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Observation of an Alice ring in a
Bose–Einstein condensate

Alina Blinova 1,2 , Roberto Zamora-Zamora 3,5, Tuomas Ollikainen 1,3,6,
Markus Kivioja 4, Mikko Möttönen 3 & David S. Hall 1

Monopoles and vortices are fundamental topological excitations that appear
in physical systems spanning enormous scales of size and energy, from the
vastness of the early universe to tiny laboratory droplets of nematic liquid
crystals and ultracold gases. Although the topologies of vortices and mono-
poles are distinct from one another, under certain circumstances a monopole
can spontaneously and continuously deform into a vortex ring with the cur-
ious property that monopoles passing through it are converted into anti-
monopoles. However, theobservationof suchAlice rings has remained amajor
challenge, due to the scarcity of experimentally accessible monopoles in
continuous fields. Here, we present experimental evidence of an Alice ring
resulting from the decay of a topological monopole defect in a dilute gaseous
87Rb Bose–Einstein condensate. Our results, in agreement with detailed first-
principles simulations, provide an unprecedented opportunity to explore the
unique features of a composite excitation that combines the topological fea-
tures of both a monopole and a vortex ring.

Symmetry-breaking phase transitions are ubiquitous in physics1,
appearing in contexts as diverse as the cooling of the early universe,
the emergence of ferromagnetism, and the onset of super-
conductivity. As a phase transition proceeds, uncorrelated domains of
the new phase grow and assume preferred field configurations where
they meet. Topological defects appear where no uniform configura-
tion can unite the domains, adopting the form of surfaces (walls), lines
(strings and vortices), and singular points (monopoles). Strings and
monopoles carry conserved topological charges which, depending on
the physical properties of the system, can manifest as magnetic,
electric, or even quark colour charges2.

The Alice string3,4 is unusual among topological defects, appear-
ing in certain grand unified theories2,5,6 as an element that converts a
monopole into an anti-monopole as it travels around the string7. This
fascinating “looking-glass” property, which gives the excitation its
name8, has a direct counterpart in condensed matter systems9–11,

where Alice strings have been identified with half-quantum vortices in
superfluids12,13 and π-disclinations in nematic liquid crystals11,14.

Alice strings are intimately tied to monopoles in a second sur-
prising way. At themonopole singularity itself, the field has no single
well-defined configuration and is therefore required to vanish. The
energy cost associated with the recovery of the field determines
the characteristic size of the region over which the system heals to
the phase that supports the defect. However, within such depleted
singular regions another phase with a different symmetry may be
present, and consequently the system energy can be reduced by
adopting more exotic topological configurations. A monopole can
thus become energetically unstable against a deformation into a
closed loop of Alice string, i.e., an Alice ring, which preserves the
topology of the monopole field far from its core. Such monopole
core deformations have been predicted in nematic liquid crystals15–18,
in ’t Hooft–Polyakov monopoles19,20 within the field theory of Alice
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electrodynamics21,22, and more recently in spinor Bose–Einstein
condensates (BECs)23,24.

In thiswork,wepresent experimental evidenceof anAlice ring in a
spin-1 Bose–Einstein condensate. The Alice ring appears during the
time evolution of a topological monopole defect25 in the polar mag-
netic phase of the BEC, where it takes the form of a vortex ring filled
with superfluid in the ferromagnetic phase23 (Fig. 1). Experimental
images, in good agreement with numerical simulations, reveal that
after 5 ms of evolution the initial monopole decays into an extended
spin structure consistent with the analytical expectation for an Alice
ring (Figs. 2 and 3). Interestingly, both the experiment and the
numerical simulations reveal that an initially off-centred monopole
defect evolves into a tilted Alice ring (Fig. 4), dramatically under-
scoring its presence by enhancing the visibility of its ferromag-
netic core.

Results
Within the mean-field approximation26, a spinor condensate order
parameter may be expressed in terms of the atomic density n and the
normalised spinor ζ as

Ψðr, tÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðr, tÞ

p
ζ ðr, tÞ ð1Þ

For a spin-1 condensate, ζ � ðζ + 1,ζ0,ζ�1ÞT in the Zeeman basis with
complex-valued components ζm indexed by the magnetic quantum
number m. We ignore effects beyond the standard mean-field
approximation, such as those related to finite temperature.

The BEC can exhibit magnetic ordering that breaks the full sym-
metry of the Hamiltonian27 (Methods), leading to states with distinct
symmetries and corresponding magnetic phases. Depending on the
type of spin–spin interactions, the ground-state magnetic phase of a
spin-1 BECmay be ferromagnetic (FM), in which the local average spin
∣〈F〉∣ is maximised, or polar, in which the local spin vanishes and the
order is nematic. More generally, the condensate can exist in a mixed
phase that possesses both FM and polar order (Methods), of which the
pure phases are the limiting cases.

Monopoles and Alice rings are supported in the polar phase,
where the polar spinor can be expressed in the Cartesian basis26 as
ζ Pðr, tÞ= eiφðr, tÞd̂ðr, tÞ in terms of the scalar phase φ and the director
d̂= ðdx ,dy,dzÞ. The director is a three-dimensional real-valued unit
vector that conveniently specifies the local quantization axis along
which only them =0 spinor component is populated. Importantly, the
polar order parameter is nematic (Methods) since it is invariant under
the simultaneous substitutions d̂ ! �d̂ and φ→φ +π. Thus we need
to define the scalar phase only on the interval [0,π), in which case the
director assumes all values on the unit sphere.

The director field of a monopole is illustrated in Fig. 1a. Since the
energy cost of forcing the particle density to zero at the singular point
is relatively high, it is energetically favourable for the point defect to
deform into a ring that fills with superfluid in the ferromagnetic phase,
as first pointed out by Ruostekoski and Anglin23 (Fig. 1b, c). Along any
poloidal curve, such asL in Fig. 1b, the vector d̂ undergoes aπ rotation
while the scalar phase φ changes continuously by π. At the location
where oppositely oriented d̂ vectors meet, the continuity of the order
parameter is preserved by aπphase jump. Although the location of the
phase jump and director reversal is a matter of gauge choice, a
monopole traveling a path that encircles the ring poloidally must
encounter it at some point and turn into an anti-monopole, consistent
with the action of anAlice ring9,28.Moreover, the additional continuous
π phase winding along L shows that the Alice ring manifests as a half-
quantum vortex (HQV) ring in the BEC23.

Our experiment begins with the creation of a topological mono-
pole defect in an optically trapped BEC25. Initially, the d̂ field is aligned
with a uniformbiasmagneticfieldBb(t) pointing in the + zdirection. An
additional quadrupole field contribution Bqðr,tÞ= ðxx̂ + yŷ� 2zẑÞbqðtÞ
of strength bq is introduced such that the total field is

Bðr, tÞ=BbðtÞ+Bqðr, tÞ ð2Þ

where the origin of the coordinate system coincides with the centre of
the BEC (Methods). The field zero, defined as the point at which the
magnetic field vanishes, rests above the condensate along the z axis,

and all directors remain well-approximated by d̂= ẑ. The monopole is
introduced by slowly reducing the bias field strength Bb→0, bringing
the field zero into the centre of the condensate. The directors,
precessing at the local Larmor frequency, follow the local field
direction nearly adiabatically as the bias field is reduced. The result

is the monopole field configuration d̂m = ðx,y,� �zÞ=�r, written here in

terms of the rescaled z coordinate �z =2z and �r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + �z2

q
.

Immediately following the creation process, Bq is extinguished
whileBb is rapidly increased to 1.2G along a direction of our choice, p̂,
which defines the quantization axis for the following evolution and
imaging. The fieldduring the evolution is strong enough to ensure that
the ground-state magnetic phase is polar (Methods). The condensate
subsequently evolves in the uniformmagnetic field for a time T, at the
end of which the condensate is released from the optical trap. We
apply a brief magnetic-field gradient during the subsequent free fall
and expansion of the condensate, which spatially separates the three
spinor components according to their magnetic quantum number m
along p̂. The columndensities of the expanded spinor components are
then imaged absorptively along the y (side) and z (top) axes.

a cb

0
x

y z L

Fig. 1 | Schematic illustration of a topological monopole defect and its decay
product, an Alice ring, in a polar-phase Bose–Einstein condensate.
a Topological monopole with a zero-density core (black dot) and the corre-
sponding polar order parameter field represented by the director d̂ (white cones)
and the scalar phase φ (background colour). Such a monopole can be created by

adiabatically bringing the zero point of the quadrupole magnetic field (blue con-
nected arrows) into the centre of the spheroidal condensate. For clarity, the con-
densate is shown in section for y >0. b, cOrder parameter field after themonopole
has dynamically decayed into an Alice ring filled with the ferromagnetic phase (red
ring). The polar condensate is shown in section for y >0 (b) and z <0 (c).
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The experimentally measured spinor component density profiles
of the monopole created using this technique for T = 0 and p̂= ẑ are
shown in Fig. 2a, b. The monopole is located at the centre of the
condensate, where the particle density nominally vanishes. In Fig. 2a,
the side view reveals that the m =0 spinor component has a solitonic
structure with disconnected top (z >0, dz < 0) and bottom (z <0,
dz >0) lobes. The overlapping m = ± 1 components fill the region
between the lobes in the vicinity of the xy plane (z =0, dz = 0) and

contain density holes along the z axis which correspond to singly
quantized vortices of opposite circulation (Fig. 2b). These are the
expected component density profiles of a monopole with the quad-
rupolar director field of Fig. 1a. Similar density profiles, related by
rotations, have been previously observed for p̂ chosen along different
directions, all sharing the lobe and vortex structures in the m =0 and
m = ± 1 spinor components with respect to a chosen p̂-dependent
basis25. In particular, at every point the m = 0 spinor component
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Fig. 2 | Topological monopole and Alice ring in a spin-1 Bose–Einstein con-
densate. In all panels, we show particle column densities ~nm for them =0 (white),
m = + 1 (blue), andm = − 1 (red) spinor components projected along p̂ (white arrows
between corresponding subpanels). a, b Experimentally-obtained images of the
monopole projected along p̂= ẑ at T =0 ms and viewed from the side (along y) (a)
and from the top (along z) (b). c, dAs panels (a) and (b) but forT = 5ms, showing in
c the emergence of a well-defined column of m =0 atoms along the z axis.
e, f Results of three-dimensional first-principles numerical simulations

corresponding to (c) and (d), with schematic cones representing d̂ along a con-
tinuous loop L. Where d̂ is parallel to p̂, the atoms are entirely in the m =0 com-
ponent, whereas d̂ perpendicular to p̂ results in atoms solely in the m = ± 1
components. g–i Experimental (left) and simulated (right) particle column den-
sities at T = 5ms for p̂= x̂ (g, h) and p̂= ŷ (i), demonstrating an absence of them =0
column along these directions. For each panel, the field of view is 219 × 219 μm2 and
the peak column density is ~np = 6:89× 10

8 cm�2. Densities ~n0>~np appear white.
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Fig. 3 | Detailed simulation of the Alice ring emerging from a monopole.
a, b Cross-section (y =0 plane) of a released and expanded BEC for T = 4ms, with d̂
andφof the polarphase represented bywhite cones and abackground colourmap,
respectively. The FM phase is shown in red for ∣〈F〉∣ ≥0.95. The region bounded by
the white box is approximately 95 μm by 60 μm and shown magnified in (b). The
scale bar denotes 30μm. c As (a, b) but rotated into an isometric view with a semi-

transparent phase colourmap in order to reveal the structureof the FMring, shown
in section for y >0. The diameter of the expanded FM ring is 30μm. Some fluid in
the FM phase appears throughout the condensate at densities smaller than that of
the nearly pure FM ring, and we extract the polar director and phase using the
technique described in the Methods.
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density is proportional to the square of the component of the director
lying along p̂.

We repeat the experiment for different evolution times T after the
monopole creation to map the dynamics of the monopole configura-
tion (Fig. 2). In Fig. 2c–f, we compare the component density images in
all three projections p̂= x̂,ŷ,ẑ with component densities obtained
through first-principles simulations (Methods) and find good agree-
ment. This agreement not only validates our experimental results but
also provides uswith the opportunity to studynumerically the detailed
decay dynamics and the properties of the order parameter that are not
directly observable experimentally.

By T = 5 ms a column of m =0 (polar) atoms appears in the
experimental images, connecting the top and bottom m =0 lobes
along the z axis (Fig. 2c). No comparable connecting columns are
observed for experiments with p̂= x̂ and p̂= ŷ (Fig. 2g–i), which show
instead separated m =0 lobes, consistent with the spinor component
densities of the initial monopole25. Note that the column of m = 0
atoms in the p̂= ẑ projection (visible along the z axis in Fig. 2c) is
invisible in the auxiliary projections as these same atoms get projected
into an equal superposition of m = ± 1. The appearance of a polar col-
umn along the z axis is also independent of the direction from which
the zero of the magnetic field is brought to the centre of the con-
densate (Supplementary Fig. 1), reflecting instead the rotational sym-
metry of the trapping potential about the z axis.

As the m = 0 polar column appears for p̂= ẑ, the m = ± 1 spinor
components retain their initial vortical density profiles and appear
essentially unchanged as viewed along the z axis (Fig. 2d, f). However,
they drift apart axially, leading to two partially polarised mixed-phase
regions of opposite longitudinal magnetisation that smoothly join the
pure polar phase in the vicinity of the xy plane (Fig. 2c, e). Our simu-
lations confirm that these partially polarised regions result from

differential magnetic forces on the m = ± 1 spinor components during
the quench of themagnetic gradient field coils (Supplementary Fig. 2).
Although the topological stability of the monopole excitation cannot
be strictly guaranteed here, the director and scalar phase associated
with the polar order remain well-defined (Methods), and the appear-
ance of the mixed-phase regions does not in itself pose an existential
threat to the underlying topologyof the polarphase. Theprincipal new
feature marking the topological changes to the polar order within the
condensate is therefore the column of polar (m = 0) atoms along
the z axis.

Since the atoms in the connecting column are in the pure polar
phase, a point singularity no longer resides at the centre of the BEC.
Nevertheless, a singularity in the polar phase must exist somewhere
within the condensate, assuming the director field of the initial
monopole is preserved at the condensate boundary. Note that simple
initial displacements of themonopole singularity away from the centre
result in a significant change in the symmetry of the density profiles of
each spinor component (Supplementary Fig. 3): a horizontal dis-
placement results in a horizontal shift of them = ± 1 vortex centres, and
a vertical displacement results in a vertical shift of the solitonic gap
between the m = 0 lobes. We observe neither of these shifts in the
density profiles of Fig. 2a, c, leading us to conclude that the polar
(m =0) column is not explained by a simple displacement of the initial
point singularity.

To identify thenature of the singularity and resolve this puzzle, we
consider the directors along a closed curve L, as shown in Fig. 2e. In
traversing the curve from the top of the condensate to the bottom
along its boundary, the directors rotate by π due to the monopole
imprinting process25. As a result, the directors along the z axis in the
top m =0 lobe are antialigned with their counterparts in the bottom
m =0 lobe. In completing L along the column, continuity of the order
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Fig. 4 | Evidence of the Alice ring near the edge of the condensate.
a–c Experimental (a, b) and simulated (c) images of the m = − 1, 0, 1 component
column densities ~nm, projected along ẑ, for a monopole displaced in the − y
direction, as viewed from the top and side for T =0ms (a) and T = 4ms (b, c).
d–f Experimental (d, e) and simulated (f) difference in them = ± 1 columndensities,
~n�1 � ~n1, with p̂= ẑ forT =0ms (d) andT = 4ms (e, f). Themonopoledecay product
exhibits longitudinal magnetisation within the disk-shaped region formed by the
m = ± 1 components. Initially overlapping density holes in the m = ± 1 spinor com-
ponents in (d) become more separated with time in (e, f). g As panel (f), but with

additional contours such that light blue and orange denote the greatest column
densities ofm = − 1 andm = + 1 atoms, respectively, and dark blue and red indicate
ferromagnetic regions where ∣〈F〉∣ ≥0.95 with �ẑ and + ẑ magnetisation, respec-
tively. h Simulated polar condensate (green colour), shown in section for x <0, and
the emergent ferromagnetic region ∣〈F〉∣ ≥0.95 (red) in the shape of a ring that is
bent upwards near the condensate boundary. Small disconnected ferromagnetic
regions are excluded for clarity. For each panel, the field of view is 219 × 219 μm2

and the peak column density is ~np = 6:89× 108 cm�2.
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parameter therefore requires there to be a π discontinuity in the scalar
phase where the oppositely oriented directors meet, as illustrated in
Fig. 1b. This phase discontinuity is compensated by a continuous π
phase winding along L. The presence of the column and the retention
of the monopole boundary conditions thus suggest that the initial
topological point singularity has deformed to a ring that circumscribes
the m =0 column, with a half quantum of poloidal circulation arising
from the spatial variation in the scalar phase26. Our experimental
observations thus match the description of the Alice ring23.

Our simulation results, shown in Fig. 3, directly confirm the
anticipated poloidal π rotation and winding of d̂ and φ, respectively.
These features are centred on a prominent ferromagnetic torus (with
∣〈F〉∣ > 0.95) that provides an alternative means of identifying the
location of the emergent Alice ring. The FM ring results from the
conversion of the polar phase to the ferromagnetic phase within the
core of the Alice ring, since this is energetically less costly than forcing
the particle density to vanish at this singular defect of the polar order.
The extent of the FM ring is determined by the spin healing length23,
ξs ≈ 2.5 μm, roughly one third of the size of the condensate and a
conveniently observable size for imaging. Interestingly, the direction
of the scalar-phase winding about the Alice ring is determined by the
direction from which the field zero enters the condensate and has
direct consequences for what we observe in the spinor component
densities (Supplementary Fig. 1).

Next, we demonstrate that a displacement of the initial location of
the monopole in the experimental procedure yields an extraordinary
view of the cross-section of the Alice ring as it develops, revealing its
half-quantum of circulation and the ferromagnetic core. The dis-
placement results from an intentional addition of a small y component
to the bias field Bb during the monopole creation ramp. The sub-
sequent monopole evolution is quite different from the centred case:
almost immediately the vortex cores in them = ± 1 spinor components
move away fromone another, each fillingwith the other component as
shown in Fig. 4b, c (see also Supplementary Fig. 4). Since the
m =0 spinor component essentially vanishes in the xy plane where the
m = ± 1 spinor components are most pronounced, the filled-core vor-
tices can be interpreted in the plane as a half-quantum vortex dipole
(Methods) with filled ferromagnetic cores of opposite magnetisation
(Fig. 4d, e). A planar cross section of a vortex ring presents as a vortex
dipole; hence our experimental observations are consistent with an
Alice ring bending up through the xy plane, likely due to its interaction
with the condensate boundary29. The bending of the Alice ring and the
development of the ferromagnetic domains are confirmed by our
numerical simulations, as illustrated in Fig. 4f–h. The simulations also
reveal the presence of significant toroidal magnetisation within the
ring core23.

The characteristic features of the Alice ring, as discussed above,
remain identifiable in experimental images of the condensate for
evolution times of up to ≈10ms. A close analysis of the director field
and scalar phase in the numerical simulations suggests, however, that
the Alice ring survives under our experimental conditions up to a time
scale of 100 ms (Supplementary Fig. 5).

Discussion
Our experimental evidence and numerical analysis lead to the long-
awaited conclusion that Alice rings exist in nature. Concurrently, we
report an experimental technique to verifiably create Alice rings in an
ultracold quantum gas. This unprecedented level of topological engi-
neering togetherwith our initial indications of unexpectedly long-lived
Alice rings may enable the future demonstration of the charge con-
jugation of monopoles that pass through Alice rings. Such an experi-
ment calls for multiple monopole defects including both positive and
negative topological charges, a scenario recently studied in the case of
Dirac monopoles30. Furthermore, our techniques can be directly
applied to investigate the decay of monopoles in BECs of 23Na, where

the existence of two stable Alice ring solutions has recently been
predicted31.

Analogues of the Alice ring may also appear in systems with
additional magnetic phases. For example, the F = 2 spinor BEC has two
nematic phases, both of which support monopole solutions. In the
absence of a magnetic field these two phases are energetically
degenerate at the mean-field level. Fortunately, the introduction of
quantum fluctuations32–34 or a quadratic Zeeman shift arising from a
magnetic field24,26 lifts this continuous degeneracy, enhancing their
distinguishability and individual addressability. Monopoles in the
uniaxial nematic phase are topologically stable and similar to those in
the polar phase, but any emergent Alice ring would have an integer
(rather than half-integer) phase winding. Monopoles in the biaxial
nematic phase are not topologically stable, yet they can still support
Alice ring solutions24. Experiments in these rich systems could cast
further light on these enigmatic entities and provide an inspiring
context for their properties in the cosmos.

Methods
Order Parameter
The mean-field order parameter of a spin-F BEC Ψðr, tÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
nðr,tÞ

p
ζ ðr,tÞ

is a mapping from a region in physical space into an order parameter
space consisting of elements with 2F + 1 complex-valued spinor com-
ponents. Different subspaces of the full spinor in U(2F + 1) can be
identified, such as the ferromagnetic and polar phases of the spin-1
BEC. Each subspace, or magnetic phase, has its specific symmetries
that give rise to the spectrum of topological defects supported by the
phase. The classification of the topological defects can be carried out
using homotopy theory35. More details of the order parameter and
homotopy groups are provided below.

Hamiltonian density
The mean-field Hamiltonian density for a spin-1 Bose–Einstein con-
densate in an external magnetic field oriented along the z axis can be
written as26

H=
_2

2M
j∇Ψj2 +n Utrap +phFzi+qhF2

z i
� �

+
n2

2
c0 + c2jhFij2
� � ð3Þ

whereM is the atomicmass,n = ∣Ψ∣2 is the atomicdensity, and 〈F〉 = ζ†Fζ
the local average spin obtained from the vector F = (Fx, Fy, Fz) of the
standard spin-1 matrices Fα. The strength of the harmonic optical
trapping potential Utrap =M(ωrr2 +ωzz2)/2 is determined by the radial
and axial trapping frequencies ωr and ωz, respectively. The pairwise
interaction terms are c0 = [4πℏ2/(3M)](2a2 + a0) and c2 = [4πℏ2/(3M)]
(a2 − a0), where aF is the s-wave scattering length in the total spin-F
channel of two atoms. For 87Rb, these scattering lengths36 are
a0 = 101.8(2)aB and a2 = 100.4(1)aB in terms of the Bohr radius aB.
The linear Zeeman energy shift is p = gμBBz, where g is the Landé
g-factor and μB is the Bohr magneton. The quadratic Zeeman shift is
given by q= ðgμBBz Þ2=ΔE >0 in terms of the ground-state hyperfine
splitting ΔE ≈ 6.8GHz.

Magnetic phases
The two possible ground-state magnetic phases of a spin-1 BEC are
characterised by the local spin expectation value. In the ferromagnetic
phase, ∣〈F〉∣ = 1 and in the polar phase, ∣〈F〉∣ = 0. In the absence of an
external magnetic field, the sign of the interaction term c2 in the
Hamiltonian determines the ground-state magnetic phase37. For 87Rb,
c2 < 0 and hence the ground-state phase is ferromagnetic, whereas in
the presence of a field ∣B∣ ≈ 1 G the ground-state phase is polar with the
director aligned with the magnetic field as a result of the quadratic
Zeeman shift nqhF2

z i (see Eq. (3)). The more general mixed phase
consists of coexisting ferromagnetic and polar order. Continuity of the
total order parameter guarantees that the topological analysis given
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throughout this paper applies notonly to the purepolar phasebut also
to any nonvanishing polar order in the mixed phase.

Symmetry of the Hamiltonian density
With no external magnetic field, the Hamiltonian density in equation
(3) is invariant under both global SO(3) spin rotations and shifts of the
scalar phase, which together form the elements of the group
G = SO(3)f ×U(1)φ with subscripts f and φ referring to the spin and
scalar-phase degrees of freedom. The group elements can be repre-
sented by eiφUðα,β, γÞ= eiφe�iαFz e�iβFy e�iγFz , whereα, β, and γ are Euler
angles and φ is a scalar phase.

Order parameter space
The action of G on the representative polar spinor ~ζ P = ð0, 1, 0ÞT yields
the arbitrary polar spinor ζP,

ζ P = e
iφUðα,β, γÞ~ζ P =

eiφffiffiffi
2

p
�e�iα sinβffiffiffi

2
p

cosβ

eiα sinβ

0
B@

1
CA ð4Þ

as expressed in a basis quantized along z. The set of distinct ζP con-
stitutes the polar order parameter spaceMP. Since γ does not appear
in equation (4), ζP is invariant with respect to SO(2) rotations about the
nematic axis specified by α and β. It is also invariant with respect to the
discrete Z2 spin-phase coupling symmetry produced by the simulta-
neous transformations φ→φ +π and β→ β +π. These invariant
transformations form a subgroup H = SO ð2Þf ⋊ ðZ2Þf ,φ of G, signaling
that the symmetry of the polar phase is broken fromG. As a result, the
polar order parameter space is38

MP =
G
H

=
SO ð3Þf × Uð1Þφ
SO ð2Þf ⋊ ðZ2Þf ,φ

ffi S2f × U ð1Þφ
ðZ2Þf ,φ

ð5Þ

Nematic director
Equation (5) suggests that any ζP canbe represented in termsof a point
on the S2 unit sphere and a U(1) phase on the unit circle, with opposite
points on the sphere identified. Rewriting equation (4), we find

ζ P =
eiφffiffiffi
2

p
�dx + idyffiffiffi

2
p

dz

dx + idy

0
B@

1
CA ð6Þ

where the director d̂ = ðsinβ cosα, sinβ sinα, cosβÞ picks the point on
the unit sphere. Thus the spinor representation ζPðr,tÞ= eiφðr, tÞd̂ðr, tÞ
maps vectors in the physical space to the order parameter spaceMP as
characterised by φ and d̂. The discrete Z2 symmetry corresponds to
the relation eiφd̂= eiðφ+πÞð�d̂Þ.

The projections p̂= x̂ and p̂= ŷ place the x and y components of
the director, respectively, into them =0 component of the spinor with
respect to the basis quantized along p̂. For example, the projection
p̂= x̂ yields the relation

ζ P =
eiφffiffiffi
2

p
�dy + idzffiffiffi

2
p

dx

dy + idz

0
B@

1
CA

x

ð7Þ

as can be seen by appropriately permuting the variables of Eq. (6).
Thus the m =0 spinor component densities with different projection
axes yield the squares of the corresponding components of d̂ (see, for
example, Fig. 2g–i).

ACartesian spin-basis decomposition26 extracts thenematicorder
φ and d̂ fromageneralmixed-phase spinor ζ(r, t). Following ref. 39, the
spinor is written as ζ =u + iv, in terms of a pair of real vectors u and v
(with ∣u∣2 + ∣v∣2 = 1). The phase φ is then calculated by applying the

scalar-phase transformation ζ = eiφe�iφðu+ ivÞ= eiφ a+ ibð Þ such that
a ⋅b =0 and ∣a∣≥∣b∣, i.e., by finding the corresponding solution of
tan 2φ=2u � v=ðjuj2 � jvj2Þ. The ferromagnetic order is defined by
〈F〉 = 2(a ×b). For ∣a∣ > ∣b∣ the nematic order is defined by φ and
d̂= a=jaj, matching those of the pure polar spinor ζP if b =0 (and
therefore ∣〈F〉∣ =0). For jaj= jbj= 1ffiffi

2
p the director is undefined and the

phase is purely ferromagnetic, with ∣〈F〉∣ = 1.

Topological defects
Topological defects within a medium are classified according to
homotopy theory, which provides a way to determine which defects
are topologically stable, i.e., cannotbe continuously deformed into the
uniform field configuration35. The first two homotopy groups π1 and π2

characterise line and point defects, respectively. In the case of the
polar phase BEC, π2ðMPÞ=Z, and thus monopoles are topologically
stable with an integer topological charge. Vortices, π1ðMPÞ=Z, are
also topologically stable in the polar phase, with either integer or half-
integer winding. The fact that the polar phase supports both π1 and π2

defects enables the monopole core topology to change locally to a
vortex ring.

Experimental methods
Our experimental apparatus and the monopole creation process have
been described previously in ref. 25. In brief, the experiment involves a
87Rb condensate of approximately 2.5 × 105 atoms confined in a
1064 nm crossed-beam optical dipole trap with radial and axial fre-
quencies of 120Hz and 160Hz, respectively. The condensate is
exposed to themagnetic fieldB(r, t) specified by equation (2), which is
produced by three orthogonal pairs of Helmholtz coils that generate
the bias field contribution Bb, and a pair of anti-Helmholtz coils that
generates the spherical quadrupole field contribution Bq with an
adjustable amplitude bq.

The condensate is prepared in the polar F = 1,m=0j i state with
d̂= ẑ oriented along a uniform magnetic field of strength 1.0 G. The
quadrupole contribution to the magnetic field is then initialised to
bq = 4.3 G/cm and the bias contribution reduced to Bb = 45mG along
+ ẑ. Importantly, d̂ remains well aligned with the magnetic field
throughout the condensate. These parameters place the zero of the
magnetic field 52μmabove the centreof the condensate. The bias field
contribution is then reduced by a constant rate _Bb = � 0:25 G/s for
180ms, bringing the field zero to the centre of the condensate. The
monopole is imprinted in the d̂ field since, in the spirit of the adiabatic
theorem, the directors adiabatically follow the magnetic field lines
during this creation ramp. Straightforward modifications to this pro-
tocol can be used for different orientations of Bb immediately prior to
the creation ramp,whichhas the effect of changing the direction along
which the field zero enters the condensate25.

Immediately after themonopole is created, thequadrupole field is
quickly (in 30 μs) extinguished andBb is rapidly (in 40 μs) increased to
1.2 G along the chosen projection direction p̂, which in these experi-
ments is either + ẑ, �x̂, or + ŷ. The condensate is then held in the
constant bias field of 1.2 G for a time T, after which the optical trap is
extinguished and the condensate expands for 23ms. Several milli-
seconds after the release, the cloud is exposed to a briefmagnetic-field
gradient which causes the spinor components to separate along the x
axis. The components are imaged absorptively along the z and y axes.

All different experimental images shown in this paper are repre-
sentative examples of hundreds of individual results obtained under
similar circumstances.

Numerical simulations
We simulate the BEC dynamics by numerically integrating the three-
dimensional spin-1 Gross–Pitaevskii equations40. The simulation
begins by finding the BEC density profile in the ferromagnetic ground
state in zero magnetic field. At each point of the computational grid
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the ferromagnetic spinor is then replaced by the polar spinor (0, 1, 0)T

and perturbed by a noise term0.1 × (a + ib, c + id, e + if)T, where a…f are
random real numbers with a Gaussian distribution with amean of zero
and a standard deviation of one. The order parameter is subsequently
normalised across the entire condensate.

The simulation follows the experimental protocol from the
beginning of the creation ramp to the release from the optical trap.
The free expansion is simulated with a ballistic approximation41 and
the resulting column density profiles are determined individually for
each spinor component, omitting the Stern–Gerlach separation pulse.
We take into account the three-body loss rate42, α = Γ/ℏωr with
Γ = ℏ × 2.9 × 1030 cm6/s. We employ a cubic computational domain of
2563 points, with pre-expansion side length L = 23μm and post-
expansion side lengths Lr = 328, Lz = 511 μm, and the results converge.
A second numerical integration method based on discrete exterior
calculus43 is used for the long-time evolution.

Healing lengths
The size of the monopole core is determined by the density and spin
healing lengths, ξn = 0.17 μm and ξs = 2.5 μm, respectively. Since ξs > ξn
it canbe energetically favourable tofill singularitieswith superfluidof a
differentmagnetic phase. The characteristic size of these filled regions
is determined by ξs, which is approximately one third of the size of the
condensate (RTF = 7.6 μm) and therefore readily observable.

Half-quantum vortex dipole
The polar phase supports half-quantum vortices that can have filled
ferromagnetic cores23,44. As a straightforward example, we consider
the superposition of the m = ± 1 spinor components

ζ hqvðϕÞ=
1ffiffiffi
2

p
eiϕ

0

1

0
B@

1
CA=

eiϕ=2ffiffiffi
2

p
eiϕ=2

0

e�iϕ=2

0
B@

1
CA ð8Þ

whereϕ is the azimuthal coordinate taken about the vortex line in the
m = + 1 spinor component. This spinor describes, for example, one of
the two filled-core vortices observed experimentally in the xy plane of
the condensate (Fig. 4b, e).We can rewrite ζhqv in terms of the director
and quantum phase,

d̂hqvðϕÞ= cos
ϕ
2
,� sin

ϕ
2
,0

� �
and φhqvðϕÞ=

ϕ
2

ð9Þ

This is a half-quantumvortex, whereφ changes byπ and d̂ experiences
a π disclination in the range φ∈ [0,π). A similar analysis with
the m = ± 1 spinor components interchanged and φ→ −φ yields
a half-quantum vortex with the opposite circulation and core
magnetisation. Thus the filled-core vortex pair visible in Fig. 4
constitutes a half-quantum vortex dipole, as is expected for the
intersection of a half-quantum vortex ring with the xy plane.

Data availability
The experimental data and simulation results generated in this study
have been deposited in the Zenodo database under accession code
https://doi.org/10.5281/zenodo.8027653, ref. 45.

Code availability
The simulation code can be provided by the authors upon request.
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