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APOGEE 2: multi-layer machine-learning
model for the interpretable prediction of
mitochondrial missense variants

Salvatore Daniele Bianco1,2, Luca Parca 1,3, Francesco Petrizzelli1,
Tommaso Biagini1, Agnese Giovannetti 4, Niccolò Liorni1,2, Alessandro Napoli1,
Massimo Carella5, Vincent Procaccio6,7, Marie T. Lott 7, Shiping Zhang7,8,
Angelo Luigi Vescovi9, Douglas C. Wallace7,10, Viviana Caputo2 &
Tommaso Mazza 1

Mitochondrial dysfunction has pleiotropic effects and is frequently caused by
mitochondrial DNA mutations. However, factors such as significant variability
in clinicalmanifestationsmake interpreting thepathogenicity of variants in the
mitochondrial genome challenging. Here, we present APOGEE 2, a
mitochondrially-centered ensemble method designed to improve the accu-
racy of pathogenicity predictions for interpreting missense mitochondrial
variants. Built on the joint consensus recommendations by the American
College of Medical Genetics and Genomics/Association for Molecular Pathol-
ogy, APOGEE 2 features an improved machine learning method and a curated
training set for enhanced performance metrics. It offers region-wise assess-
ments of genome fragility and mechanistic analyses of specific amino acids
that cause perceptible long-range effects on protein structure. With clinical
and research use inmind, APOGEE 2 scores and pathogenicity probabilities are
precompiled and available in MitImpact. APOGEE 2’s ability to address chal-
lenges in interpreting mitochondrial missense variants makes it an essential
tool in the field of mitochondrial genetics.

Mitochondria are responsible for many of the most important func-
tions in eukaryotic cells. They use oxidative phosphorylation
(OXPHOS) to produce large amounts of adenosine triphosphate (ATP),
store calcium for cell signaling, generate heat, andmediate cell growth
and death. Mitochondria, in contrast to the nuclear genome (nDNA),
have a smaller repertoire of DNA-repair pathways. They counteract
Muller’s ratchet1, the progressive accumulation of deleterious

mutations, with aprocess known as themtDNAbottleneck, which,while
controversial2, explains the increase in cell-to-cell variability in termsof
mutant load during development. A unique mechanism for the
degradation of mutated DNA molecules3 eliminates defective cells,
allowing the mutant load to be stabilized over generations. Despite
this, the mtDNA to nDNA variant ratios range from a few folds in non-
vertebrates up to at least 20 folds in vertebrates4. The lack of
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protective histones in mitochondria, the proximity of mtDNA to the
electron transport chain, which is a primary cellular source of reactive
oxygen species, or a dNTPpool imbalance that leads todecreasedDNA
polymerase gamma fidelity5 are all factors that could affect these
ratios.

Mutations in themtDNA are at the core of many human diseases6.
Currently, ~1000 different mutations are associated, based on litera-
ture, with human diseases in MITOMAP7, ~10% of which with compel-
ling evidence of being pathogenic based on published literature
(named as confirmed in MITOMAP), ~86% have not been definitively
shown to cause disease (named as reported), and 4% including syner-
gistic and conflicting variants. Totally, 94% of confirmed and reported
variants are single nucleotide variants (SNVs) and span the whole
genome. Missense variants account for 43% of all SNVs in MITOMAP
(Fig. 1a); 58%of themare present in theGenomeAggregationDatabase
(gnomAD)8 and 65% in HelixMTdb9 (Fig. 1b).

As one might anticipate, the majority of gnomAD’s missense
variants are benign basedonClinVar, but gnomADalso includes twelve
MITOMAP-confirmed missense variants and an additional three that
ClinVar classifies as pathogenic (Supplementary Data 1). In the case of
new variants or without a confirmed functional effect, one should
apply the full 2020 ClinGen/ACMG/AMP guidelines10. For allele fre-
quency (AF), they allow an evidence weight of “supporting” when a
variant is found at an AF < 1/50,000 (<0.002%) in mitochondrial-
specific databases (pathogenic criteria code “PM2”), “likely benign”

when AF >0.5% (“BS1”), or “stand-alone benign” when AF > 1% and
there is no other conflicting evidence, such as a novel occurrence in a
major haplogroup branch to support pathogenicity (“BA1”). While
confirmed variants are mostly rare8, reported, conflicting, and syner-
gistic variants are farmore common. Indeed, there are eight confirmed
variants in gnomAD with AF ≥0.002% (Supplementary Data 1) and 187
reported variants with AF ≥0.002%, of which 28 with AF ≥0.5% and
16 ≥ 1%. Similarly, HelixMTdb contains seven confirmed variants with
frequencies≥0.002% (SupplementaryData 1) and 191 reported variants
≥0.002%, of which 23 have AF ≥0.5% and 13 ≥ 1% (Fig. 1c). Because
neither of the databases is enriched for mitochondrial disorders or
other clinical phenotypes, compared to theGenBankmtDNA sequence
repository, these variants are unlikely to be all pathogenic. As a result,
variant pathogenicity can be challenging to predict as there are several
biological mechanisms that concur with the functional behavior, e.g.,
epistasis and modulatory effects, which cannot be solely based on
allelic frequency.

Inconsistencies were mitigated with the introduction of in silico
prediction methods in 2015 by the ACMG and AMP’s joint consensus
recommendations11, which were later modified10 for themitochondrial
genome specifically. Variants were further given supporting evidence
of benign status (“BP4”) when multiple lines of computational evi-
dence suggested no impact on the gene or gene product (coding non-
synonymous variants: APOGEE score ≤0.5; tRNA variants: MitoTip12

<50th percentile and HmtVar13 < 0.35). On the contrary, variants were
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Fig. 1 | Distribution of pathogenic and likely pathogenic missense variants in
the mitochondrial genes and population databases. a Counts (top) of reported
and confirmed missense variants for all mtDNA protein-coding genes and their
frequency (bottom) normalized on gene length. b Common missense variants
between HelixMTdb, gnomAD, and MITOMAP’s confirmed and reported variants.
c Distribution of heteroplasmic (gnomAD, n = 164, HelixMTdb, n = 204) and
homoplasmic (gnomAD, n = 187, HelixMTdb, n = 198) reported variants in gnomAD

(left) and HelixMTdb (right) based on their AF. Dashed lines represent the 0.002%,
0.5%, and 1% AF thresholds. Whiskers represent the 95%CIs around themedian; the
box limits represent the 25th and 75th percentiles (Q1 and Q3). GnomAD variants’
AF values range from 1.77E−05 to 3.70E−04 (heteroplasmic) and from 1.77E−05 to
0.99 (homoplasmic). HelixMTdb variants’ AF values range from 5.10E−06 to 1.47E
−03 (heteroplasmic) and from 5.10E−06 to 0.99 (homoplasmic). Red dots are
outlier variants by AF.
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assigned an evidenceweight of supporting pathogenicity (“PP3”) when
APOGEE > 0.5, MitoTip >50th percentile, and HmtVar ≥0.35.

The first version of APOGEE14 was chosen over a slew of other
options, the majority of which were designed to work with nuclear-
encoded genes. They had poor prediction records when applied to
mtDNA variants, evoking the historical congruency issue among
predictors15. As a result, APOGEEwas built as an ensemblemethod that
was trained on mitochondrial-specific features that contributed to the
best classification performance among all competitors.

Here, we present its latest iteration. With a better, state-of-the-art
machine learningmethod and a curated training set, APOGEE version 2
improves its ownperformance.We tested its ability to spot pathogenic
and neutral16 variants in the mitochondrial genome and profiled its
time-dependent “learning curve” to demonstrate how the steadily
growing number of high-quality annotated mtDNA variants affects its
classification performance. We have pre-calculated the prediction
scores and pathogenicity probabilities of all possiblemissense variants
of themtDNAand setfive classes of pathogenicity to support clinicians
and geneticists in reporting their genetic diagnoses. Finally, we have
conducted a mechanistic analysis of specific amino acids that cause
perceptible long-range effects on the protein structure to discuss
the significance of strengthening protein structural features in the
training set.

Results
Characteristics of the training set
The APOGEE 2 training set (Dataset 1) contains 140 pathogenic and
likely harmful variants and 1734 benign and likely harmless variants
that have been manually curated (see Methods for a detailed
description of the datasets). These were annotated with
mitochondrially-tailored evolutionary, positional, and structural
features and fourteen pathogenicity assessments of in silico pre-
dictors. Most of their Pearson correlation coefficients were in the
range (−0.5, 0.5); MutationAssessor, SNAP, and PhD-SNP exhibited
absolute Pearson’s r values > 0.7 with more than one other feature
(Supplementary Fig. 1a and Supplementary Data 2).

Features were not always available for all variants. Missing values
accounted for 1% of the evolutionary scores and in silico predictions
and 0.2% of structural and positional values. We imputed them by
using a Random Forest-based iterative imputer, which displayed the
lowest normalized root mean squared error (NRMSE) values of all
tested imputation methods (Supplementary Fig. 1b).

Training, testing, and performance assessment
We examined different machine learning (ML) classification methods
to sort deleterious variants, searching for the best-performing one,
while all were designed to properly tackle the class imbalance in
Dataset 1. Each method was instantiated during a 20-fold cross-vali-
dation (CV) repeated five times, where 19 folds of the dataset were
iteratively used for the training and tuning of the hyperparameters,
and the remaining foldwas used for testing. Eachmethodwas tunedby
attempting several combinations of hyperparameters (Supplementary
Data 3). This was done using an inner 10-fold Grid-Search (GS) CV.

With thehighest average test auPRC (0.716, Fig. 2a), auROC (0.95),
and the best records for nearly all performance metrics (Supplemen-
tary Data 4), the KNN Bagging balanced through Random Under-
Sampling (RUS) and Synthetic Minority Oversampling Technique
(SMOTE)method (KNN_RusSmote) stood out as the best and was then
chosen as the APOGEE 2ML reference method. The best hyperpara-
meters identified by GS were: “3” for the number of KNN’s neighbors;
the inverse Euclidean distance as a metric to weigh the neighbors’
importance; 1/4 as the pathogenic/neutral variant ratio before the
SMOTE step; and 1/4 as the ratio of features used by each base learner
over the total number of selected features. It used 17 out of the 22
considered features, where PhastCons 100 V, MutationTaster,

FatHmmW, CADD, and ΔΔG were, in fact, discarded in the feature
selection step (Fig. 2b).

On Dataset 1, APOGEE version 1 underwent a second round of
testing and received an average auPRC of 0.573 (Fig. 2a) and auROC of
0.855. The classification performance of both APOGEE versions were
also compared using the test set of our previous work15, which inclu-
ded the union of MITOMAP and VariBench variants available at the
timeof thatwriting (see Supplementary Table 2 in15) purged of variants
overlapping with the APOGEE 2 training. APOGEE 2 outperformed its
former version (0.99 vs. 0.87 auROC, Fig. 2c; 0.97 vs. 0.65 auPRC).

Compared with other meta-predictors, APOGEE 2 exhibited the
best performance metrics, including auPRC (Fig. 2d), but the sensi-
tivity where MtoolBox and Condel excel at the expense of specificity,
which ranked worst for both tools (Supplementary Data 4).

To evaluate whether expanding APOGEE 2’s training set would
improve its performance in future releases, we adopted the same cri-
teria used to create Dataset 1 to generate seven training sets starting
from the MITOMAP content from 2008 to 2020, which was randomly
retrieved once every two years. The 2022 content was used as a test
set. We found that the models’ performance in sorting pathogenic
fromneutral variants in the 2022dataset increasedmonotonically over
time (Pearson’s r: 0.91, p-value: 0.004) but at an increasingly slower
rate (Fig. 2e, Supplementary Data 10), indicating that expanding the
training set in subsequent iterationswill not have asmuch of an impact
on APOGEE 2’s performance as adding more informative fea-
tures would.

Whole-genome predictions
We used APOGEE 2 to predict the pathogenicity of all 24,190 possible
missense mtDNA variants (Supplementary Data 5) and made them
available in MitImpact.

Scores and pathogenicity probabilities. Prediction scores are
numeric anddonot follow a conventional probability density function.
The exact frequency distribution is shown in Fig. 3a. Scores range from
0 (neutral or benign) to 1 (deleterious or pathogenic). Using Bayesian
reasoning, we could determine the posterior pathogenicity probability
associated with all missense mitochondrial variants, ranging from 0
(not pathogenic) to 1 (pathogenic). Since the posterior probability
monotonically increases with the APOGEE 2 score, ranking variants by
one metric or the other is equivalent.

Misclassification. The misclassification analysis calculated for any of
the 100 test folds revealed that 12.57% of the pathogenic variants were
deemed benign, while 9.75% of the neutral variants were misclassified
as deleterious (Fig. 3b).

Positionality. The dependency of the APOGEE 2 score on the var-
iants’ locations in the protein’s 3D structures placed on a bisector of
a 3D space (Fig. 3c) was quantified using Moran’s index. For this
analysis, we recalculated the APOGEE 2 scores by excluding the
spatial features from the learning workflow in order to avoid any
positional bias. We found significant positive spatial autocorrelation
among the predicted pathogenic variants in each mitochondrial
complex (one-sided Moran’s index permutation p-value < 10E−5 for
each complex except MT-ATP8, for which p-value = 0.02), implying
that some regions of these proteins may be less tolerant to amino
acid changes than others. We performed this analysis with the
quadratic distance decay function as a measure of the proximity
between amino acids. We also repeated the test using binary
proximity matrices, computed at different cutoff distances as
described in17. ThemaximumMoran’s index has been obtainedwhen
setting a cutoff distance between amino acids of 6 Å for Complex I,
Complex IV, and MT-ATP6, and 8 Å for Complex III (Fig. 3d); no
significant results were obtained for MT-ATP8.
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We localized spatially autocorrelated high- and low-risk regions
using the LISA index. The most significant regions (adjusted one-
sided LISA permutation p-value < 0.01) were reported in Supple-
mentary Data 6. The APOGEE 2 score threshold used to sort low-
from high-risk amino acids in this analytical step was 0.379, which is
the median recalculated APOGEE 2 score. For example, focusing on
Complex I, which is composed of seven mtDNA-encoded proteins,
we identified several neutral hotspots spread throughout MT-ND2
and several fragile regions, which included the transmembrane
helices of MT-ND5, MT-ND4, and MT-ND1, the transmembrane helix
3 (TMH3) of MT-ND6 and the MT-ND3 loop. The latter two regions
include variants known to impact important physiological

mechanisms, which were examined more deeply in the “Evaluation
of variants that alter the protein structure non-locally”
section (Fig. 3e).

Categorization. Interpreting the evidence categories given in Tables 3
and 4 of11 as categorical, conditional probabilities or odds of patho-
genicity, in line with18, and aiming to provide clinical translationality to
APOGEE 2 predictions, we adopted the following ranges of probability
and set four classes of pathogenicity: benign ≤0.001, 0.001 < likely
benign ≤0.1, 0.9 ≤ likely pathogenic < 0.99, pathogenic ≥0.99. When
none of the previous criteria are met, i.e., when the posterior patho-
genicity probability of a variant is between 0.1 and 0.9, a variant has

Fig. 2 | APOGEE 2 performance evaluation. a Average test auPRC values of the
selected ML methods, calculated during the training phase. Support Vector
Machine classifier with radial basis functions kernel (rbfSVC), Balanced Bagging
using Gaussian Naive Bayes (GNB_BalancedBagging) and K-Nearest Neighbors
(KNN_BalancedBagging) as base estimators, Balanced Random Forest (Bal-
ancedRF), KNN Bagging balanced through RUS and SMOTE techniques
(KNN_RusSmote).b Feature importance assessed on the wholeDataset 1; threshold

set to 1%. c AuROC values calculated on 118 and 13 neutral and pathogenic test
variants for APOGEE versions 1 and 2. d Performance comparison of APOGEE 2
versus other meta-predictors in terms of auROC. APOGEE 2’s auROC is reported as
the mean ±95% CIs obtained through cross-validation. e Time-dependent APOGEE
2’s auROC values obtained by predicting MITOMAP 2022 upon training on the
2008–2020 contents; for each year, the sample mean distribution is reported
in gray.
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uncertain significance (VUS) (Supplementary Data 5).With this setting,
all known pathogenic variants in Dataset 1 were correctly labeled
pathogenic and likely-pathogenic, except for seven of them, which
were annotated as VUS. Regarding the harmless variants in Dataset 1,
190 were annotated as VUS, while the remaining 1544 were correctly
labeled benign and likely-benign (Supplementary Data 5). Nearly all
variants in Datasets 2 and 3 (Supplementary Data 7), which contain

only potentially harmless variants and therefore were used to evaluate
APOGEE 2’s specificity, were classified as benign or likely-benign by
APOGEE 2 (χ2(1, N = 36) = 16.19, p-value = 5.73E-05 and χ2(1,
N = 35) = 24.10, p-value = 9.15E−07, respectively for Datasets 2 and 3).
Noneof the variants in Dataset 2were classified aspathogenic or likely-
pathogenic, while one variant from Dataset 3 was classified as likely-
pathogenic.
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Variant functionality prediction in human variation databases
As a further test of the negative variants, we used APOGEE 2 to score
every mitochondrial missense variant in the gnomAD v3.1.2 and
HelixMTdbdatabases. Heteroplasmic variantswere 1767 (AF rangemin
0.0017% - max 0.037%) in gnomAD and 3058 (AF range min 0.0005% -
max 0.15%) in HelixMTdb. The homoplasmic variants were 2177 (AF
rangemin 0.0017% -max 99%) and 2894 (AF rangemin 0.0005% -max
99%). The predicted pathogenic and likely pathogenic variants for
both databases were comparable (Supplementary Fig. 2a, b), even
when considering AF < 0.002% variants, irrespective of their hetero-
plasmy levels. GnomAD and HelixMTdb showed, in fact, a high and
significant positive correlation between the allelic frequencies of their
heteroplasmic (Pearson’s r: 0.88, p-value < 2.2E−16) and homoplasmic
(Pearson’s r: 0.91, p-value = 6.434E−11) variants.

It is important to note that HelixMTdb was not enriched in
patients with mitochondrial diseases, but there were no exclusion
criteria based on mitochondrial disorders9. On the other hand, while
gnomAD declares that some individuals with severe disease may still
be included in the database, albeit likely at a frequency equivalent to or
lower than that seen in the general population, they have explicitly
removed individuals known tobe affectedby severepediatric diseases,
aswell as theirfirst-degree relatives. Thismight explain the presenceof
both likely and, frankly, pathogenic variants in both datasets.

The pathogenicity probability values for ClinGen’s neutral var-
iants, which were collected in Dataset 4 (Supplementary Data 7), ran-
ged from 0 to 0.73. Dataset 4 (see Methods) contains neutral variants
that were evaluated by the ClinGen mitochondrial VCEP team and,
therefore, are supposedly more likely to be neutral than those con-
tained inDatasets 2 and 3. NoneofDataset 4 variantswerepredicted as
pathogenic or likely-pathogenic by APOGEE 2.We also verified that the
APOGEE 2 scores of these variants were lower on average than those of
the neutral variants in Dataset 1 (one-sided Mann–Whitney U test,
U = 152,940, p-value = 2.80E−09; Supplementary Fig. 2c), thereby
confirming the ability of APOGEE 2 to also quantify the level of cer-
tainty of being a neutral variant.

Evaluation of variants that alter the protein structure non-
locally
Variants that have structural and non-local effects may significantly
impair APOGEE 2 prediction performance. This is the case of
NC_012920.1:m.10161 A >C19, (YP_003024033.1:p.Thr35Pro), which is
located in the MT-ND3 loop (residues 24–54) and is contiguous to the
m.10158T >C (p.Ser34Pro) common variant, reported as “confirmed”
byMITOMAP, as “pathogenic” in ClinGen, and is associated with Leigh
disease orMELAS syndrome. The loop is between two transmembrane
helices (TMH 1 and 2) and includes Cys39. In mammalian Complex I,
such a residue is exposed during active mitochondrial respiration and
is thought to be necessary for the reversible transition between cata-
lytically active and inactive states19. Intuitively, the loop’s dynamics
may influence Cys39 exposure and, as a result, the active-inactive state
transition. Multiple MD simulations revealed that the Ser34Pro and
Thr35Pro mutants affect the loop flexibility significantly and similarly
to the wild-type protein, and the other twomutant systems, Ser34Phe
and Ser34Tyr (Fig. 4a–d), which were chosen because of their allelic
frequencies (0.013% and 0.002% in MITOMAP, respectively), were
contiguous andnot associatedwith any relevant phenotype. TheRMSF
profiles (Fig. 4c) of the heavy atoms in part of the loop (residues
40–50) were higher for Ser34Pro and Thr35Pro than the wild-type and
slightlymore rigid in thefirst part (residues 24–40). On the other hand,
Ser34Phe and Ser34Tyr displayed flexibility profiles that were similar
to those of the wild-type. This can also be observed in the 3D dynamic
representation (Fig. 4d). The loss of essential interactions between
loop residues and nearby subunits brought on by Thr35Pro, such as
residues 129 of MT-ND1 and 49 of MT-ND3 and residues 76 of MT-ND6
and 48 ofMT-ND3, is what leads to the flexibility alterations. APOGEE 2

classifies this variant as VUS (score 0.51, probability = 0.59) even
though we have confirmed it to be pathogenic (data not shown).

A second case regards NC_012920.1:m.14538A>G, YP_003024037.
1:p.Phe46Leu in MT-ND6, reported in the literature20 as a novel patho-
genic LHON variant but classified as likely-benign by APOGEE 2 (score
0.08, probability =0.002). It is proximal to the transmembrane helix
TMH3 (residues 52–74) in the closed state and interrupted by a bulge in
the open state that involves residues 60–6521 of MT-ND6, which actively
participates in the Complex I closed conformation, rotating to lose its
characteristic π-bulge and consequently disrupting the helix22. A few
pathogenic mutations were found in the helix. One of them, m.14459
G>A, hits the residue Ala72, reported in MITOMAP and ClinGen as a
pathogenic change in valine and associated withmultiplemitochondrial
phenotypes. It is interesting to note that the same residue is also hit by a
prolinevariant (Ala72Pro,m.14460C>G). Theprolinevariant is included
in Dataset 1 because it is deemed benign due to its allelic frequency of
0.011%, but it is categorized as VUS by APOGEE 2 (score =0.64, prob-
ability =0.82). We have compared the long-range impact of p.Phe46Leu
onTMH3with that causedbyAla72Pro andAla72Val by simulation. After
200ns of simulation, we observed that all three mutants altered the
helix’s folding to different extents, with a more evident destructuration
caused by Ala72Pro and Ala72Val than Phe46Leu (Fig. 4e).

Discussion
APOGEE 2 is an ensemble method that addresses the need for a
pathogenicity prediction tool with increased accuracy for interpreting
missense mtDNA variants. We have shown that it outperforms the
former version due to the availability of more mitochondrially-
centered features, their manual curation, and the adoption of a more
sophisticated ML protocol. Overall, APOGEE 2 offers the best perfor-
mance metrics when compared to other meta-predictors. It is inter-
esting to note, though, that Condel andMtoolBoxexcel in sensitivity at
the expense of their specificity (Supplementary Data 4). APOGEE 2
outperforms several other predictors as well, i.e., MutPred and
MutPred223, and MutationAssessor, CADD, and EFIN (Supplementary
Fig. 3), which were used for APOGEE 2’s training.

EFIN HD is the only predictor with a higher specificity score. It
identifies 1633 of 1734 likely neutral variants versus 1544, which were
identified by APOGEE 2. It should be noted, though, that the degrees of
certainty of the pathogenic and neutral variants of our training set
differ. The pathogenicity of variants is based on the literature. Neu-
trality is assumed by allelic frequency considerations and available
MITOMAP annotations. Given that some variants with literature
reports of suspected pathogenicity show frequency levels higher than
0.002% in gnomAD and HelixMTdb, it is also likely that some variants
that make up the neutral subset of Dataset 1 are actually pathogenic.
The reverse is not obvious.Wehave then testedAPOGEE 2 and EFINHD
on ClinGen’s recently curated neutral variants; in general, APOGEE 2
assigned lower pathogenicity scores to ClinGen’s neutral variants than
EFIN HD did (one-sided Wilcoxon signed-rank test preceded by
quantile transformation of both scoring systems; the EFIN score has
been inverted since it is proportional to the neutrality of the variant;
ranks sum= 3236, p-value = 0.003).

We have demonstrated that the APOGEE 2 pathogenic scores
exhibit significant spatial autocorrelation, suggesting that some pro-
tein structural regionsmaybe less tolerant to amino acid changes than
others. As a result, APOGEE 2 can predict mitochondrial-specific high
and low-risk regions, but itmay still be ineffective for variants that have
non-local structural effects, particularly if the involved regions are low-
confidence/destructured. The flexibility of an MT-ND3 loop, for
example, seems tobe the key feature for evaluating the functionality of
Thr35Pro. Thr35Pro and Ser34Pro were shown to change the flexibility
of the loop-spanning residues 24–40 more than Ser34Tyr and Ser34-
Phe, two rare variants with no associated phenotypes and dynamics
that were similar to the wild-type protein. The motion of this loop was
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critical in the establishment of essential links with neighboring sub-
units, whichwere broken by Thr35Pro. Them.14538 A >G, p.Phe46Leu
pathogenic variant is deemed likely-benign by APOGEE 2 because its
effect is not localized but instead works to disrupt the nearby TMH3
helix, which in turn plays a crucial role in the Complex I closed
conformation.

This factor may also have an impact on how missense variants
are interpreted in terms of their pathogenic potential when com-
bined with other variants, e.g., synergistic variants, or in the context
of particular mtDNA haplogroups24. Synergistic variants, in parti-
cular, can be challenging to assess as they can be common in control
populations and involve poorly conserved residues25. These con-
siderations may explain the fact that only one of the 17 missense
variants noted in their original publications as being possibly
synergistic7 is predicted as likely-pathogenic by APOGEE 2, which
instead classified the remaining 4 as benign, 9 likely-benign, and 3
VUS (Supplementary Data 8).

Narrowing the number of VUSs and, therefore, performance
improvements are possible by adding more accurate structural fea-
tures to variants and accounting for their epistatic interactions, still
considering that the growth and curation level alone of the true
positive MITOMAP variants in the past 14 years contributed to a
smaller and smallermonotonic increase in the APOGEE 2 performance.
Therefore, thresholds of pathogenicity will undoubtedly change as
more features are added to the predictor, and more clinical or func-
tional evidence is published. Intra-VUS soft thresholds are desirable
since clinicians and researchers may be especially interested in dif-
ferentiating between a high-scoring VUS (i.e., closer to the likely
pathogenic threshold) and a low-scoring VUS (i.e., closer to the likely
benign threshold). They may want to investigate high or low-scoring
VUSs deeperwith additional functional assayswith the ultimate goal of
moving variants to the final category, i.e., likely pathogenic or likely
benign. An indication of this has been added to the MitImpact live
report. This will be an ongoing, dynamic process, and users are
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Fig. 4 | Long-range effects analysis through molecular dynamics simulation.
a Structure of the mtDNA-encoded subunits of the complex I membrane arm.
b Average structures of the wild-type, Ser34Pro, and Thr35Pro MT-ND3 protein
models (left) and wild-type, Ser34Phe, and Ser34Tyr (right). c RMSF profiles of the
heavy atoms of the MT-ND3 loop (residues 24–54) for both wild-type andmutants.

d 3D representations of the dynamics of the wild-type, Ser34Pro, and Thr35ProMT-
ND3 protein models. In all subfigures b–d, wild-type is colored green, Ser34Pro is
yellow, Thr35Pro is red, Ser34Phe ispink, andSer34Tyr is cyan.eAverage structures
of the MT-ND6 protein. TMH3 is highlighted in dark orange.
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encouraged to refer to the website for the most up-to-date thresholds
and scores.

Molecular dynamics simulations of a significantly high number of
variants that may, even if distantly, alter the functional structure of
critical components of the mitochondrial proteins or cooperate with
other variants to cause a significant respiratory-chain deficiencymight
contribute in this direction. A pilot project has already started, and
preliminary results are available on MitImpact’s website (https://
mitimpact.css-mendel.it/).

To facilitate the use of the APOGEE 2 scoring and pathogenicity
probabilities by clinicians and researchers, we have pre-computed
these calculations for all missense variants andmade them available in
MitImpact through its web interface and as a flat file. Variant curators
using the current ACMG/AMP modified guidelines for mtDNA
variants10 should preferentially use the APOGEE 2 scores. Bayesian
probabilities of pathogenicity are also given for those using the APO-
GEE 2 predictions on a standalone basis.

Methods
Datasets
Four disjoint sets of variants were used in this work. Dataset 1 com-
prises 1874 non-synonymous mtDNA variants, divided into 1734
deemed benign and 140 pathogenic variants (Supplementary Data 5).
The former set was obtained from MITOMAP’s “general” variants
(accessed on April 20, 2021), which were purged of overlapping
MITOMAP’s “disease” variants and variants with ClinGen’s pathogenic
criteria code “PM2.” The pathogenic set was made up of MITOMAP
“disease” variants, including 41 confirmed and 99 reported variants.
OverlappingMITOMAP’s “general” variantswerediscarded.Neither set
contained any synergistic or conflicting variants. Dataset 2 was
obtained fromgnomADversion 3.1.2. It contained 36missense variants
not present in the training set, which exhibited allelic frequencies
≥0.002% both in heteroplasmy and homoplasmy. Dataset 3 was
extracted from HelixMTdb ver. 20200327 and filtered as Dataset 2.
Twelve variants were sharedwith Dataset 2 and discarded, and 35 were
unique to this dataset. Dataset 4 fetches variants from the benign/
likely-benign variant sets approved by the Mitochondrial Variant
Curation Expert Panel (VCEP) of ClinGen (https://clinicalgenome.org/)
as having met the following criteria for mtDNA variants10: benign var-
iants in the set had allele frequencies >1% (“BA1”) in either MITOMAP,
gnomAD, or HelixMTdb and without disease reports or negative in
silico predictors; likely benign variants in the set had allele frequencies
of 0.5–1% (“BS1”) in MITOMAP, gnomAD, or HelixMTdb and without
disease reports or negative in silico predictors, and additionally had
either a supporting in silico tool score for benignity or a resulting
synonymous amino acid change. All other variants meeting the AF
cutoffs but with possible disease associations are referred to the
ClinGenmitochondrial VCEP for individual curation. The current set of
benign/likely-benign variants meeting the ClinGen criteria was acces-
sed for this study on September 7, 2022, and released while Dataset 1
was already made up. We gathered 135 neutral missense variants in
total, dropped 8 VUS variants, and found that 97 of them overlapped
Dataset 1. Datasets 2–4 were used to evaluate the specificity of the
APOGEE 2 predictions (Supplementary Data 7).

Features
APOGEE 2 was trained on three classes of information: evolution,
pathogenicity predictions, and protein structural features.

Evolution. PhyloP and PhastCons conservation scores on 100 verte-
brate species were obtained from the UCSC Table Browser. Empirical
substitution scores were obtained from the MtMam rate matrix, built
on 12 proteins, i.e., ATP6, ATP8, COX1, COX2, COX3, CYBB, ND1, ND2,
ND3, ND4, ND4L, and ND5, which are located on the heavy strand of
the mtDNA (3331 sites)26. Data are from 20 species of mammals and

three close outgroups, i.e., Wallaroo, Opossum, and Platypus. The rate
matrix was downloaded from https://github.com/abacus-gene/paml/
blob/master/dat/mtmam.dat.

Pathogenicity predictors. Pathogenicity scores were retrieved for the
following software packages: PolyPhen227, SIFT28, fathmm29,
PROVEAN30, MutationAssessor31, EFIN32, CADD33, PANTHER34, PhD-
SNP35, SNAP36, and MutationTaster237.

Structural features. The 3D structures of the 13 proteins were
retrieved from the RCSB Protein Data Bank (PDB) with the following
IDs: 5xtc for the Respiratory Complex I (s, i, j, r, k, l, and m chains for
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, and MT-
ND6, respectively); 5z62 for the Cytochrome C Oxidase (chain A for
MT-CO1, chain B for MT-CO2, and chain C for MT-CO3); 5xte for the
Respiratory Complex III (chains J and V for Cytochrome b). Since MT-
ATP6 and MT-ATP8 were not associated with any resolved X-ray
structure, their predicted structures were downloaded from the
AlphaFold238 Protein Structure Database39. The five PDB files were
placed on the bisector of a 3D space and spaced 3d apart, where
d = 20Å. The total energy variation (ΔΔG, Kcal/mol) eventually caused
by any possible non-synonymous amino acid change was calculated as
follows. The structures/models described above were first repaired
(FoldX’s module RepairPDB) and then mutated (PositionScan), con-
sidering all possible amino acid changes causing missense variations.
Each mutant was analyzed energetically using FoldX ver. 5.040 in
comparison with the native structure. FoldX was run with default
parameters.

All these features, except for ΔΔG values, mtMam, and the spatial
coordinates of amino acids, were pre-calculated andmade available in
MitImpact ver. 3.0.641.

ML workflow
The overall learning procedure consists of a double cross-validation
procedure that nests an optimization procedure of the best parameter
combinations (hyperparameters) of each implemented ML algorithm
under amodel selection procedure. Theworkflowwas implemented in
Python and made available at https://github.com/mazzalab/
playgrounds [51] as a Colab notebook.

In particular, for each ML algorithm, the whole dataset was pri-
marily split into training and test sets by a stratified 20-fold cross-
validation (CV) procedure, implemented in Python’s scikit-learn’s
StratifiedKFold, and repeated five times. Then, for each unique group,
we took it as a holdout and used the remaining groups (19) as a training
data set. Each group was guaranteed to maintain the original patho-
genic/neutral variant ratio. Then, each training set was progressively
subjected to three preprocessing steps: scaling, imputation of missing
values, and feature selection.

Data preprocessing
Values were scaled using the Python scikit-learn’s StandardScaler
module to zero mean and unit variance. The scaler was trained on
the training-set features and then used to transform both the
training and test sets’ values (Fig. 5a). Pairwise correlations between
the scaled values to zero mean and unit variance of non-positional
features, namely those not directly involving the genomic or amino
acidic positions of variants, for all possible mitochondrial missense
variants were obtained using Pearson correlation coefficient. Then,
we imputed missing values (Fig. 5b), as explained in the section
below. Finally, a supervised feature selection step was implemented
using a Decision Tree classifier (DecisionTreeClassifier scikit-learn
module) to assess the relative information gain associated with a
feature and hence its contribution to the overall decision process.
The features that explained less than 1% of the total information gain
were dropped. This step was performed on the training set only.
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Then, the dropped features were removed from the training and test
sets (Fig. 5c).

Imputer selection
ThewholeMitImpact content,made upof 22,316 variants regardless of
their label (neutral or pathogenic) and excluding the variants in
Dataset 1, was split into 20 folds. Each fold was iteratively chosen as a
test- and the remaining 19 as training variants for each of the following
five imputation methods. We implemented two simple interpolation
methods based on the mean and median values of the features to be
imputed, respectively; a k-Nearest Neighbors imputer (sklearn.impu-
te.KNNImputer, k = 5); two iterative imputers (sklearn.impute.Iter-
ativeImputer) based respectively on Bayesian ridge linear regression
(sklearn.linear_model.BayesianRidge) and Random Forest regression
(sklearn.ensemble.RandomForestRegressor). Once fitted any of these
imputers, we have generated twelve NxM matrices of probability esti-
mates for each test set by sampling from a uniform distribution in the
range [0,1), where N and M are, respectively, the numbers of variants
(rows) and features (columns), andmultiplying its values by one of the
twelve values in the range 0.25–3.00, by a step of 0.25. Therefore, we
added amissing valuewhenever any resulting number lower than the a
priori probability of amissing value (precalculated for each feature and
made available in Supplementary Data 9) appeared in the same posi-
tion of the matrix. The metric we used to identify the best imputer for
this study was the NRMSE defined as E½X true � X imp�2=V ½X true�, where E
andV are, respectively, the expected value and the variance,X true is the
true value, and X imp is the imputed value.

Grid-Search cross-validation
We performed an exhaustive search over the parameters (or hyper-
parameters) of the tested ML methods using a stratified 10-fold Grid
Search CV applied to a pre-computed and method-specific parameter
grid (GridSearchCV module). The parameter grids for all methods are
available in Supplementary Data 3. The preprocessed training set was
further split into a 9-fold training set and a 1-fold test set. The Grid
Search procedure was run for each CV iteration, for a total of
gs = 10×d times, where d is the number of hyperparameter combi-
nations explored. An ML method was trained and then tested on the
1-fold test set for each combination (Fig. 5d). The area under the
precision-recall curve (auPRC) and under the receiver operating
characteristic (auROC) curve metrics were evaluated to assess
performance.

Model training and testing
Each classifier was trained on the 19-fold training set using the best
hyperparameter combination found by the Grid-Search loop and then
tested on the relative 1-fold test set, which was not involved in the
training or tuning phases (Fig. 5e). The best classifier exhibited a

superior average auROCover the five replicas of the overall 20-fold CV
process. Then, the total number of iterations performed for each ML
method was 100× ðgs + 1Þ.

Finally, we trained a model of the best method on the entire
Dataset 1, using the best hyperparameters found through the Grid-
SearchCVprocedure, and scored all possiblenon-synonymousmtDNA
variants.

ML classifiers
The workflow described above was run with several ML classifiers.
Most of them were implemented in the scikit-learn Python library.

Support vector machine (SVM) with radial basis functions (RBF)
kernel. We implemented the SVC module of scikit-learn. It attempts
to maximize the distance between two groups by minimizing the
hinge loss function. The loss function was kept balanced by adjust-
ing the class weights depending on their frequencies in the training
set. The method was set to use a Radial Basis Function (rbf) as a
kernel and L2 as the regularization term. The rbf function, defined as
Kðx1, x2Þ= eð�γjjx1�x2 jj2Þ, depends on a parameter γ, which is the inverse
of the standard deviation of the rbf kernel and represents the
influence of every single sample in the learning process, while L2 is
controlled by a parameter C, which is inversely proportional to the
regularization strength. Both parameters were optimized by Grid-
Search.

Gaussian Naive-Bayes (GNB) Balanced Bagging. This is a probabil-
istic classifier that uses a Gaussian Naive-Bayes (GNB) model as the
base learner for a Bootstrap Aggregation (Bagging) classifier. This
approach is typically used to improve the performance of a “weak-
learner” (such as the GNB) and reduce overfitting. To tackle the pro-
blem of class imbalance in our training set, we resorted to the Balance
Bagging classifier implemented by the imbalanced-learn package of
scikit-learn. We have also bootstrapped the features (without repla-
cement) for each base-learner training in an attempt to reduce over-
fitting. The Grid-Search-based optimization step was applied to (i) the
ratio of the bootstrapped samples over the total samples; (ii) the ratio
of the bootstrapped features over the total number of features, and
(iii) the GNB variance smoothing (more details in the scikit-learn
documentation).

K-Nearest Neighbors (KNN) Balanced Bagging. 200 KNN classifiers
were used as base learners for a Balanced Bagging classifier with the
aim of reducing the risk of overfitting and balancing the pathogenic
and neutral classes during the training phase. As in the previous case,
the Grid-Search optimization step was used to find the (i) ratio of the
bootstrapped samples over the total samples and (ii) the ratio of the
bootstrapped features over the total number of features. Here,

Features Training set (19-folds)
scaling

Test set
training-based scaling

imputation

imputation
based on training set

feature selection

feature selection
based on training set

stratified 20-folds CV

stratified 10-folds CV

9-folds

parameters
grid

a b c

d

e validation set

Fig. 5 | APOGEE 2ML pipeline. It includes data preprocessing, i.e., scaling (a), imputation of missing values (b), and feature selection (c), model tuning by 10-folds Grid
Search CV (d), training of an ML method with the best hyperparameter combination obtained in (d) and testing (e).
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another 2 hyperparameters were subjected to optimization: the
number of “neighbors” to consider and the “weight” of each neighbor,
which can be considered uniform or the inverse of their distances.

Balanced Random Forest (RF). This variation of the classical RF clas-
sifier is available from imbalanced-learn as the BalancedRandomFor-
estClassifier module. It is an ensemble method where each tree in a
forest will be provided with a balanced bootstrap sample for tree
learning. Grid-Search was used to tune (i) the trees’ maximum depth,
(ii) the number of random features to consider for each node split, (iii)
the minimum number of samples required to split a node, and (iv) the
minimum number of samples that a node requires to be considered a
leaf node.

K-Nearest Neighbors (KNN) Bagging balanced through RUS and
SMOTE. We used a synthetic minority over-sampling technique avail-
able from the imbalanced-learn package called SMOTE42 to solve the
classification imbalance by generating synthetic samples in the
pathogenic class of variants. We combined SMOTE with the randomly
under-sampling technique (RUS) according to the following four steps:
(i) training samples arebootstrappedwith replacement, preserving the
original training-set size; (ii) RUS undersamples the majority class
(neutral variants) to partially decrease the imbalance; (iii) then, SMOTE
is used to generate syntheticminority samples to perfectly balance the
base-learner training-set; (iv) finally, the base-learner is fitted. Follow-
ing this procedure, we implemented KNN_RusSmote, which uses a
KNN classifier as a base learner.We chose to consider five neighbors in
the SMOTE algorithm. As for KNN Balanced Bagging, Grid-Search was
used to tune (i) the number of “neighbors” to consider, (ii) the “weight”
of each neighbor, (iii) the ratio of the bootstrapped features over the
total number of features, (iv) the ratio of the minority class over the
majority class of samples after the RUS step.

Scores and pathogenicity probabilities
APOGEE 2 scores are decimal values ranging from 0 (benign) to 1
(pathogenic). Extreme values suggest a high level of confidence in the
predictions. Scores were computed using the KNN_RusSmotemachine
learning algorithm, tuned through GS CV, and trained on the whole
Dataset 1. Given that the algorithm is essentially a bagging model, we
were able to determine the out-of-bag (OOB) APOGEE 2 score for each
variant in the training set. We used the OOB score to infer the condi-
tional APOGEE 2 probability distribution given the pathogenic class
ðC = 1Þ; the APOGEE 2 probability distribution given the benign class
ðC =0Þ, instead, was inferred on the Dataset 4 (ClinGen’s benign var-
iants) scores, considering the OOB scores whenever they overlapped
with Dataset 1 (training set). The distributions of both classes were
approximated by Beta distributions, whose parameters were opti-
mized through the SciPy Python library by minimizing the negative
log-likelihood probability. Once inferred the distribution Pðy j C =0Þ
and Pðy j C = 1Þ, where y is the APOGEE 2 score, we could compute the
posterior probability PðC = 1j yÞ using the Bayes theorem:
PðC = 1j yÞ=Pðy j C = 1ÞPðC = 1Þ=PðyÞ, where PðyÞ can be written in the
form PðyÞ=Pðy j C = 1ÞPðC = 1Þ+Pðy j C =0ÞPðC =0Þ. We set the prior
probability PðC = 1Þ=0:1 as in18.

Misclassification and specificity assessment
In order to calculate the per-class misclassification rate on Dataset 1,
we first divided the APOGEE 2 scores into two classes (pathogenic and
benign) based on themedian value. Then, we calculated the frequency
of incorrectly classified test variants, which are the variants that were
disregarded from the model learning and tuning during the CV. Based
on the distribution of APOGEE 2 scores for all MitImpact variants, the
median threshold was recalculated for each test. Using MitImpact’s
non-benign frequency as the expected frequency for the null hypoth-
esis, we performed a Chi-square test on the alternative hypothesis of

having a high frequency of benign variants in Datasets 2 and 3. Finally,
we compared the average APOGEE 2 scores of Dataset 4’s benign
variants with the average APOGEE 2 scores of Dataset 1’s benign var-
iants, using a Mann–Whitney U test; the OOB scores were used for
Dataset 1’s benign variants in this test.

The APOGEE 2’s time-dependent learning curve
From2008 through2020,we fetched theMITOMAPcontent every two
years and generated seven datasets by applying the same criteria we
used for Dataset 1 (Supplementary Data 5). We trained APOGEE 2 with
these datasets and used the current MITOMAP version (July 2022) for
testing the trained models. In particular, we applied a random strati-
fied 5-fold partitioning strategy to the 2022 dataset, obtaining 5 par-
titions. For each partition, we trained a model on every other training
set (2008–2020) and tested it on the partition, making sure to remove
each variant already present in the partition from the training sets. The
final auROCprofile resulted from the averageof the auROCs computed
on the five different test partitions. The ML classifier used was still
KNN_RusSmote; 10-fold Grid-Search CV has been performed on each
training set.

Positionality and impact of variants on the protein structure
Spatial autocorrelation of the APOGEE 2 scores. Moran’s index was
used to measure the spatial autocorrelation of the predicted APOGEE
2 scores. It is defined as

I =
N

PN
i= 1

PN
j = 1wij

PN
i = 1

PN
j = 1wijðyi � �yÞðyj � �yÞ
PN

i= 1ðyi � �yÞ2
, ð1Þ

where N is the number of spatial data points and wij a weight matrix
that measures the closeness of each residue in a pair. It ranges from −1
to +1; values significantly lower or higher than the expected value (i.e.,
E½I�= �1

N�1) indicate respectively negative or positive spatial
autocorrelation43. We used a quadratic distance decay function, i.e.,
wij =dij

�2, to model the residue closeness in order to prioritize short-
range autocorrelation.

Calculations were performed separately for each complex,
while the APOGEE 2 scores were averaged by residue to have one
value for every spatial point. Positional biases were limited by
dropping all bagging base estimators, which were trained using at
least one spatial feature (i.e., X, Y, or Z coordinates) from the APO-
GEE 2 predictions. 84 out of 200 base estimators were selected. This
modification required recalculating the APOGEE 2 threshold
between benign and pathogenic variants for this analysis. Due to the
possibility that the APOGEE 2 scores obtained in this manner had a
different distribution than the original one, we determined the
pathogenicity threshold for this new distribution using the same
formula we described in the “Model training and testing” methods
section.

The weight matrix was row-normalized and then renormalized to
ensure that

PN
i = 1

PN
j = 1wij = 1; the variable of interest, y, i.e., the APOGEE

2 average scores, was also standardized. ConsequentlyI =Z ’WZ , where
Z is the vector of the standardized values of y andW is the normalized
weight matrix. p-values were calculated by permuting the APOGEE
2 scores 10,000 times and computing Moran’s index for each
permutation.

Since we were also interested in estimating the autocorrelation
effect under a certain cutoff distance r, we performed the same pro-
cedure using a different weight matrix, defined as

wij =
1� ε,dij ≤ r

0+ ε,dij > r,

(

ð2Þ

where ε is an infinitesimal number (10�6) whose purpose is only to
make the weight matrix row-normalizable. We computed Moran’s
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index using thisweight function atmultiple cutoff distances, each time
estimating a p-value on 1000 permutations.

Finally, we implemented a local version of Moran’s index, LISA44

or Local Indicators of Spatial Association, to investigate which
regions contribute more to the global spatial autocorrelation. It is
defined as l = ½l1,:::,lN �=Z �WZ , where the weight matrix W was
introduced above and

PN
i = 1li = I. High LISA values are assigned to

residues contributing the most to the global positive spatial auto-
correlation and showing similar APOGEE 2 scores to their neighbors.
To confer significance to the results, we permuted the APOGEE
2 scores 1000 times and computed the l vector for each permutation
round; then, we calculated a p-value based only on the li random
distribution of the spatial point i. The False Discovery Rate was
controlled using the Benjamini–Hochberg procedure.

Molecular dynamics simulation. Molecular dynamics (MD) simula-
tions were conducted on the human respiratory complex I trans-
membrane arm (PDB ID: 5xtc). The starting system was refined using
MODELLER ver. 9.1645 and then mutated in silico using UCSF Chimera
ver. 1.1646 to introduce Ser34Pro, Ser34Tyr, Ser34Phe, and Thr35Pro
amino acid variants in MT-ND3 and Ala72Val, Ala72Pro, and Phe46Leu
variants in MT-ND6. Using the Membrane Builder Input Generator of
the CHARMM-GUIweb toolkit47, the seven resulting alternative protein
structures were embedded in a lipid bilayer composed of Palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoethanolamine (POPE), and 1,1′,2,2′-tetraoleoyl-car-
diolipin (TOCL) to mimic the composition of the inner mitochondrial
membrane that forms tight interactions with the transmembrane helix
of each protein. Then, both the proteins and the lipid bilayer were
solvated in a periodic boundary condition box filled with 22.5 Å of
TIP3P water molecules on either side of the bilayer, and a salt con-
centration of 0.15M KCl was added to obtain a neutral simulation
system.

All generated systems were energy minimized and equilibrated
following the CHARMM-GUI’s workflow, consisting of (i) steepest-
descent minimization for 5000 steps; (ii) a gradual heating process
conducted into a canonical ensemble (NVT) for 250,000 steps with a
timestep of 1 fs; (iii) an isothermal-isobaric ensemble equilibration for
125,000 steps with a timestep of 1 fs followed by 750,000 steps of an
isothermal-isobaric ensemble equilibration every 2 fs. During the
equilibration, harmonic restraints were applied to both the heavy
protein atoms and the membrane lipid phosphates.

Gaussian accelerated MD (GaMD)48 simulations were per-
formed, starting with a 20 ns short classical MD simulation used to
collect potential statistics for calculating the GaMD acceleration
parameter, followed by a ~80 ns equilibration run. Finally, 200 ns of
GaMD simulations were carried out, divided into 10 sequential
production steps. Three replicas of the simulation of the wild-type
and each mutant system were performed using Amber2049. Every
GaMD simulation was performed at the “dual-boost” level, with one
boost applied to the total potential energetic term and the other to
the dihedral energetic term. For both the dihedral and the total
potential energetic terms, 12.0 kcal/mol was chosen as the upper
limit of the boost potential SD, σ0. The code for the entire simulation
workflow is provided in Supplementary Software 1.

Analysis of simulated trajectories. AmberTools21 was used to calcu-
late the Root-Mean-Square Fluctuation (RMSF), which measures the
time deviation of the positions of the atomic coordinates of the alpha
carbons of each residue and those of the reference starting structure.
The GetContacts (https://getcontacts.github.io) tool was used to
compute all the atomic interactions and contacts established in each
time frame of the simulated trajectories. Secondary structures were
computed using the DSSP module of the MDTraj50 tool for each
simulation frame. The DSSP assignments were calculated using the

8-category schemes: H =α helix, B = residue in isolated beta-bridge,
E = extended strand, participating in the beta ladder, G = 3-helix (3/10
helix), I = 5-helix (π helix), T = hydrogen bonded turn, S = bend,
– = unclassified. 3D images and motions were generated using UCSF
Chimera.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets supporting the conclusions of this article are included
within the article and its Supplementary Data files. The APOGEE 2
probabilities/classes of pathogenicity can be freely downloaded from
MitImpact [http://mitimpact.css-mendel.it]. Datasets 2 and 3 are freely
available from gnomAD [https://gnomad.broadinstitute.org] and
HelixMTdb [https://www.helix.com/pages/mitochondrial-variant-
database]. Dataset 4 is freely available from MITOMAP [https://
mitomap.org/MITOMAP/Benign]. ClinVar is freely available at https://
ftp.ncbi.nlm.nih.gov/pub/clinvar/.

Code availability
The complete molecular dynamics simulation protocol is available as
Supplementary Software 1. The APOGEE 2 machine-learning workflow
is available from https://github.com/mazzalab/playgrounds51 and is
freely runnable as a Colab notebook.
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