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Drainage network response to Arctic warming

Joel C. Rowland Check for updates

Rapid Arctic warming may increase erosion and
stream channel formation, which alters the flux
of sediments, carbon, and nutrients in these
sensitive ecosystems. Yet, understanding land-
scape change is hampered by a lack of predictive
tools applicable to permafrost settings.

Background
Thawing permafrost, melting ground ice, and changing hydrological
regimes are all predicted to cause expansion of channel networks and
increase hydrological connectivity across Arctic watersheds1–4 (Fig. 1).
However, observed erosion of new channels have been isolated in both
space and time and have yet to lead to widespread expansion new
channelization or widespread evolution of Arctic watersheds. The
presence of permafrost, ice in the ground, and the thermal sensitivity
of land-surface processes in the Arctic has inhibited our ability to
predict and quantify how a thawing Arctic landscapewill alter fluxes of
sediments, carbon, and nutrients into streams and rivers. Attempts to
apply models developed in temperate landscapes for river channeli-
zation, landscape evolution and landslide occurrence have met with
limited predictive success in permafrost landscapes5–7. In their study,
Chartrand et al.7 address this challenge through reconstructing a
60-yearhistory for landscape-scale channelization andevolutionof the
Muskox Valley (Axel Heiberg Island) in the high Arctic and demon-
strate that factors typically used to predict channel development in
non-permafrost regions do not control landscape evolution in the
Arctic.

Channel development and the role of ground ice
In non-permafrost watersheds, erosional gullies commonly develop in
response to increases in erosive capability of surface water, decreases
in the resisting forces of the land to erosion, or a combination of both.
In these systems, gullying may be triggered by land use, climate
change, or by natural cycles of erosion and deposition. In permafrost
settings, gully formation by surface water flow commonly occurs by
melting of ice wedges rather than erosion of the ground surface.
Melting of ice wedges by flowing water creates tunnels that in turn
collapse8. These collapse features remove protective vegetation and
expose easily erodible soils to concentrated surface runoff leading to
new channels with flow paths that closely follow the degrading ice
wedge network7,8.

Documented in high-resolution topographic data, Chartrand
et al.7 show that the development of channels within such settings is
spatially discontinuous and independent of both topographic steep-
ness of the valley and grain size of the channelized material, two
common predictors for channel development in non-permafrost set-
tings. Chartrand et al.7 further note the sources of water driving the
melting of ice wedges are strongly influenced by thaw of permafrost
and changing hydrology, such as snowmelt magnitude and timing. All

these factors make this type of channelization difficult to predict and
require new models developed for these systems.

These challenges are not limited to settings with ice wedges.
Subsurface erosion of soils due to water flowing through tunnels or
pipes has also been observed in more southerly and discontinuous
permafrost settings9, where ground ice may be more distributed and
less predictable in location than the ice wedge complexes of Muskox
Valley7. In these settings, subsurface flow also accelerates the melting
of ground ice and physically erode soils from beneath the overlying,
and often intact surface vegetation. Where pipes reconnect to the
ground surface, large volumes of sediment and eroded organic matter
may be deposited on top of undisturbed ground downslope6. Once
sufficient volumes of ice melt and soil are excavated, the ground sur-
face may collapse and drive channel development through coalescing
disturbances7. Such channelization appears most commonly along
valley axes where converging topography concentrates surface runoff.

The potential role of landslides and water tracks in channel
expansion
Rapid channelization along ice wedges is the most dramatic change
highlighted in the Chartrand et al. study7, but they also document
gullies, landslides, and linear surface water flow features called water
tracks that all may play a role in expanding channel networks in per-
mafrost watersheds. Along hillslopes across the Arctic, shallow land-
slides and deeper failures accelerate erosion and increase sediment
and carbondelivery to streams and rivers10,11. Similar to icewedgemelt,
these landslides tend to be isolated and generate local channel
development rather than an integrated watershed-scale expansion of
drainage networks. Attempts to predict the location and timing of
these landslides with tools developed for temperate watersheds have
met with limited success5,6. Results to date suggest that failures appear
to be strongly connected to local ground ice conditions and seasonal
warming, rather than topographic slope and hydrology5.

Figure 2 of the Chartrand et al. study7 shows numerous linear
water track features. Water tracks are ubiquitous features in the Arctic
that preferentially route water down hillslopes. The origin of water
tracks is not well understood12 but it has been hypothesized that they
may represent incipient drainage networks that will facilitate channel
expansion in response to warming-induced erosion13. Erosion within
water tracks have recently been observed and may be increasing12,14.
However, a widespread integration of erosion along water tracks that
would cause widespread channel expansion has not yet been docu-
mented. At present, the occurrence of water track erosion appears to
be largely related to local ground collapsedue tomelting of ice12 rather
than a systematic or predictable shift in processes governing channel
development.

Challenges to developing a predictive understanding of
channelization in response to climate change
To address these research gaps, in their study of Muskox Valley,
Canada, Chartrand et al.7 provide a watershed-scale picture of diverse
processes that influence the flow of water and erosion. These
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processes range from failures on hillslopes to rapid erosion of ice
wedge complexes along the valley axis. This study also highlights the
complex interactions of ground ice, permafrost thaw, rapid warming,
sediment grain sizes, and even stochastic flood events on channel
formation. At present, we have very few tools for predicting where and
how individual erosional processes occur in permafrost settings,
let alone the ability to integrate these processes to predict channel
network evolution across entire watersheds. The presence of ground
ice strongly influences the vulnerability of permafrost landscapes to
erosion and channel formation. Despite recent advances in the auto-
mated detection andmapping of ice wedge polygons15, we still lack the
ability to map more distributed ground ice or predict which polygons
may be vulnerable to surface water infiltration and melting.

More detailed watershed studies, such as theMuskox Valley study
by Chartrand et al.7, that identify patterns and timing of channel
expansion and link these changes to climatic and hydrological drivers,
will be needed to develop mechanistic models of landscape evolution
in permafrost settings. Thesemodels will need to incorporate thermal
controls on landscape responses to warming and couple hillslopes to
channels. Integrated models that capture hillslope and channel cou-
pling will allow for predictions of how increased disturbance and
erosion of permafrost soils will alter the storage, transport rates, and
release pathways of sediment, carbon, and nutrients across water-
sheds in a rapidly warming Arctic.
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Fig. 1 | A Worldview2 satellite image of drainage networks at various states of
development and connectivity along the south side of the Selawik River in
northwest Alaska (66.463, −157.943). The channels are developing along net-
works of ice wedges and the orientations of the ice wedges remain imprinted on
even the most developed channels (Maxar copyright 2011).
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