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CRUSTY: a versatile web platform for the
rapid analysis and visualization of high-
dimensional flow cytometry data

Simone Puccio 1,2,6 , Giorgio Grillo 3,6, Giorgia Alvisi1, Caterina Scirgolea 1,
Giovanni Galletti 1,5, Emilia Maria Cristina Mazza 1, Arianna Consiglio3,
Gabriele De Simone4, Flavio Licciulli 3 & Enrico Lugli 1

Flow cytometry (FCM) can investigate dozens of parameters from millions of
cells and hundreds of specimens in a short time and at a reasonable cost, but
the amount of data that is generated is considerable. Computational approa-
ches are useful to identify novel subpopulations and molecular biomarkers,
but generally require deep expertize in bioinformatics and the use of different
platforms. To overcome these limitations, we introduce CRUSTY, an inter-
active, user-friendly webtool incorporating the most popular algorithms for
FCMdata analysis, and capable of visualizing graphical and tabular results and
automatically generating publication-quality figures within minutes. CRUSTY
also hosts an interactive interface for the exploration of results in real time.
Thus, CRUSTY enables a large number of users to mine complex datasets and
reduce the time required for data exploration and interpretation. CRUSTY is
accessible at https://crusty.humanitas.it/.

The recent progress in flow cytometry (FCM) technologies and
fluorescently-conjugated antibody production have increased the
number of parameters being measured at the level of single cells,
allowing more researchers to dissect cellular heterogeneity or to
detect rare cell populations1–5. Currently, traditional flow cytometry
can detect up to 30 parameters simultaneously6, and spectral unmix-
ing can extend measurements to >407. The versatility of the technol-
ogy allows the investigation of several samples in a variety of
experimental conditions and at a reasonable cost, thereby resulting in
the generation of large multidimensional datasets, the analysis of
which is time-consuming if approached by traditional gating6,8,9.
Moreover, despite the effort to standardize and harmonize manual
gating strategies, the identification of subpopulations through visual
inspection is still very common and represents the largest source of
variability, thereby impacting reproducibility10. Additionally, manual
gating is not easily scalable due to the number of biaxial plots and bar

graphs which increase exponentially with the number of parameters
being measured, thus making the data analysis impractical11,12.

The increasing use of single-cell technologies, especially single-
cell RNA-sequencing, fostered the development of novel computa-
tional approaches that have been subsequently adapted for the
unbiased investigation of FCM data10,13,14. A plethora of computational
methods have been released in the recent years to performsingle tasks
such as the capacity to mark and remove outlier events (FlowAI,
FlowClean, PeacoQC)15–17, to identify cell populations through clus-
tering (PhenoGraph, FlowSOM, SPADE1, X-shift, FlowMeans and
FlowPeaks, just to mention a few)18–22, to perform dimensionality
reduction (t-SNE, UMAP) and batch correction (CytoNorm,
cyCombine)23–26. However, these packages often lack a user-friendly
graphical interface and deep knowledge of programming languages is
generally required. In addition, large experiments comprising millions
of cells (e.g., from immunomonitoring) are becoming progressively
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more common, thus requiring computationally expensive analyses
and high-performance computers. Overall, these aspects limit the
broad applicability of computational tools in FCM data analysis.

To overcome these limitations, we developed ClusteRing
UnsuperviSed meThods for high dimensional cYtometry data
(CRUSTY), a user-friendly web tool for the rapid identification of
populations in high-dimensional FCM data. CRUSTY is available
through standard browsers, with an intuitive interface and user
control over a wide range of parameters for each computational
step. CRUSTY functionality is based on the Scanpy27 Python package
which contains the most comprehensive tool set for data analysis
with the latest methodologies and frequent updates. The webtool
incorporates functionalities from several clustering and visualiza-
tion tools. For example, CRUSTY integrates clustering functions
from PhenoGraph28, pyVIA29, and FlowSOM18 packages, a nonlinear
dimensionality reduction method such as umap-learn, and tools for
quality control (FlowAI15) and batch correction (Scanorama30). In
addition, an interactive interface is available for the rapid visuali-
zation of results in real time. Finally, CRUSTY automatically gen-
erates vectorized, high-quality figures for direct insertion in
scientific manuscripts. CRUSTY is of easy accessibility through a
dedicated web server (https://crusty.humanitas.it/), thus not
requiring installation of packages on the user’s computer. It is also
provided with an intuitive tutorial-style user interface to guide
logical navigation through the analysis and visualization steps. In
principle, CRUSTY can be used to analyse any FCM and mass cyto-
metry dataset, thus filling an existing gap between high-dimensional
data generation and exploration.

Results
Design and Implementation
CRUSTY architecture is composed by (i) an input data web manager;
(ii) a backend based on computational pipeline available at:

https://github.com/luglilab/Cytophenograph; and (iii) an interactive
cell browser for the visualization of the results.

Figure 1 shows the pipeline to analyse data in CRUSTY. FCM files
are first pre-processed with a standard flow cytometry software for
compensation, biexponential transformation, removal of unwanted
events such as dead cells and identification of the cell population of
interest, e.g., total CD8+ T cells. A detailed protocol describing data
pre-processing and precautions that should be taken to avoid batch
effects and bias in computational analyses (e.g., resulting from dif-
ferent experiments performed in different days) has been previously
published6. These precautions take into account day-to-day standar-
dization of machine performance with calibration beads, reproduci-
bility of compensation outputs, pipetting error and lot-to-lot reagent
validation, amongothers. As improved algorithms forbatch correction
are currently being evaluated, batch effect of flow cytometry data
should be tested before uploading in CRUSTY. To help users with data
pre-processing, instructions are also reported in form of a tutorial at
https://crusty.humanitas.it/. Pre-processed data are then imported in
CRUSTY as comma-separated values (CSV) files for (1) cluster dis-
covery and dimensionality reduction and (2) interactive data
exploration.

Input data
Mandatory input files for CRUSTY execution are:

• One or multiple CSV files containing transformed intensity
values exported from the flow cytometer’s acquisition software.

• One info-file containing the metadata information associated
with each single CSV file of the dataset.

Pre-processing and quality control
Transformed intensity matrices from each CSV file are automatically
combined into a single matrix using the concat function of the Scanpy
package. In the combined expression matrix, each cell is given a
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Fig. 1 | Overview of the CRUSTY workflow. Algorithms and data visualization
types available in CRUSTY. Pre-processing (e.g., compensation, biexponential
transformation) of raw FCMdata are performedwith standard FCM softwares prior

to loading data into CRUSTY. CSV comma-separated values; UMAP Uniform
Manifold Approximation and Projection.
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unique ID (the combination of the original CSV file name and a pro-
gressive number starting from 0). Data cleaning is carried out on the
combined matrix with the FlowAI R package15 and consists in the
detection and removal of anomalies by checking the flow rate (i.e.,
time parameter).

Cluster discovery
Identification of heterogeneity within the dataset is implemented by
clustering algorithms. CRUSTY is equipped with three state-of-the-art
clusteringmethods: PhenoGraph, VIA, and FlowSOM. PhenoGraph and
VIA are graph-based clustering algorithms while FlowSOM is based on
self-organizing maps (SOM). The input parameter to run PhenoGraph
and VIA is the K-value that represents the number of K-Nearest
Neighbors for graph construction. Based on the number of neighbors
shared by every two cells, PhenoGraph, calculates the similarity
between cells using the Jaccard similarity coefficient that generates the
adjacencymatrix,which is thenused tobuild thenetwork. The last step
is the community detection that is performed with the Leiden algo-
rithm to extract cell communities. FlowSOM consists of three steps: (i)
building a SOM, (ii) building a minimal spanning tree and (iii) com-
puting a meta-clustering. As input requirement, FlowSOM needs the
exact number of clusters the user wants to obtain. In CRUSTY, we
modified the original Python code of PhenoGraph package by setting a
fixed seed number, so to obtain reproducible UMAPs between differ-
ent runs. Resolution to be used for cluster discovery is arbitrary and
depends on the original scientific question (e.g., identification ofmajor
vs. rare cell populations). We suggest to test different levels of reso-
lution and choose themore appropriate one for the specific use. In any
case, it is strongly recommend to validate bioinformatic results with
robust functional assays in vitro or in vivo. The different algorithms
work at different speed and may lead to similar results depending on
the resolution being used. A comparison between PhenoGraph and
FlowSOM applied to high-dimensional flow cytometry data has been
previously reported6.We suggest to refer to recent surveys for optimal
choice of the algorithm to be used in specific applications31,32.

Dimensionality reduction
To visualize clusters, CRUSTY uses the uniform manifold approxima-
tion and projection (UMAP). In the input form under “Advanced
Options”, users can define the spread and the min_distance to modify
the clumping of the embedded points.

Output description
CRUSTY provides four types of output: tabular results, matrix plots,
UMAP plots, and stacked bar plots showing the cluster abundance per
sample and per experimental group (specified in the infofile). Tabular
results include the original transformed intensity matrix with the
additionofUMAPcoordinates (twodimensions of the embedding) and
a columnwith the cluster assignment for each cell in the data. CRUSTY
creates two matrix plots, a first with the mean expression values per
marker and a second with the scaled intensities values per marker
(z-score). Tabular results are useful for further data processing with
dedicated statistics. UMAP plots are generated for the rapid visuali-
zation of the data (Fig. 2). Results are stored for 2 weeks and are
retrievable using a web link reported at the top of the Analysis:: Exe-
cute page which, upon request, is sent by email to the user-provided
email address (optional).

To demonstrate the power of CRUSTY, we report the reanalysis of
a previously published 26-color dataset comprising 36 CD8 + T cell
samples from human bone marrows, lymph nodes, lungs, and per-
ipheral bloodmononuclear cells (PBMCs)33, for a total of 180,000 cells
(5,000 cells/sample). The resulting data analysis is also available on the
CRUSTYwebsite as a sample and source data can be downloaded from
the CRUSTY website. Pre-processed CD8 +T cells can be downloaded
at https://flowrepository.org/id/FR-FCM-Z5LE to test reproducibility.

Following analysis, in this example with VIA (totaling ∼10min in
computation time), CRUSTY automatically generates several plots that
are downloadable in PDF format. Figure 2 includes examples of these
plots, such as tissue-specific distributions of cells in a UMAP (Fig. 2a),
UMAP (Fig. 2b), and stacked bar graphs of VIA cluster distributions
according to their tissue of origin (Fig. 2c), individual FCM marker
distribution on the UMAP [both a tiled image showing all markers
(Fig. 2d) and separate, individual markers are provided], and a heat-
map showing normalizedmarker expressions across clusters, useful to
interpret cluster identity. Several additional plots that might be useful
to explore the complex nature of high-dimensional FCM datasets are
also provided on the CRUSTY website.

Cell subset visualization and interpretation
CRUSTY output is loaded into CELLxGENE, a simple and intuitive cell
browser that enables the user to quickly explore results. The primary
visualization is a 2D scatterplot of cells (UMAP) based on input fluor-
escent parameters (Fig. 3). By clicking on the “drop” function, the user
can distinguish cells belonging to those categorical variables listed in
the info file directly on the UMAP (a default color code is applied). By
moving the cursor on variables (e.g., individual clusters or samples)
listed on the left of the workspace, CRUSTY automatically highlights
the selected cells directly on the UMAP. This function is particularly
useful to rapidly identify those samples with exceptional variability.

In the example, we show the identification of human mucosal
associated invariant T cells (MAIT), a specialized population of
CD8 + T cells with innate-like functions34, across different single-cell
clusters and tissues. By using the CRUSTY Signature function, we
employed themarkers GZMK, CD161, and CD127 to identify MAIT cells
in the dataset (Fig. 3a). CRUSTY identifies discrete levels of the sig-
nature (arbitrarily defined as low, medium, and high). Signaturehigh

cells are further selected and colored in the UMAP (Fig. 3a, dark blue).
Signature enrichment in individual VIA clusters and tissues is shown in
dedicated histograms, thereby revealing that clusters 6 and 23, and
bonemarrow and PBMCs have the highestMAIT signature enrichment
(Fig. 3b). These results are in accordance with data presented in Fig. 2.
Signaturehigh cells can be further isolated for downstream analysis
(Fig. 3c), such aswith standard FCMbivariate plots. In the example, we
show that the major difference between MAIT clusters is related to
positive CD69 expression in cluster 23 (Fig. 3d), as previously revealed
by VIA clustering in Fig. 2e.

Comparison with similar tools
Although several commercial softwares are available for the analysis of
FCMdata, high-dimensional datasets are generally processed via open-
source bioinformatics algorithm in R or Python. Web servers that are
freely available for clustering analysis were recently developed but
have limitations compared to CRUSTY (Table S1). Cytofkit35 is a stand-
alone software designed mainly for mass cytometry data and his
release is available on Bioconductor. The Cytofkit Shiny APP is not
designed for online analysis but is useful for data exploration.
CytoChain36 is a webtool developed in the form of Shiny APP but it is
still under construction, does not offer an interactive interface for the
data exploration in real time, and does not provide sample datasets for
users training.

Discussion
In conclusion, CRUSTY is a versatile tool for the rapid analysis and
exploration of high-dimensional FCMdata. It has beendeveloped to fill
a gap, i.e., to enable basic users to run complex computational algo-
rithms without the need of bioinformatic support and knowledge of
programming. Importantly, CRUSTY automatically generates publica-
tion quality figureswithinminutes, thereby reducing the time required
from high-dimensional data exploration and draft manuscript pre-
paration. Functions related to data pre-processing such as
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compensation, biexponential transformation and gating are currently
under development and are expected tobe included in a future version
of CRUSTY. These improvements will obviate the need of traditional
flow cytometry softwares or additional platforms, and simplify data
exploration even further.

Methods
Implementation
CRUSTYweb tool implementation is based on a three-tier architecture:
client, server, and database. In the client layer, the Graphical User
Interface (GUI) is developed as adynamicWebApplication, built on the
React web framework – release 18 - (https://reactjs.org/), the powerful
Javascript library for building user interfaces, and on the popular

Bootstrap 5 (https://getbootstrap.com/), the extensible and feature-
packed frontend framework for responsive and mobile-first web
design features. These two frameworks have allowed the creation of a
complex interactive UI with a user-friendly frontend.

A specialized RESTful Web service in the server layer is respon-
sible for asynchronous communication with the Web Interface to
manage the file upload and validation, the execution monitoring, the
analysis results and the interactive graphs visualization. The Django
REST framework (https://www.django-rest-framework.org/), a power-
ful and flexible toolkit for building Web APIs, has been adopted to
implement the service. The backend which includes site administra-
tion/maintenance, user management and authentication process is
based on the Django high-level Python framework.
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ipheral blood mononuclear cells; NSCLC, non-small cell lung cancer. For graphs in
(c) and (e), source data are provided as Source Data files.
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A SQLite3 database is used to manage data analysis, usage sta-
tistics and user logging/authentication and it also interacts with the
RESTful to support communications between the data layer and the
Web Application.

Session management and results availability
A universally unique identifier (UUID version 4) named Analysis
ID, consisting of a unique 32-characters ID is created and associated
with each analysis. It can be used to access, resume and complete the
analysis and visualize or download the results at a later time. CRUSTY
web tool stores the uploaded files and analysis results on the server in
a user’s private workspace accessible only via a RESTful web service,
ensuring the user’s privacy by a unique random key (Analysis ID).

Server and browser compatibility
The Web Application is deployed on a server with 16-core CPUs
(2.40GHz), 64GB RAM and 20TB of storage under an Apache2 web
server.

It is compliant with CSS3 andHTML5 standards. JavaScript libraries
are implemented in ECMAScript 2018 in order to obtain high

combability with modern browsers. Thanks to the responsive design
inherited by template Bootstrap, CRUSTY is also mobile and tablet
friendly.

Statistics and reproducibility
Statistical methods were not used in this paper because not relevant.
To obtain reproducible UMAPs between different runs, we modified
the original Python code of PhenoGraph package by setting a fixed
seed number. Original files, data and codes are publicly available to
reproduce data reported in this manuscript.

Inclusion and ethics
We have followed Nature guidelines for Inclusion and Ethics in scien-
tific research.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
CD8 + T cell data used in this studywere previously reported inGalletti
et al., Fig. 1g-i33 andwere isolated as in Supplementary Fig. 1 of the same
paper33, compensated and bi-exponentially transformed with FlowJo
v.10.5.0 according to standardprocedures6 and reanalyzed inCRUSTY.
Pre-processed CD8 + FCM data are available at https://flowrepository.
org/id/FR-FCM-Z5LE. Source data used to build Fig. 2 can be down-
loaded on the CRUSTY website and are provided as Source Data Files
with this publication. Source data are provided with this paper.

Code availability
Pipeline source code, implemented in Python, is freely available for
download at GitHub: https://github.com/luglilab/Cytophenograph. A
Docker image is available in the Docker Hub public repository at
https://hub.docker.com/r/sinnamone/cytophenograph5. The image
contains the deployed version of the scripts available in GitHub and
the Conda environment, in order to run the pipeline on personal/
private or big datasets.
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