly enriched in Class 1 samples (Supplementary Fig. 3c, Supple-
mentary Data File 4). The epidermis is a stratified self-renewing epi-
thelial tissue that acts as an important outer-barrier to both repel
foreign insults and maintain organismal homeostasis15 and comprises
distinct layers of keratinocytes that represent a continuum of epi-
dermal differentiation. The keratinocytes of the epidermis arise from
resident stem cells located within the basal cell layer. Upon activation,
these stem cells exit the cell cycle and translocate into the supra-basal
compartment where they undergo progressive stages of differentia-
tion. Ultimately, keratinocytes terminally differentiate to form enu-
cleated lipid-embedded corneocytes that finally undergo cornification
to form the stratum corneum or outer skin.

The transcriptional changes underpinning human epidermal dif-
ferentiation have been mapped in fine detail. Specific sets of genes
defining progenitor cell populations, early differentiation and late
(terminal) differentiation (Fig. 1a) have been experimentally validated
using organotypic models16. We used GSEA to determine if the
orchestrated loss of epidermal differentiation observed in cSCC is
associatedwith the dysregulated expression of these specific gene sets
(Supplementary Data File 5). This demonstrated that normal skin and
AK are significantly enriched for genes associated with late epidermal
differentiation, whereas primary and metastatic SCC are significantly
enriched for genes associated with skin progenitor cells (Fig. 1b).
Similarly, we observed significant differences in late differentiation,
early differentiation and progenitor signature scores between Class 1
and Class 2 samples (Supplementary Fig. 3d). Our dataset includes
samples from immunocompetent and immunosuppressed patients,
but we observed no significant differences in early differentiation and
progenitor signature scores between these groups and only a modest
enrichment of late differentiation signature scores in immunosup-
pressed patients (Supplementary Fig. 3d).

The clear delineation of normal and AK from primary and
metastatic cSCC using the late epidermal and progenitor-like sig-
natures suggested that cSCC patient samples may represent a con-
tinuum of epidermal de-differentiation. In keeping with this notion,
cSCC could be stratified into two broad patient groups representing
either a “Differentiated” or “Progenitor-like” state (Fig. 1c). Impor-
tantly, using a Differentiation-versus-Progenitor (DvP) signature
score we reveal that cSCC disease progression can be represented as
a disease continuum from a differentiated to a progenitor like state
(Fig. 1c, Supplementary Data File 5). Poorly differentiated (PD) pri-
mary cSCC tumours are associated with worse prognosis compared
to their well differentiated (WD) counterparts6. Moderately (MD) -
PD and PD samples were significantly associated with the
progenitor-like state (Kruskal-Wallis, p = 0.031) indicating that
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progenitor score analysis may have primary tumour classification
utility (Supplementary Fig. 4a–c).Most progenitor-like samples (DvP
quartile 1) had greater tumour depth (Kruskal Wallis, p = 0.02, Sup-
plementary Fig. 4d) and tumour diameter (Kruskal Wallis,
p = 0.0031, Supplementary Fig. 4e) but DvP score did not sig-
nificantly associate with invasion status, patient age at time of
sampling or sex (Supplementary Fig. 4f–h). The utility of repre-
senting cSCC disease progression as a continuum is also exemplified
by considering our matched samples of primary tumours and nor-
mal skin which are distributed across the DvP axis (Supplementary
Fig. 5a) and despite having overall significant differences in DvP
signature score and expression of LOR as an example signature gene
(Supplementary Fig. 5b, c) individual pairs of samples may show
similar signature scores or LOR expression.

Recently, Ji et al. have identified seven distinct single-cell kera-
tinocyte populations resident in normal skin and cSCC including a
unique population of tumour specific keratinocytes (TSK)17. Using

Signature matrix and CIBERSORTx18 analysis (Fig. 1d) we calculated
the proportions of these seven keratinocyte populations in our
sample set (Supplementary Data File 6). During progression through
normal-AK-SCC-Metastasis, we found a significant reduction in the
proportion of Normal Keratinocyte Differentiated cells (NKD) and an
increase in the proportion of TSKs (Fig. 1e, f) and the appearance of a
Tumour Keratinocyte Differentiated population (TKD) at the AK
stage (Fig. 1e, f). We also uncovered profound changes in keratino-
cyte populations during progression along the DvP continuum with
progenitor like samples containing a high proportion of TSKs
(20–80%) which progressively increase with progenitor like state
(Fig. 1g). Interestingly we observed a modulation of the tumour
keratinocyte cycling population across the continuum, the appear-
ance of the normal keratinocyte cycling population in progenitor
like samples and no notable changes in basal keratinocyte popula-
tions (Supplementary Fig. 6) and these observations warrant further
investigation.

Fig. 1 | cSCC progression is associated with the orchestrated suppression of
epidermal differentiation and the induction of progenitor-like gene expres-
sion. a Diagram of the stratified layers of the skin epithelium and their associated
gene signatures (left panel). Consensus clustering of 110 human human samples
profiled by RNAseq identifies two classes of samples.bBoxplots demonstrating the
enrichment of Late Epidermal Differentiation, Early Epidermal Differentiation and
Progenitor gene signatures in normal (red, n = 26), AK (blue, n = 14), primary
(orange,n = 66) andmetastatic cSCC (MET, green,n = 4). Boxplots are annotatedby
a Kruskall-Wallis P value with P values <= 0.05 indicating a significant difference
between clinical designations. c Heatmap showing the expression of genes asso-
ciated with late epidermal differentiation and a Progenitor-like state across a
spectrumof cSCC clinical designations. The genes shown in the heatmap represent
a Differentiation-Progenitor-like (DvP) signature which has been used to order
samples along an axis of late epidermal differentiation to progenitor-like gene
expression (DvP signature score). Patient Immune status (IC, immunocompetent,

IS, immunosuppressed) anddifferentiation status of theprimary tumours (WD,well
differentiated; MD, moderately differentiated; PD, poorly differentiated) are indi-
cated.d Schematic diagram showing the CIBERSORTxworkflow, whichwas used to
estimate the proportion of defined single cell populations resident in bulk tumour
SCC samples. e Boxplots showing the estimated percentage of defined single cell
populations representing Normal Keratinocytes Differentiated, Tumour Keratino-
cytes Differentiated and Tumour Specific Keratinocyte cells in Normal (red), AK
(blue), Primary (orange) and MET (green) bulk cSCC samples. Boxplots are anno-
tated by a Kruskall-Wallis P value with P values <= 0.05 indicating a significant
difference between clinical designations. f Donut charts showing the percent
tumour enrichment of defined single cell populations in bulk cSCC samples stra-
tified by clinical designation. g Bar charts showing the enrichment of defined single
cell populations in bulk cSCC samples ordered according to the DP signature score
(KC, keratinocyte; Diff, differentiated; Cyc, cycling). Source data for b and e are
provided in the Source Data file.
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cSCC progression is associated with the orchestrated gain and
loss of key molecular pathways and/or processes associated
with epidermal differentiation, immune signalling, metabolism
and progenitor-like cell states
To decipher the molecular pathways and/or processes underpinning
SCC progression we performed k-means clustering using the 2000
most significantly differentially expressed genes between clinical
designations. This analysis identified 15 clusters of co-ordinately
expressed genes (Supplementary Data File 7). Nine of these clusters
exhibited significant correlation with the DvP score (Fig. 2a). Gene
enrichment analysis demonstrated that the progression of SCC
involves the orchestrated suppression of epidermal differentiation
pathways (clusters 8, 3, 11, 9 and 2) and induction of gene programmes
associated with cell proliferation, cell-cell communication, MET and
PDGF signalling pathways and immunomodulation (clusters 10, 1, 12
and 5) (Fig. 2b, Supplementary Data File 7). We also observed down-
regulation of metabolism associated processes, including fatty acids,
sphingolipid de novo biosynthesis (cluster 8), cytochrome P450
(cluster 3) and ion transport by P-type ATPases (Cluster 9) during
disease progression (Fig. 2a, b). GSEA and KEGG pathway analysis
revealed correlated switches in expression patterns of genes involved
in drug metabolism, fatty acid degradation, glycolysis and gluconeo-
genesis and glutathione metabolism (Supplementary Fig. 7a–d). To
further explore changes during the progression to a progenitor like
state we performed GSEA and GO ontology analysis when comparing
progenitor like samples (Quartile 1 and 2) to differentiated like samples
(Quartiles 3 and4) (Supplementary Fig. 8a, SupplementaryData File 8).
This also highlighted profound changes in metabolic processes with
suppression of lipidmetabolic processes being particularly prominent

(Supplementary Fig. 8a, b). Taken together, these findings indicate a
switch from fatty acid and lipid metabolism to a glycolytic like state is
likely tooccur coincidentwith the acquisitionof a progenitor like state.

The orchestrated suppression of late epidermal differentiation
and induction of progenitor-like gene expression ismediated by
master regulators of epidermal differentiation
The progressive differentiation of keratinocytes, from stem cell to
corneocyte is governed by a complex network of transcriptional reg-
ulators including transcription factors (TFs) and long noncoding RNAs
(lncRNAs). The selective expression of these key transcriptional reg-
ulators within the epidermal striatum demarcates regions of differ-
entiation and progenitor self-renewal. Genetically non-redundant TFs
including GRHL3, ZNF750, KLF4 and PRDM1 drive terminal epidermal
differentiation16,19–21 whereas, epigenetic transcriptional regulators
such as PRMT1, ACTL6A, DNMT1 and EZH2 are essential to repress
epidermal differentiation and maintain the progenitor state22–25.
LncRNAs TINCR and ANCR (DANCR) have also been shown to act as
important trans regulators of epidermal differentiation with TINCR
functioning as an important driver of epidermal differentiation and
ANCR acting as a progenitor-maintenance factor26,27.

To determine whether the progenitor-like state observed in
SCC is associated with the dysregulated expression of key drivers of
epidermal differentiation we profiled the expression of several fac-
tors including GRHL3, ZNF750, TINCR, KLF4 and PRDM1 (Supple-
mentary Fig. 9a). Transcriptional promoters of epidermal
differentiation are significantly downregulated during SCC pro-
gression, whereas, TFs such as PRMT1, ACTL6A and SMARCA5 that
maintain the progenitor state in self-renewing somatic tissues22,23,28

Fig. 2 | cSCC progression is associated with the orchestrated gain and loss of
key molecular pathways and/or processes associated with epidermal differ-
entiation, cell-cell communication, metabolism, immune signalling and
progenitor-like cell states. a K-means clustering of normalised expression values
identifies 15 core gene clusters representing co-ordinately expressed sets of genes.
Heatmap shows gene expression levels of genes in 9 core co-expressed gene
clusters with samples ordered by DvP signature score. b Gene set enrichment
analysis showing significantly enrichedmolecular pathways and/or processes in the

9 core co-expressed gene clusters. Significance shown as bars -Log10(P values)
Fischer’s exact test (two-sided) adjusted formultiple testing. c Transcription factor
regulon activities correlate with keratinocyte population dynamics. Sets of TFs
regulons significantly (P values <= 0.05) correlated with percent enrichment of
defined indicated single cell populations as estimatedbyCIBERSORTx. Samples are
ordered byDP signature scorewith defined single cell enrichment estimates shown
in the top bar chart (see Fig. 1g).
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were significantly correlated with the progenitor-like state observed
in SCC. The delineation of TFs according to differentiation status
closely mirrored the selective expression of keratins (K), including
K1, K10, K5 and K14 (Supplementary Fig. 9a). K1 and K10 genes are
present in the late differentiation gene signature (Supplementary
Data File 5) and their expression demarcates the intermediated
spinous layer, whereas K5 and K14 are expressed in the basal layer.
Gene expression scores of master regulators of differentiation
(ZNF750, KLF4, TINCR) and associated signature scores of TINCR and
STAU negatively correlated with DP signature score (Supplementary
Fig. 9b, Supplementary Data File 9). In contrast, gene expression
signature scores of ACTL6A, DNMT1 and PRMT1 positively correlated
with DP signature score implicating them in controlling acquisition
of the progenitor like state (Supplementary Fig. 9b).

To further define the set of TFs involved in SCC progression we
performed TF network analysis. This analysis generates TF-centric
regulatory networks by inferring the set of co-expressed genes asso-
ciated with a given TF, thereby providing a link between the TF and a
set of putative transcriptional targets collectively referred to as a
“regulon”. To identify regulons significantly enriched in either the
Differentiated or Progenitor-like state, we performed VIPER (Virtual
Inference of Protein activity by Enriched Regulon) analysis (Supple-
mentary Data File 9). This identified 53 regulons (Pval <= 0.05) exhi-
biting significant Differentiated or Progenitor-like enrichment
(Supplementary Fig. 9c, d). Coupled with TF Network analysis (Sup-
plementary Fig. 9e) this highlighted TFs representing putative “master
regulators” (MRs) of these two distinct transcriptional states. We next
interrogated TF regulon expression dynamics in relation to keratino-
cyte population dynamics. This revealed significant positive correla-
tions of TF regulons associated with NKD, TKD and TSK populations
that aligned with the differentiated and progenitor like states (Fig. 2c)
with activation of the TKD regulons pre-ceding activation of TSK TF
regulons and downregulation of the NKD TF regulons.

The orchestrated suppression of late epidermal differentiation
and induction of a progenitor-like state is associated with
dynamic changes in immune cell phenotypes
K-means clustering analysis demonstrated that immune pathways are
significantly enriched during SCC progression: in the progenitor like
state neutrophil degranulation, immune checkpoint signalling via PD1
and CTLA4 and TNF signalling are significantly overrepresented
(Fig. 2a). To further characterise the cSCC tumour immune micro-
environment (TME) we performed cell type enrichment analysis using
xCell29. This analysis identified 18 immune cell types significantly
altered during disease progression and coincident with the acquisition
of progenitor like characteristics (Fig. 3a; Supplementary Data File 10).
This encompassed the initiation of enrichment of innate immune cell
populations including dendritic cells (DC), neutrophils, monocytes,
macrophages and plasmacytoid dendritic cells (pDC). Modulation of
adaptive immune cells was also observed with enrichment of B cells
and Treg populations followed with the additional loss of basophils,
CD4+Tem, CD4+ naïve T cells andCD8+ T cells and enrichment of Th2
cells (Fig. 3a).

Significant changes in expression patterns of immune inhibitory
and stimulatory pathways were also observed coincident with immune
cell population changes (Fig. 3a, Supplementary Fig. 10a; Supple-
mentary Data File 10). Perhaps, most striking was upregulation of the
immune “inhibitory” factors including CD274, (Fig. 3a) BTLA, PDCD1,
SLAMF7, IL10, TIGIT, CTLA4, LAG3, PDCD1LG2, IDO1 and HAVCR2
(Supplementary Fig. 10a). This was followed by downregulation of
ARG1 (Fig. 3a) and EDNRB and further enrichment of expression of
TGFβ1 (Supplementary Fig. 10a) and CD276 (Fig. 3a). Coincident with
these changes was upregulation of immune “stimulatory” molecules
including CD28, CD27, CD40, CD80; the chemokines CXCL10, CXCL9,
and TNF pathway components including TNF, TNFRSF1B, 4, 9, 14 and

TNFSF4, 9, as well as interleukins IL1A and IL1B (Supplementary
Fig. 10a). These changes were reflected in immune pathway alterations
including enrichment of scores for pathways and processes related to
immune checkpoints (for example PD1_Data, CTLA4_Data), interferon
and STAT1 signalling and interleukin signalling (Supplementary
Fig. 10a). High correlations were observed across immune inhibitory
genes (Fig. 3b) with enhanced expression of several of these correlat-
ing with enrichment of TKD and TSK populations (Fig. 3c). These data
may explain the encouraging but limited response rates of cSCC to
single agent cepilimumab anti-PD1 treatment30,31 and suggests that
combination checkpoint inhibition may enhance therapeutic
responses.

Our sample set included 22 tumour samples from immunosup-
pressed patients enabling us to interrogate potential changes in the
immune landscape between immunocompetent and immunocom-
promised patients. Several immune stimulatory and inhibitory path-
ways were significantly enriched in immunocompetent patients
(Supplementary Fig. 10b, Supplementary Data File 10). These analyses
also indicated that within both populations of immunosuppressed and
immunocompetent patient subsets of samples could be described as
immune active or immune silent showing high- or low-level expression
of these genes respectively (Supplementary Fig. 10b).

Modulation of The Epidermal Differentiation Complex precedes
and accompanies dynamic changes in the immune landscape
Interrogation of our k-means clustering andGSEA analysis revealed that
increased expressionof genes in cluster 2 precedes or is coincidentwith
the dynamic changes in immunomodulatory pathways and processes
(Clusters 1, 12). Cluster 2 is enriched for pathways involved in formation
of the cornified envelope, keratinization, neutrophil degranulation as
well as antimicrobial peptides (Fig. 2a). Many of the genes critical for
cornified envelope formation and differentiation of the stratified epi-
dermis are encoded by the epidermal differentiation complex (EDC)
a ~ 2Mb region on chromosome 132. Horizon plot analysis indicated
profound changes in EDC gene expression during cSCC progression
(Supplementary Fig. 11; Supplementary Data File 10) and heatmap
analysis revealed co-ordinated regulation of EDC genes with the DvP
axis (Fig. 3d). Genes located in the 5’ region of the EDC include most of
those encoding late cornified envelope (LCE) proteins and are highly
expressed in differentiated samples and downregulated in the
progenitor-like samples (Fig. 3d). Genes located more 3’ in the EDC
include those which encode for the small proline rich proteins (SPRRs)
and the S100 family of calcium binding proteins and are expressed at a
low level in the most differentiated samples and are upregulated coin-
cident with the emergence of the TKD cell population (Fig. 3d). Notably
themost 3’ located EDCgenes S100A2 and S100A6 are highly expressed
in progenitor-like samples (Fig. 3d). This switch in 5’ to 3’ EDC gene
expression patterns precedes and is coincident with the onset of
changes in the immune cell complement and dynamic changes in
immunemodulatory gene expression (Fig. 3a, Supplementary Fig. 10a).
These findings suggest that dynamic changes in EDC gene expression
are associated with modulation of the immune landscape. Correlation
analyses supported this hypothesis as we observed significant positive
correlations between many of the 3′ EDC genes and immune cell
populations (for example neutrophils, monocytes, pDC and Th2 cells)
and immunomodulatory genes and processes (for example Type 1
interferon response, PD1_PDL1_Score, CD274, TGFβ1) enriched in pro-
genitor like samples (Fig. 3e, Supplementary Data File 10).

Driver gene combinations dictate disease progression
The orchestrated sequence of events as disease progresses from a
differentiated to a progenitor like state are likely to be dictated by the
genetic changes caused by chronic UV damage. We have previously
interrogated the genetic landscape of 12 of our primary tumour cSCC
samples profiled by whole exome sequencing (WES)11 (Fig. 4a). We
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found no correlation between DvP axis position and mutational bur-
den (Supplementary Fig. 12a; Supplementary Data File 11). We next
utilised CaSpER to identify and visualize copy number variation events
by integrative analysis33 of our bulk RNA-seq data of our AK and cSCC
samples (Supplementary Fig. 12b, Supplementary Data File 11). This
revealed a marked increase in copy number alterations observed in
more progenitor like samples with a significant increase in the per-
centage of the genome altered with decreasing DvP quartile (Supple-
mentary Fig. 12b, c, Kruskal-Wallis, p = 4.5×10−8). This is similar to our
previous CNV analysis of WES data which indicated MD/PD tumours
have a greater proportion of the genome altered by copy number
variations compared to WD tumours11. Notable copy number losses of
3p and 9p and gains of 19p were observed in both analyses (Supple-
mentary Data File 11). 26% of genes affected by copy number loss (83
out of 315) also showed a significant down regulation of gene expres-
sion (padj<0.05) when comparing Quartile 1 and Quartile 2 samples to

Quartile 3 and Quartile 4 samples indicating a potential tumour sup-
pressor role for these genes (Supplementary Data File 11). Many
immunoglobulin heavy chain genes showed copy number gains and an
elevation of gene expression likely reflecting enhanced B cell infiltra-
tion in progenitor like samples. Excluding these, 31% of genes (14 out of
45) showed both a copy number gain and a significant elevation of
gene expression in progenitor like samples indicating potential
tumour promoter roles (Supplementary Data File 11).

Oncoprint analysis of functionally validated/implicated genetic
drivers of cSCC development of our samples previously also profiled
by WES revealed the possibility that combinations of driver gene
events may determine disease progression (Fig. 4a; Supplementary
Data File 11). We observed early loss of the tumour suppressor genes
TP53, NOTCH1, TGFBR1, TGFBR2 and subsequent activation of MAPK
signalling through mutational activation of KRAS (KRASG12D mutation
in PD02) or HRAS (HRasQ61L mutation in PD07). Analysis of 151 cSCC

Fig. 3 | The orchestrated suppression of late epidermal differentiation and
induction of a progenitor-like state is associated with dynamic changes in
immune cell infiltrates, immunomodulatory genes and correlates with epi-
dermal differentiation complex modulation. a Heatmap showing the relative
enrichment of immune cell types and/or phenotypes as defined by xCell across the
entire cSCC cohort. Area charts showing mean gene expression (lower panels) for
cohort samples ordered by DP signature score. Mean ARG1 expression is sig-
nificantly downregulated as sample DP scores shift form late differentiation to
progenitor-like. In contrast, themeangene expressionof immune inhibitory factors
CD274 and CD276 show significant enrichment in samples with a high progenitor-
like score. b Pearson correlation analysis of immune inhibitory factors. c Dot chart
showing inhibitory and stimulatory immunomodulatory factors significantly cor-
related with Normal_KC_Diff, Tumour_KC_Diff and TSK enrichment bulk tumour

fractions. The size of each dot represents -log10(Cor Pval) of the designated cor-
relation. Significance was determined by two-sided Pearson’s correlation test. P
values were not adjusted for multiple testing. d Heatmap showing the relative
expression of EDC genes. Samples are ordered by DP signature score and genes are
ordered by DP signature correlation. Percent single cell enrichment estimates are
shown in the top bar chart (see Figs. 1g, 2c). e Heatmap showing significant cor-
relations between EDC genes and immune cell type/phenotype enrichment scores.
Correlations are presented as -log10 (Cor Pvalue) x sign (Cor) with red representing
a significant positive correlation and blue representing a significant negative cor-
relation. Pearson’s correlations are shown in the plot. Significance was determined
by two-sided Pearson’s correlation test. P values were not adjusted for multiple
testing. All correlations shown are significant.
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tumour samples curated in Cbioportal34,35 indicated TP53 mutations in
76%, NOTCH1 in 55%, TGFBR1 in 6%, TGFBR2 in 8% and mutation of
KRAS, HRAS and NRAS combined occurred in 17.6% of samples (Sup-
plementary Fig. 13). Consistent with involvement of these signalling
pathways in mediating disease progression we observed significant
negative correlation of TGFβ, NOTCH1 and TP53 signalling signatures
and positive correlation of ERK signalling signatures with DvP sig-
nature score with selective modulation of signalling components
occurring with disease progression including downregulation of TP53,
TGFBR2 and NOTCH1 in progenitor like samples (Supplementary
Fig. 14; Supplementary Data File 12).

We and others have previously demonstrated that murine cSCCs
that phenotypically resemble human cSCCs can efficiently initiate from
the hair follicle Lgr5+ve stem cell compartment36,37 and that tumours
originating from these cells can show aggressive features38–40 potentially
enabling us tomodel a broad spectrum of the cSCC disease continuum.
Therefore, to functionally validate these genetic events as drivers of
disease progression we targeted combinatorial inactivation of Tgfbr2,
Notch1, Trp53 and mutational activation of Kras and Trp53 to murine
Lgr5+ve stem cells using Lgr5-EGFP-Ires-CreERT2, Tgfbr2fl/fl, Notch1fl/fl,
Trp53fl, LSL-Trp53R172H and LSL-KrasG12Dmice (Fig. 4b; SupplementaryData

File 13). Loss ofNotch1 alone or in combinationwith loss of Tgfbr2 or the
combination of loss and mutation of Trp53 did not result in significant
skin tumour formation (Supplementary Data File 13). Loss of Tgfbr2
coupledwithTrp53loss/mutational activation (LPTmice) resulted in skin
tumour formation with long latency (median survival = 429 days)
(Fig. 4c). Additional loss of Notch1 (LNPT mice) greatly accelerated skin
tumour formation (median survival =169 days, p<0.001 [log rank
Mantel-Cox test, chi square 25.13, df 1]) (Fig. 4c).Mutational activation of
Kras alone did not result in skin lesions, nor did deletion of Tgfbr2,
whereas the combination of Kras mutation coupled with loss of both
alleles of Tgfbr2 resulted in rapid skin tumour formation (LKT mice,
Fig. 4d, Median survival 54 days) consistent with our previous observa-
tions on deletion of Tgfbr136. The differentiation status of selected
tumours harvested at endpoint from these cohorts was assessed by
pathological analysis of haematoxylin and eosin (H&E) stained sections
from formalin fixed and paraffin embedded tumours (Supplementary
Fig. 15, Supplementary Data File 13). Most tumours were moderately
differentiated irrespective of genotype.

We performed bulk RNASeq analysis of snap frozen murine
tumours harvested at endpoint from our genetically engineered
mouse models (GEMMs) (Supplementary Data File 14). Genes

Fig. 4 | Driver gene combinations dictate disease progression in murine
genetically engineered cSSC and recapitulate human disease progression.
a Oncoprint of selected driver genes in samples profiled by whole exome
sequencing11 ordered by DP axis rank. b Schematic description of genetic crossing
strategies. Cre, cre recombinase, ER, estrogen receptor, loxp, Cre-lox recombina-
tion site. c, d Kaplan-Meier analysis of overall survival. Loss of Tgfbr2 coupled with
mutation/loss of Trp53 drives skin tumorigenesis in mice (LPT, n = 9; L = Lgr5, P =
Trp53, T = Tgfbr2) which is accelerated by loss of Notch1 (LNPT, n = 20, N=Notch1),
(p <0.001 [log rank Mantel-Cox test, chi square 25.13, df 1]) (c). Combinatorial

knock in of activated KrasG12D coupled with deletion of Tgfbr2 results in rapid skin
tumour formation (LKT, n = 13, LT n = 16, K=KrasG12D) (d). e Area charts showing
mean tumour cell type enrichment (top panel) and mean GEMM signature
enrichment (lower panels) for cohort samples ordered by DP signature score.
Genes significantly enriched (Pval <= 0.05 and logFC >= 2) in a specific mouse
genotypewereused as signature genes for enrichment analysis. Single sample gene
set enrichment (ssGSEA) was employed to determine signature enrichment in bulk
human cSCC. Source data for c and d are provided in the Source Data file.
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significantly enriched (Pval <= 0.05 and logFC >= 2) in each specific
mouse genotype were used as signature genes for further enrichment
analysis (Supplementary Data File 14). We employed single sample
gene set enrichment (ssGSEA) to determine murine signature enrich-
ment in the human samples to disease position our GEMMs relative to
the human DvP axis and tumour cell populations. This analysis
revealed that LPT tumours represent early stages of the human cSCC
continuum (Fig. 4e, Supplementary Data File 14). Several LNPT tumour
signaturegenes show significant correlationwithTKDgenes, and these
tumours correspond with human samples spanning the middle of the
cSCC continuum (Fig. 4e). Several LKT tumour signature genes show
significant overlap with several TSK genes and these tumours corre-
spond to human samples which are more progenitor like (Fig. 4e).

Conservation of dynamic changes in transcription factor
expression, EDC modulation and immune infiltration in murine
and human tumours
GSEA analysis revealed pathways and processes significantly altered
between our murine tumour genotypes (Supplementary Fig. 16a;
Supplementary Data File 14). Comparisons of LNPT with LPT mice
revealed alterations of GO terms associated with epidermal develop-
ment, neutrophil migration and cell signalling pathways and corre-
sponding changes in gene expression of TFs, cornification,
immunomodulatory and signalling pathway genes associated with
these processes (Supplementary Fig. 16b). Comparison of LKT
tumours with LNPT and LPT tumours revealed further changes in cell
differentiation, metabolism and immune processes with associated
changes in gene expression of many factors regulating these events
(Supplementary Fig. 16a–c). Differential gene expression analysis
between our GEMMs revealed dynamic changes in transcription factor
expression with notable changes in expression of NKD enriched fac-
tors Dlx5 and Tfap2c, TKD enriched factors Hif1a and Mafb and TSK
enriched factorsKlf7 and Fosl1 that also exhibiteddynamicmodulation
along the DP axis (Fig. 5a, Supplementary Fig. 16c).

These analyses indicated that the changes we observe in human
samples that accompany disease progression are recapitulated in our
murine tumours. The murine EDC is encoded by a ~ 3.5Mb region of
Chromosome 3 with many genes syntenic with their human
counterparts41 (Supplementary Fig. 15d). We observed significant
changes in subsets of EDC genes between genotypes consistent with
dynamic changes in cornification/keratinisation genes (Supplemen-
tary Fig. 16c, d; Supplementary Data File 14) reminiscent of changes we
observe in human cSCC.We also observedmany significant changes in
immune and inflammatory response genes across murine tumour
genotypes (Supplementary Fig. 16c) with notable correlations of EDC
genes and immune cell markers (Fig. 5b) such as S100a2 that we also
observed in human samples (Fig. 5c, d and Fig. 3e). We performed
immunohistochemical analysis of immune cell markers in our murine
tumours to evaluate changes in immune cell population tumour infil-
tration associated with disease progression and driver gene combi-
nations (Supplementary Fig. 17). All tumours irrespective of genotype
displayed higher numbers of immune cells surrounding the periphery
of tumours (border) when compared to numbers infiltrating the
tumours (Fig. 5e). With disease progression from LPT to LNPT to LKT
genotypes we saw a decrease in CD3+ve T lymphocytes and significant
decreases in the number of CD4+ve T cells present both within and at
themargins of tumours (Fig. 5e, Supplementary Date File 15). A similar
trend in CD8+ve T cells was also observed (Fig. 5e). Macrophage
populations (F4/80 +ve cells) were variable but tended to increase in
LKT tumours and neutrophil populations (Ly6g +ve) decreased
between LNPT and LPT tumours (Fig. 5e). Comparison of the ratio of
adaptive (CD4+ve and CD8+ve T cells) to innate immune cells (F4/80
and Ly6G +ve cells) indicated a potential switch from an adaptive to an
innate like immune complement coincident with disease progression
(Fig. 5f). Remarkably, a similar assessment of xCell data from the

human RNAseq samples with whole exome data revealed the same
switch with analogous genotypes (Fig. 5f, Supplementary Data File 11).

Murine tumours induced by solar UV radiation of hairless mice
recapitulate the histopathogical features of human cSCC disease pro-
gression and are similarly genetically complex42. Intersection and
Uniform manifold Approximation and Projection (UMAP) of RNaseq
data from a UV radiation treated hairless mouse model8 with our
genetically inducedmurine tumours indicates a remarkable overlap of
disease trajectories (Supplementary Fig. 18, Supplementary Data
File 16). Our LPT tumours represent very early disease andoverlapwith
chronic UV damaged skin (CHR), LNPT tumours span early disease
from CHR to papilloma formation and LKT tumours overlap with
invasive SCC in the UV model. This analysis provides further evidence
that the underpinning driver gene events dictate disease progression
regardless of the genetic complexity in which they take place and the
causative mechanism which generates them.

Given that the genetic events in our GEM models are targeted to
themurine Lgr5+ve hair follicle stemcell compartment and recapitulate
the human disease continuum we sought to mine our human data for
potential indicators of hair follicle stem cell fate. Deconvolution of our
bulk cSCC RNAseq data using human hair follicle cell state transcrip-
tional signatures representing 23 cell types/states43 (Supplementary
Fig. 19a, Supplementary Data File 17) revealed down regulation of
interfollicular epidermis (IFE) granular and spinous.3 signatures with
acquisition of a progenitor like state (Supplementary Fig. 19b, Supple-
mentary Data File 17), consistent with our loss of differentiation sig-
naturesdescribedabove.Concomitantwith these changeswerenotable
increases in the IFE basal.2, IFE mitotic, lower bulge and outer root
sheath suprabasal (ORS.SB) signatures (Supplementary Fig. 19b, Sup-
plementary Data File 17). We observed significant increases in the pro-
portion of epithelial cells with an IFE basal.2 signature with transition
fromnormal skin toAKandprimary tumour tometastatic disease states
(Supplementary Fig. 19c) and progression from DvP quartile 3 to 2
(Supplementary Fig. 19d). Similarly, we observed significant increases in
the percentage of epithelial cells with an IFE mitotic signature from
normal skin to AK and from AK to primary tumour disease states
(Supplementary Fig. 19e) and a stepwise increase in their prevalence
during progression through the DvP quartiles (Supplementary Fig. 19f).
We also observed a significant increase in the percentage of epithelial
cellswith a lower bulge signature inmetastatic samples (Supplementary
Fig. 19g) and with transition through DvP quartiles (Supplementary
Fig. 18h). Primary tumour sampleswere also enriched for epithelial cells
with an ORS.SB signature (Supplementary Fig. 19i) and these were also
observed in the most progenitor-like samples (Supplementary Fig. 19j).
Recent studies indicate that both the lower bulge and ORS.SB cells
express Lgr544 (Supplementary Fig. 19a) implicating the possible invol-
vement of Lgr5+ve cells as well as IFE cells in human cSCC initiation/
progression. Taken together our findings suggest that regardless of the
mechanism that generates driver gene alterations or the cells in which
they take place it is the driver gene combinations that dictate cSCC
disease progression.

Discussion
cSCC is the second most common skin cancer worldwide1 with inci-
dence rates increasing by 5% per year in the UK45. The genomic land-
scape of cSCC is dominated by tumour suppressor gene loss and
contains few potentially actionable oncogenic events10. The frequency
and diversity of genetic alterations found in UV exposed skin, AK and
cSCC has further hampered rational therapeutic strategy develop-
ment. Similarly, risk-stratified deployment of currently available ther-
apeutic and adjuvant strategies has been impacted by the limited
prognostic utility of current clinicopathologic staging systems. With
restricted treatment options for locally advanced or metastatic cSCC
once surgery/radiotherapy has failed, there is also an urgent need for
new targeted treatments or immunotherapeutic approaches. This is

Article https://doi.org/10.1038/s41467-023-40822-9

Nature Communications |         (2023) 14:5211 8



particularly important for immunosuppressed organ transplant reci-
pients for whom cSCC are twice as likely to prove fatal3 and in whom
checkpoint inhibitor immunotherapy is relatively contraindicated
because of high risk of allograft rejection. These many unmet clinical
needs and challenges in cSCC management require a much greater
understanding of its biological basis and the driving events of disease
progression.

Here we employed a systems biology approach to integrate bulk
RNASeq analysis of the largest cohort of human samples to date with
prior WES and single cell sequencing analysis coupled with integration
of genetically engineered murine models. We found that whilst lesions
broadly cluster with clinicopathologic definitionsmany samples cluster
atypically, notably including several AK samples which cluster with the
majority of cSCCandmetastasis samples. Thesemay representAKswith

Fig. 5 | Conservation of transcription factor regulation, EDC modulation and
immune modulation in murine and human tumours. a Heatmaps of transcrip-
tion factors significantly enriched in the indicated genotypes (left panel). Tran-
scription factor enrichmentplots in indicatedhumankeratinocyte samples ordered
by DP axis. Selected conserved TFs between murine genotypes and human kera-
tinocyte populations are highlighted. b Heatmap showing significant murine EDC
gene correlations with immune cell marker gene expression. c Box plot showing
S100a2 expression in indicated murine tumours (LKT, n = 12; LPT, n = 6; LNPT,
n = 12; L=Lgr5, P=Trp53, T=Tgfbr2, N=Notch1, K= KrasG12D). Plot is annotated with
Wilcoxon rank sum P value (two-sided) not adjusted for multiple testing. d Scatter
plots of Cd3b and Ly6g immune cell marker gene expression versus S100a2 in
indicated murine tumours. Pearson’s correlations are shown in the plots. Sig-
nificancewasdetermined by two-sided Pearson’s correlation test. P values were not

adjusted formultiple testing. The plots show a solid regression line and error bands
representing 95% confidence intervals. e Bar charts of immune cell populations
measured by IHC in GEMM models of CD3, CD4, CD8, F4/80 and Ly6G positive
populations. (LPT n = 6; LNPT, n = 6; LKT, n = 10; shaded bars indicate tumour
centre, empty bars tumour border). Mean +/- SD are shown. *=p <0.05, **p <0.01,
2-tailed Welch’s t test. f Conservation of changes in the ratio of adaptive (CD4 and
CD8+ve T cells) to innate immune cells (macrophages andneutrophils) assessedby
IHC in murine tumours (upper box plot) and human tumours assessed by Xcell
(lower box plot) of similar genotypes, TP53 mutation (P), NOTCH 1 or 2 mutation
(N), TGFBR1/TGFBR2mutation (T), HRAS or KRAS mutational activation (R). Mean
+/− SD are shown (<3N, P, T n = 5; NPT, n = 5; PNR+ PNTR, n = 2) *=p <0.05,
**p <0.01, 2-tailed Welch’s t test. Source data for c, e and f are provided in the
Source Data file.
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a high chance of progression to cSCC.We therefore conclude that cSCC
disease progression is perhaps best classified as a disease continuum in
which lesions fall on a spectrum from more differentiated to a
progenitor-like state. Accompanying this progression are changes in the
frequency of recently identified distinct keratinocyte populations17 with
the epithelial compartment of the most progenitor-like samples com-
prising60–80%TSKs. Deconvolution analyses also revealed increases in
epithelial cells with gene expression signatures of IFE and Lgr5+ve
derivedcell populationsduringdiseaseprogression indicatingpotential
tumour initiation in these cell compartments.

Mutations in driver genes, including NOTCH family members and
TP53 are detected at high frequency in apparently normal sun-exposed
skin. In fact, it is estimated that putative driver mutations exist at a
density of ~140 driver mutations per square centimetre12. However,
while these mutations may drive skin cells one step closer to malig-
nancy, findings presented herein demonstrate that cSCC progression
necessarily involves defined combinations of driver mutations illu-
strated here with those targeting NOTCH, TGFβ, TP53 or RAS-MAPK
pathways. These findings suggest a model in which the acquisition of
combinatorial NOTCH, TGFβ, TP53, RAS-MAPK mutational states
confers phenotypic advantages that promote the clonal expansion of
basal-like (progenitor) cells leading to patches of cells (lesions) that are
phenotypically altered. Recent studies comparing mutational rates of
NOTCH1 in normal human skin and cSCC samples have suggested that
NOTCH1 may not contribute to transformation13 and in the esophagus
NOTCH1 loss promotes clonal expansion but can impair tumour
growth46. Our studies here clearly demonstrate that in the murine skin
at least, NOTCH1 has tumour suppressor function. We did not observe
any correlation with mutational burden and human disease progres-
sion but did observe increased CNA alterations inmore progenitor like
samples compared to more differentiated samples. This may reflect
loss of TP53 leading to genome instability as recently observed in
pancreatic ductal carcinoma47, but, if this is the case and if genome
instability per se contributes to disease progression in cSCC warrants
further investigation. Our findings also reconfirm a tumour suppressor
role of TGFβ signalling in cSCC36. Consistentwith this, recent studies in
organotypic cultures indicate that loss of TGFβ signalling may pro-
mote keratinocyte invasion48. It is important to note that whilst we
observe correlation with loss of some TGFβ signalling pathway com-
ponents with disease progression it is unlikely that this is obligate for
cSCC formation and TGFβ signalling may also play tumour promoting
roles by promoting EMT and/or immune escape49 and this requires
further investigation in cSCC. Importantly, our findings suggest that
immune changes driven by combinations of somatic mutations pro-
mote the selection and expansion of mutant clones with keratinocyte
differentiated cell states associated with significant inflammation and
progenitor-like (basal) states associated with immune escape.

In addition, we demonstrate that changes in transcription factor
networks are dynamically modulated during human and murine dis-
ease progression and may control tumour growth and progression
towards a progenitor like state. Indeed, recent evidence has implicated
FOSL1 as important for proliferation of human SCC cell lines17. Tran-
scription factors such as MAFB and FOSL1 are also likely master reg-
ulators of EDC genes which exhibit dynamic changes in expression
both early and throughout disease progression. How dysregulated
NOTCH and TGFβ signalling cascades intersect with these transcrip-
tional programmes requires further investigation.

We observed profound modulation of the immune landscape
during progression along the DvP axis in both human and murine
samples with concomitant expression of immunomodulatory genes
and a switch from an adaptive to innate like immune profile with the
acquisition of a progenitor like state. The changes we observe in
immune cell populations in our human samples identified by xCELL
and in murine tumours by immunohistochemistry suggest a possible
tumour promoting role in cSCC disease progression, but this requires

future further in-depth analysis and functional interrogation. The EDC
genes themselves may directly influence the immune landscape of
tumours. S100 genes are knownmodulators of inflammation50 and our
data implicating members of this family in cSCC disease progression
requires further investigation. Recent clinical employment of PD-L1
immune checkpoint blockade in locally advanced andmetastatic cSCC
has shown promise in a subset of cSCC30,31. Here we observe frequent
co-expression of multiple checkpoint molecules indicating that com-
bination immune checkpoint therapies may be more effective in
management of disease. Our cross-species analysis indicates that dri-
ver gene combinations directly influence disease progression and, in
agreement with previous studies8,51, that progressive activation of ERK
signalling provides a potential therapeutic target for cSCC. Finally,
further combinatorial analyses are required to indicate if panel-based
DNA analysis coupled with gene expression profiling may have utility
in predicting disease outcome in patients.

In summary, our study provides a framework and resource which
can be interrogated and exploited to not only understand the patho-
mechanisms of disease progression and improve prognostication
but also to further identify potential therapeutically actionable
vulnerabilities.

Methods
Collection of patient samples
This study was approved by the East of Scotland Research Ethics Ser-
vice (REC reference08/S1401/69), The Ethics and ScientificCommittee
of A. Sygros Hospital (Ref 2353/3-11-2016) and The University of Cali-
fornia, San Francisco Institutional Review Board and was conducted
according to the Declaration of Helsinki Principles. All patients parti-
cipating in the study provided written, informed consent. Punch
biopsies of samples were snap frozen in liquid nitrogen.

Human total RNA isolation
Frozen tissue was homogenised on dry ice using a 2ml Kimble dounce
tissue grinder set (Sigma-Aldrich, D9063), suspended in RNA lysis
buffer from the Qiagen RNeasy Micro Kit (Qiagen, 74004) and passed
10 times through an 18 gauge syringe needle before proceeding with
RNA isolation according to the manufacturer’s protocol including the
optional DNA degradation step using the Qiagen RNase-Free DNase kit
(Qiagen, 79254). RNA quality was assessed on the Agilent 2100 bioa-
nalyser using the RNA 6000 nano kit (Agilent, 5067-1511).

Mouse total RNA isolation
Skin tumours were harvested and bisected with half placed into
RNAlater and snap frozen on dry ice. Tissue was homogenized using
the Precellys lysing kit (Bertin Instruments, KT03961-1-003-2) in a
Precellys Evolution tissue homogenizer. RNA was isolated using the
Qiagen RNeasy Mini Kit (Qiagen, 74104) according to the manu-
facturer’s protocol, including the optional DNAdegradation step using
the Qiagen RNase-Free DNase kit (Qiagen, 79254). RNA integrity was
analysed with a NanoChip (Agilent RNA 6000 Nanokit; 5067-1511).

RNA sequencing
Human RNA sequencing analysis was performed as previously
described52. Briefly, the TruSeq Stranded Total RNA protocol (part no.
15031048 Rev. D April 2013) was used to generate sequencing libraries
from 500ng-1ug total RNA. RNAseq libraries were sequenced on the
HISeq2000 platform. Murine RNA sequencing libraries were prepared
from 2μg of poly(A) selected RNA and were sequenced on an Illumina
NextSeq 500 sequencing system using the High-Output kit (75 cycles).
RNA sequencing raw read data was analysed using the nf-core/rnaseq
pipeline53,54. Sequencing reads were mapped to human genome
assembly GRCh38 or mouse genome assembly GRCm38 using STAR
aligner55 to generate quality control (QC) metrics and gene counts.
Samples passing gold standard QC metrics were retained for further
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analysis. Gene counts representing individual tumours were subse-
quently processed using the DESeq2 R package56,57. Normalised LogR
values were generated from gene count data for downstream clus-
tering and statistical analyses. Differential Gene Expression (DGE)
analysis was performed using standard DESeq2 workflows.

Statistical plotting
Boxplots and bar plots were generated by R packages ggpubr58 and
bbplot59. Correlation plots were generated using the ggplot2 R
package60,61. Heatmaps were generated using ComplexHeatmap62 and
circlize63 packages in R. Python graphing library Altair64 was used to
generate gene and GEMM signature density plots as well as immu-
noregulatory bubble charts. Horizon plots showing EDC gene expres-
sion were generated using R package Gviz265. Correlation heatmaps
were generated using the corrplot R package66.

Clustering analysis
LogR normalised gene expression values were used for patient clus-
tering.Hierarchical, PCA and tSNE analyseswere implementedby theR
packages, FactoMineR67, factoextra68 and Rtsne69, respectively. The
2000most variable genes asdeterminedbymedian absolute deviation
of the LogR normalised counts data were used for unsupervised
clustering.

Gene set enrichment analysis (GSEA) – human and mouse
RNAseq data
GSEA was performed using genes significantly and differentially
expressed between the indicated clinical designations or genetic
backgrounds. A cutoff of padj <= 0.05 & abs(log2FoldChange) >=
log2(2) was used to select genes for GSEA. The clusterProfiler70,
ReactomePA71, msigdbr72 and/or dnet73,74 R packages were used for
GSEA. Single sample gene set enrichment analysis (ssGSEA) was per-
formed using the GSVA75,76 and genefu77 R packages. ssGSEA scores
calculated for each sample were used for downstream statistical ana-
lysis and visualisation.

k-means clustering
Hierarchical k-means clustering was performed using normalised gene
expression representing the 2000 most differentially expressed
(unique) genes between clinical designations i.e normal versus pri-
mary, normal versus AK, AK versus primary using padj <= 0.05 &
abs(log2FoldChange) >= log2(2) as the gene selection cutoff. Hier-
archical k-means clusteringwas implementedby the hkmeans function
in the factoextra R package68. The number of k clusters was estimated
by “gap” statistic using the cluster R package78. The enrichment of a
given k-means cluster in a patient sample was determined using
ssGSEA as implemented by the GSVA R package75. Individual k-means
signature scores were then correlated with the DvP score. k-means
clusters were ranked according to their correlated enrichment scores
and visualisation.

Generation of differentiation versus progenitor (DvP) score
The DvP score was generated using early, late differentiated gene
signatures and progenitor gene signature sets derived from organo-
typic models of epidermal differentiation16. Normalised gene expres-
sion values, representing the combined set of signature genes, were
clustered using the R package ConsensusClusterPlus79. This analysis
identified two stable clusters of patient samples which were subse-
quently used as classes to define a signature of significantly and dif-
ferentially expressed genes representing both the differentiated and
progenitor-like states. This set of genes is referred to as the DP sig-
nature gene set. The DP signature gene set was used to generate a
signed score (i.e., DP Score) using the function sig.score from the R
package genefu77 and to rank patients along a continuum of
differentiation.

RTN analysis
Transcription Factor network inference was performed using the RTN
R package80 as described in81. Master regulators were identified using
the msviper function as implemented by the R viper package82. TF
regulon activity was calculated for each sample using the viper func-
tion. Inferred TF regulon activity scores were used for downstream
statistical analyses and visualisation. Regulon networkswere visualised
using the R package RedeR83.

CIBERSORTx and deconvolution analysis
CIBERSORTx analysis was implemented using the web framework
located at https://cibersortx.stanford.edu, which provides detailed
instructions for data input and computation18. Briefly, single cell RNA-
seq data representing individual normal and cSCC cell populations
obtained from Ji et al.17 were used todefine a signaturematrix consisting
of barcode genes that discriminate normal and neoplastic cell subsets
of interest. This signature matrix was then applied to bulk RNA
expression profiles to infer cell type proportions within each patient
sample. Inferred cell type proportions were used for downstream ana-
lysis. Deconvolutionof bulk cSCCRNAseqdatausinghumanhair follicle
cell state transcriptional signatures43 was performed using the Gene
expression deconvolution interactive online tool (GEDIT) found at:
http://webtools.mcdb.ucla.edu (Default settings). Cell state enrichment
scores for each patient sample were plotted in a barplot either together
(relative enrichment) or individually. Deconvolutionof normalisedgene
expression was also performed by the xCELL package in R29 to identify
immune cell types and/or phenotypes enriched in patient samples.
Immune scores generated by the xCELL algorithm were used for
downstream statistical analysis and plotting.

Copy number variant analysis
Copynumber variation analysis was carriedout onbulk humanRNaseq
data using CaSpER33 (with default settings). RNAseq data from normal
sun exposed skin or normal perilesional skin were used as controls.
Final copy number data was plotted in R using ggplot2.

GEMM signature and cSCC enrichment analysis
LKT, LPT and LNPT gene signatures were generated by filtering repre-
sentative differentially expressed genes exhibiting an adjusted P value
<= 1e-3 andLog2FoldChange>=1. Selectedmouse signaturegeneswere
then converted to a supported human gene ortholog using themsigdbr
R package72. Orthologous LKT, LPT and LNPT human gene signatures
were used to perform ssGSEA as described above to generate patient
specific enrichment scores. ssGSEA enrichment scores were subse-
quently used for downstream statistical analysis and visualisation.

Murine clustering analysis
UV induced mouse cSCC data8 was intersected with scaled GEMM
RNAseq data in R, Uniform Manifold Approximation and Projection
(UMAP) was carried out on the combined data within R using the
package UMAP labelled with directlabels and visualised using
ggplot260,84.

Murine studies
All animal experiments were performed in accordance with UK Home
Office regulations (project licence 70/8646), and adherence to the
ARRIVE guidelines, and were reviewed and approved by the Animal
Welfare and Ethical Review Board of the University of Glasgow. Mice
usedwere segregating for C57BL/6J and S129 background. Alleles used
throughout this studywere: Lgr5-cre-ERT285, Tgfbr2fl/fl86,KrasG12D87, Tp53fl,
Tp53R172H88, Notch1fl/fl89. A mix of males and females were used.
Recombinationwas inducedwith one intraperitoneal injection of 3mg
Tamoxifen (Sigma) followed by one injection of 2mg Tamoxifen daily
for three days. Mice were induced at 6–15 weeks of age, monitored
thrice weekly and humanely culled at clinical endpoint defined by
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tumour burden.Micewere censored at 550days after initial Tamoxifen
injection. Mice of both sexes were included in the ageing cohorts.

Immunohistochemistry
Murine tumour tissues were fixed in 10% neutral-buffered formalin
overnight and embedded in paraffin. All Immunohistochemistry (IHC)
staining was performed on 4 µm formalin fixed paraffin embedded
sections (FFPE) which had previously been heated at 60 °C for 2 h. The
following antibodies were used on a Leica Bond Rx autostainer: CD3
(Abcam, ab16669, clone SP7, 1:100), CD4 (eBioscience, 14-9766-82,
clone 4SM95 1:500), CD8 (eBioscience, 14-0808-82, clone 4SM15,
1:500), F4/80 (Abcam, ab6640, clone A3-1, 1:100) and LY6G (BioXcell,
BE0075-1, clone RB6-8C5, 1:60,000). All FFPE sections underwent on-
board dewaxing (Leica, AR9222) and antigen retrieval using appro-
priate retrieval solution. Sections for F4/80 staining underwent anti-
gen retrieval using enzyme 1 solution (Leica, AR9551) for 10minutes at
37 °C. Sections for CD3, CD4, CD8, and Ly6G underwent antigen
retrieval using ER2 solution (Leica, AR9640) for 20min at 95 °C. Sec-
tions were rinsed with Leica wash buffer (Leica, AR9590) before per-
oxidase block was performed using an Intense R kit (Leica, DS9263).
Sections for CD4, CD8 F4/80 and LY6G had the blocking solution
applied from the Rat ImmPRESS kit (Vector Labs,MP-7404) for 20min.
Sections were rinsed with wash buffer and then the primary antibody
applied at the optimal dilution (CD3, 1/100; CD4, 1/500; CD8, 1/500;
F4/80, 1/100; Ki67, 1/1000; Ly6G, 1/60,000). The sections were rinsed
with wash buffer and appropriate secondary antibody applied for
30min. Sections for CD3, had Rabbit EnVision applied, CD4, CD8, F4/
80 and LY6G had Rat ImmPRESS secondary solution applied. The
sections were rinsed with wash buffer, visualized using DAB and then
counterstained with Haematoxylin in the Intense R kit.

For IHC analysis, stained slides were scanned on the Leica Aperio
AT2 slide scanner at 20x magnification. Image analysis was performed
using the Indica Labs HALO® image analysis platform (Indica Labs,
v3.1.1076.363) with the CytoNuclear v2.0.9 module. Briefly, the num-
ber of staining positive cells per mm2 of tissue area was calculated,
where the area of the tumour/stroma border was classified as ~100μm
either side of the border and the tumour centre as >200μm from the
tumour/stromaborder. For each segment 10 square regions of interest
(200μm each side) were analyzed.

Statistical analyses
Statistical analysis of RNaseq data is described above. Statistical ana-
lysis for IHC analysis was performed with GraphPad Prism v9.0.0
(GraphPad Software) using two-tailed Welch’s t test. Statistical com-
parisons of survival data were performed using the log-rank (Mantel-
Cox) test. For individual value plots, data are displayed as mean +/-
standard deviation. Statistical tests and corresponding P values are
indicated in the figure legends and figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Murine transcriptomic data are publicly available through the Gene
Expression Omnibus (GEO) with the accession code GSE199070 and
human transcriptomic datasets arepublicly available through theNCBI
BioProject (ID PRNJA844527). The remaining data are available within
theArticle, Supplementary Information or sourcedatafile. Sourcedata
are provided with this paper.
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