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The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill
the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-
human hosts. Here, we detected that SARS-CoV-2 was introduced from
humans into white-tailed deer more than 30 times in Ohio, USA during
November 2021-March 2022. Subsequently, deer-to-deer transmission per-
sisted for 2–8 months, disseminating across hundreds of kilometers. Newly
developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evo-
lution is not only three-times faster in white-tailed deer compared to the rate
observed in humans but also driven by different mutational biases and selec-
tion pressures. The long-term effect of this accelerated evolutionary rate
remains to be seen as no critical phenotypic changes were observed in our
animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has
transmitted inwhite-taileddeer populations for a relatively short duration, and
the risk of future changes may have serious consequences for humans and
livestock.

As of December 2022, over 645 million human cases of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) were reported
globally, resulting in over 6.6 million deaths1. Evolution of this virus
involves rapid mutation, recombination, and host-switching2,3. The
emergence of new divergent variants that more efficiently transmit
and/or evade host immune response has repeatedly altered the tra-
jectory of the pandemic, delaying economic and societal recovery.
Variants with unpredictable characteristics continue to evolve and the
role of animal hosts in the future evolution of SARS-CoV-2 remains
unclear. SARS-CoV-2 is capable of infecting a broad range of
mammals4,5. The largest number of non-human SARS-CoV-2 infections
have been detected in mink, felines, canines, and cervids6. Spillback of

mutated variants from animals back to humans has been confirmed in
hamsters in Hong Kong and mink in the Netherlands and Denmark,
which led to mass culling7–9. However, mass culling is not feasible in
free-ranging animals, such as white-tailed deer (WTD), and wildlife
reservoirs present a more intractable problem.

White-tailed deer were identified as wildlife host for SARS-CoV-2
in July 2021,when antibodies against SARS-CoV-2weredetected in 40%
of the tested free-rangingWTD from four US states10. Onemonth later,
we reported the first confirmed cases of active SARS-CoV-2 infection in
free-ranging deer11,12. During January–March 2021, one-third of nasal
swabs collected from WTD in northeast Ohio were positive for SARS-
CoV-2 by rRT-PCR. Phylogenetic analysis indicated that at least six
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human-to-deer transmissions occurred, and one deer-to-deer trans-
mission cluster persisted for at least several weeks. Since then, the
virus has been repeatedly and frequently detected in white-tailed deer
in multiple North American locations10,11,13–16. Retrospective testing of
samples collected in Iowa identified active SARS-CoV-2 infections in
WTD as early as September 202014. High seroprevalence (94.4%) was
reported in a captive WTD facility in Texas17. The omicron variant was
detected inWTD in Staten Island, New York in January 2022, following
the omicron wave in humans18. Intriguingly, an Ontario WTD clade of
SARS-CoV-2 that is related to the B.1.641 lineage was identified with
likely deer-to-human spillback13. As of January 17, 2023, The US
Department of Agriculture confirmed SARS-CoV-2 by PCR in wildWTD
in 27 states6.

Ohio is one of the most populous states in the United States
(ranked 7th in population19) and has the 8th highest recorded number
of human COVID-19 cases (2.9 million as of July 25, 2022)20. To further
investigate the status of SARS-CoV-2 in WTD in Ohio, we conducted
statewide surveillance from November 2021 to March 2022, collecting
1522 nasal swabs fromWTD in 83 of Ohio’s 88 counties. This study is a
large-scale effort to characterize the infection rate, persistence, spatial
spread, and evolution of SARS-CoV-2 inWTD within a geographic area
of approximately 115 thousand square kilometers.

Results
SARS-CoV-2detected inOhiowhite-taileddeerbyPCR, serology,
and whole-genome sequencing
More than 10% of the samples collected fromWTD for this study were
positive by rRT-PCR for SARS-CoV-2 (163/1522, 10.7%, 95%CI 9.2–12.4%,
Table S1). In more than half of the counties sampled (59.0%, 49/83), at
least one SARS-CoV-2 positiveWTDwas identified (Fig. 1 and Table S2).
Positive sampleswere retrieved fromOhio’s three largestmetropolitan
areas surrounding Cleveland, Columbus, and Cincinnati, as well as
from rural areas (Fig. 1). The only region with no positive samples was
the rural northwest, where sample collectionwas limited. Therewasno
significant difference in the percentage of urban counties with at least
one positive sample (68.4%, 13/19) compared to rural counties (56.2%,
36/64) (Chi2 0.90, p =0.34). Accounting for county-level clustering,
male WTD had marginally increased odds of infection compared to

females (Adjusted OR= 1.5, 95% CI 1.0–2.2, p =0.034, not significant at
Bonferroni adjusted cut off of 0.007, Table S3), but the age of theWTD
had no substantial effect. Samples collected in December had 1.8x
higher odds of infection compared to November, when most samples
were collected (Adjusted 95% CI 1.0–3.0, p =0.035, not significant at
Bonferroni adjusted cut off of 0.007, Fig. S1 and Table S3). Odds of
infection were even lower in January, and no samples from February or
March 2022 tested positive. We found a significant statistical interac-
tion between the manner of death and urban county classification.
Hunter-harvestedWTDhad similar odds of infection in urban and rural
counties, but culledWTDhad higher odds of infection in rural counties
compared to urban counties (Adjusted OR= 14.7, 95% CI 2.2–100.0,
p =0.006, Table S3). Only 0.6% of WTD culled from urban counties
were positive by PCR, but 22.2% of blood samples from the sameWTD
were seropositive for antibodies (Table S3b), indicating previous
exposure in a population with very few active infections. Overall, the
estimated seroprevalence of SARS-CoV-2 in OhioWTDwas 23.5% (274/
1164, 95% CI 21.1–26.1%, Table S1). Seropositivity was not associated
with detection of active infections by PCR (Chi2 1.7, p =0.19). At least
one seropositive WTD was sampled in 66.3% (55/83) of counties. Even
in an urban county like Franklin (which includes Columbus), where all
149 samples from culled WTD were negative by PCR, estimated ser-
oprevalence was 19%. Thus, urban culled WTD with few infections
within our sampling time interval still had similar likelihood of pre-
vious exposure to other WTD tested for antibodies. Almost 70% (804/
1164) of WTD were negative by both PCR and surrogate virus neu-
tralization test (sVNT), indicating that a large portion of the WTD
population in Ohio remained naïve to SARS-CoV-2. Fourteen counties
were negative by both PCR and serology, all of which had 10 or fewer
serum samples (Table S2). Given that seroprevalence was similar in
male and femaleWTD, in urban and rural counties, and acrossmonths,
we found no significant predictors for seropositivity.

Whole-genome SARS-CoV-2 sequences were obtained from 34 of
the 49 counties with at least one positiveWTD (69.4%), for a total of 80
sequences (Fig. 1 and Table S4). Nearly 70% of these sequences were
from rural counties, corresponding closely to the distribution of PCR
positive samples (74% from rural counties, Table S1). Ninety-five per-
cent of sequenced WTD viruses were sampled when the delta variant

0             0.5           1

a. b.

Proportion Positive

Fig. 1 | Geographic distribution of SARS-CoV-2 in Ohio by county. Counties
classified as urban are colored gray and rural counties are white. The size of circles
plotted over the county centroids indicate the number of samples collected and
the color scale indicates SARS-CoV-2 estimated prevalence in each county by rRT-
PCR (a) and seroprevalence by surrogate virus neutralization (b). Counties that are
outlined in bold borders indicate counties from which we obtained SARS-CoV-2

genomic sequences (Table S2). Counties marked with an asterisk indicate counties
from which samples were collected from culled WTD as a part of population
management programs (Table S1). Map created with ArcMap (ESRI) using base
layers anddata fromEsri, Garmin, OpenStreetMap,GIS user community, Infogroup
and the US Census Bureau.
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was dominant in humans, prior to December 15, 2021 (Fig. 2 and
Table S4).

Alpha variants persist in Ohio white-tailed deer
The vast majority of the sequenced WTD viruses (88.8%, 71/80)
belonged to the delta variant (B.1.617.2 and AY PANGO lineages),
matching the dominant variant circulating in humans at the time
(Table S4). The remaining nine WTD viruses belonged to the B.1.1.7
lineage (alpha variant) that circulated in humans in Ohio six months
earlier, during the spring of 2021 (Table S4). The nine B.1.1.7 viruses
were collected from four counties in southern Ohio (Brown, Highland,
Meigs, Pickaway) during November and December 2021. The last
human B.1.1.7 virus in Ohio was collected on August 23, 2021
(EPI_ISL_3897556). The B.1.1.7 viruses collected fromOhioWTD cluster
in two separate clades on the phylogenetic tree, consistent with two
independent human-to-deer transmission events (Figs. 2a and S2). The
time-scaled MCC tree indicates that two human-to-deer transmission
events occurred during the spring B.1.1.7 wave, an estimated 5-8
months prior to the detection of B.1.1.7 inWTD (Fig. 2a, c, e). Together,
these findings suggest that two B.1.1.7 introductions from humans
were followedby sustained deer-to-deer transmission inOhio formore
than five months.

Delta variants frequently transmitted from humans to white-
tailed deer
The timing of the delta wave in humans (Figs. 2d and S3) coincided
with the timing of the late autumn WTD hunting season in Ohio (our
most intense sampling period), and we detected frequent introduc-
tions of delta variant viruses from humans to WTD. Twelve PANGO
lineages considered delta variant (eleven AY lineages and B.1.617.2)
were identified in WTD, representing a minimum of 12 independent
human-to-deer delta transmissions (Fig. S4). Most AY lineages were
introduced into WTD from humans more than once, as evidenced by
multiple independent clades in the phylogenetic tree (Figs. 2b, S2, and
S4). In total, more than 30 delta reverse zoonosis events in Ohio were
inferred across the branches of theMCC tree, based on “Markov jump”
counts that infer the number of human-to-deer transmissions (Fig. 2e).
The AY lineages detected at the highest frequency inWTD (AY.103 and
AY.25) were also dominant in humans in Ohio (Figs. S5 and S6). In
general, the genetic composition of delta variants in Ohio WTD mat-
ched the dominant lineages found in humans at that time, with a
positive association between AY lineage frequencies in humans and in
WTD (Fig. S7). The MCC tree estimates that delta variants were intro-
duced from humans to WTD during the autumn of 2021, coinciding
with the delta wave in humans in Ohio, approximately 2–3 months
before their descendants were detected in WTD by surveillance
(Fig. 2d, e). Frequent reverse zoonotic transmission seeded high
geneticdiversity in Athens andWashington counties, where four SARS-
CoV-2 lineages were identified during a single week (week 49, Fig. S8).
Each introduction transmitted onward inWTD enough to be picked up
by surveillance, but not all introductions spread to multiple counties,
and many are likely to be transient.

Spatial diffusion of alpha and delta variants in white-tailed deer
Onwarddeer-to-deer transmissionwasobserved in 16WTDclusters (14
delta and 2 alpha, Fig. 3). Eleven clusters spanned multiple counties,
including four that spanned three or more counties (Figs. 3 and S9).
The largest spatial clusters were found in rural areas. Delta clusters
typically spanned neighboring counties that share a border, whereas
alpha clusters included viruses from distant, non-contiguous counties
separated by hundreds of kilometers. Longer distance dispersal of
alpha variants is consistent with the longer time frame of alpha cir-
culation inOhioWTD inferred from theMCC tree (5–8months, Fig. 2b,
c). At this level of sampling, every virus detected in a WTD, including
20 singletons positioned outside observed transmission clusters on

long branches, likely belongs to a sampled or unsampled transmission
cluster in deer.

SARS-CoV-2 evolves faster in white-tailed deer than in humans
To explorewhetherWTDviruses’ long branches (Fig. S2) and deviation
from genetic distance root-to-tip regressions (Fig. S10) arise because
SARS-CoV-2was evolving faster inWTD than in humans, weperformed
an in-depth analysis of all mutation events, scanned for positive and
negative selection across the SARS-CoV-2 genome, and estimated rates
of nucleotide substitution using a Bayesian approach. The estimated
rate of SARS-CoV-2 evolution (substitutions per site per year) was
approximately three times higher inWTD compared to humans for the
alpha variant and 2.7 times higher for the delta variant (Figs. 4a and S11,
Table S5). The rate was higher in WTD for both synonymous and non-
synonymous substitutions across all genome regions, including the
spike protein (Fig. S12). However, the rate of non-synonymous sub-
stitution in WTD was not as high as would be expected, given the
background rate of synonymous substitution. As a result, the ratio of
non-synonymous to synonymous substitutions (dN/dS) was lower in
WTD than in humans, across the genome, for both alpha and delta
variants (Fig. S12). The dN/dS ratio for delta spike protein was sig-
nificantly lower in WTD compared to humans (Fig. S12), evidence of
predominantly purifying selection that removes non-synonymous
changes (Table S6). A high rate of non-synonymous substitution was
observed in WTD for the genome partition that includes ORFs 3-8, the
envelope, and membrane proteins. ORF3a had a high dN/dS ratio in
WTD in an analysis of selected genes (See “Methods”, Table S6).

The high rate of SARS-CoV-2 evolution in white-tailed deer
observed in our study could be a feature of a high rate of transmission
in an immunologically naïve host with weakened purifying selection,
similar to the early phase of SARS-CoV-2 evolution in humans. To test
this hypothesis, we conducted an additional comparison with early
SARS-CoV-2 strains collected in humans during December 2019 to
February 2020 thatwere used in Pekar et al.21. The overall rate of SARS-
CoV-2 evolution was significantly higher in early human strains (1.3 ×
10−3 substitutions/site/year; 95% HPD 1.1–1.6 × 10−3) compared to the
alpha and delta strains that emerged in humans later in the pandemic
(5.9–6.0 × 10−4), but not as high as the deer rate (1.6–1.8 × 10−3)
(Table S5 and Fig. S13). However, dN/dSwas higher in the spike protein
gene of human variants, especially for delta, compared to deer and
early human, consistent with increasing immune-driven positive
selection as a population becomes exposed (Fig. S12).

Mutational biases in white-tailed deer
To investigate the possible causes of faster SARS-CoV-2 evolution in
WTD compared to humans, we examined differences inmutational bias
between human anddeer branches in the phylogenetic tree.WTDhad a
significantly higher C-to-T mutational bias for both alpha and delta
variants (Fig. 4c–h, Table S7, Supplementary Data 1). This pattern held
for all mutations, including synonymous mutations, and could not be
attributed to selection, low WTD sample size, or differences in codon
usagebetweenWTDandhumans (Figs. S14–S17).MostC-to-Tmutations
occurred in theWCW context (where W can be A or T), which has been
linked to APOBEC activity in humans22–24 and would be consistent with
previous experimental evidence that suggested APOBEC editing as an
important contributor of mutations in human origin SARS-CoV-2
genomes25,26. The higher C-to-T bias in deer was maintained, even
compared to early SARS-CoV-2 strains fromhumans (Fig. S18) and there
was no evidence that C-to-T biases changed over time in humans.

Recurrent mutations in spike protein in WTD
Recurrent mutations arose independently in different WTD transmis-
sion clusters that could potentially represent individual sites under
positive selection (Figs. S19 and S20). For example, the L18F mutation
in the spike protein N-terminal domain occurred independently in six
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Fig. 2 | Human-to-deer transmission of SARS-CoV-2 in Ohio. aMCC tree inferred
for 786 B.1.1.7 viruses collected from humans and WTD. Branches shaded by host
species and location. The two Ohio WTD clusters are labeled. b AY.25 subtree
(entire delta MCC tree shown in Fig. S4, n = 1094 delta viruses). Ohio WTD virus
transmission clusters are shaded similarly to Fig. 3, with the addition of black
branches indicating Ohio WTD singleton detections from this study and dark gray
branches indicating non-Ohio WTD singletons. c The number of bi-weekly COVID-
19 cases in humans in Ohio from January 2021 to February 2022, shaded by the
proportion of human SARS-CoV-2 sequences from Ohio that belong to one of four
Pango lineages (or ‘other’). Red box delineates the B.1.1.7 wave in humans. Below,
green bars show the estimated number of human-to-deer transmission events of
B.1.1.7 viruses, per 20-week increments, basedon “Markov jump” counts inferredon

the alpha MCC tree (n = 786 B.1.1.7 viruses). Green circles indicate the collection
dates of 9 B.1.1.7 viruses in OhioWTD. d Similar to c, but inferred on the delta MCC
tree (n = 1094). e The detection lag (months) is the time difference between a
human-to-deer transmission event (estimated) and the first observed sequence
from aWTD transmission cluster, shown for 14 delta and 2 alphaWTD transmission
clusters, inferred from the MCC trees. Red lines represent the two time points of
the twonodesdefining thebranchon thephylogenetic tree onwhich thehuman-to-
deer transition occurred; thick black bar represents the mean time of the branch.
f Estimated number of human-to-deer transmission events in Ohio and North
America and long-distance deer-to-deer transmission events that span Ohio
counties, inferred from the MCC trees. Data for North America does not
include Ohio.
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WTD delta clusters and two singletons (Fig. 4b; Supplementary Data 2;
Fig. S19). This site was estimated to be subject to episodic diversifying
positive selection (p-value 0.0001). The S:L18F mutation occurred
during the Hong Kong hamster outbreak7 and reduced antibody
binding in the gamma variant in humans27. However, the mutation
dropped to low frequencies (<1%) globally in humandelta and omicron
(Fig. S21). Seven additional recurrent WTD mutations were located on
the spike protein surface, including N501Y in the receptor binding
domain (RBD) (occurred twice) and H69Y. S:N501Y was a key
mutation28 in human variants (alpha, beta, gamma, omicron, mu), but
was rarely observed in delta viruses in humans. No recurrent spike
mutations were found in the smaller alpha dataset, but S:T29I was
observed in both alpha and delta.

In vitro growth kinetics
Virus isolation was attempted on 75 of the 163 PCR positive nasal
swabs, yielding 27 SARS-CoV-2 isolates for further laboratory char-
acterization. We analyzed the replication kinetics of nine representa-
tive WTD isolates (Table S8) compared with the corresponding

ancestral strains from humans, Hu-B.1.1.7 and Hu-B.1.617.2. The AY.75
virus displayed significantly lower titers at 24- and 36-h post infection
(hpi) compared to the other isolates in Vero E6 T2 cells (Fig. S22A). No
significant differences were observed between the WTD and human
B.1.1.7-like viruses in any cells (Fig. S22A–C). Interestingly, some of the
deer variants demonstrated reduced replication efficiency in Calu-3
cells (B.1.1.7-like, AY.109, AY.39 and AY.75), whereas the remaining
viruses grew efficiently inCalu-3 cells albeit to lesser titers than theHu-
B.1.617.2 virus (Fig. S22C).

Antigenic characterization
The neutralizing capacity of α-Hu-B.1.617.2 hamster serum was
equivalent or greater against all the Delta lineage viruses isolated from
WTD compared to the parental Hu-B.1.617.2 virus, except for AY.118
and AY.25 which had a 2.1 and 1.2-fold-reduction in neutralization,
respectively (Fig. 5a). The α-BNT162b2 serum had detectable neu-
tralizing titers against all Alpha and Delta lineage viruses tested except
for the AY.118 isolate. Overall, some exceptions notwithstanding, most
WTD viruses were antigenically similar to their human counterparts.

Cleveland

Columbus

Cincinnati

Toledo

Alpha cluster
Delta cluster
Singleton

AY.25AY.25
AY.25AY.25

AY.25.1AY.25.1

AY.25AY.25

AY.25AY.25

AY.103

AY.103

AY.103

AY.103

AY.103AY.103

AY.103AY.103

AY.103 AY.44AY.44
AY.39AY.39

B.1.1.7B.1.1.7

B.1.1.7B.1.1.7

Fig. 3 |Mapof SARS-CoV-2 transmission clusters inOhiowhite-tailed deer. Each
shape represents a county in Ohio where SARS-CoV-2 virus was identified in WTD
for this study (triangle = alpha variant; circle = delta variant). Large circles indicate
WTD transmission clusters, as identified on the phylogenetic tree (black = clusters
restricted to one county; shaded = clusters identified in more than one county).

Large circles shaded the same color belong to the same transmission cluster. Small
black circles indicate singleton WTD viruses. PANGO lineage provided for all clus-
ters. Human population density is shown in the background (red = high; green =
low) and major cities are labeled. Ohio population map [created by JimIrwin, from
Wikimedia Commons] was used with modification under CC BY-SA 3.0 license.
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c d e

f g h

Fig. 4 | Evolutionary rate of SARS-CoV-2 in humans andwhite-tailed deer. a The
posterior distributions of evolutionary rates (substitutions per site per year) for five
partitions of the SARS-CoV-2 genome (ORF1a, ORF1b, ORF3–ORF8 plus envelope
(E) and membrane (M), spike (S), and nucleocapsid (N)) are presented for human
(pink) and WTD (blue) for the delta variant (Fig. S4). Alpha results (similar) are
provided in Fig. S11. b Mutations in spike protein that were found in delta WTD
clusters (orange), L18F is shown in red, alphaWTD clusters (green), and T29I found
in both alpha and delta WTD clusters (yellow). Characteristic mutations for delta
lineages (mutations present in human and WTD viruses belonging to delta com-
pared to Wuhan reference genome) are shown in dark orange, while characteristic

mutations for alpha lineages are shown in dark green. All recurrentmutations from
WTD clusters are documented in Supplementary Data 2. The log deviation (ran-
dom-effect) from HKY model relative rates is presented for c alpha, humans,
d alpha, WTD, e alpha, WTD-to-human ratio, f delta, humans, g delta, WTD, and
h delta, WTD-to-human ratio, inferred independently for alpha (n = 786) and delta
(n = 1094). Box midlines indicate the median, the box limits show the upper and
lower quartiles, and the whiskers extend to 1.5 times the interquartile range.
Asterisks indicate transversions.WTD-to-human ratios that significantly differ from
zero are highlighted.
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In vivo experiments
A subset of WTD viruses was selected for analysis of viral replication
and pathogenesis in Syrian Golden hamsters, an established animal
model for SARS-CoV-2 variants29–31. Throughout the infection in
unvaccinated animals, there was no substantial difference in the

weight loss observed between the animals infected with different
viruses (Fig. 5b). In each case, prior immunization with BNT162b2 led
to decreased weight loss, suggesting that current vaccines would be
expected to provide protection from severe disease if these viruses
were to spill back into the human population (Fig. 5b). No differences
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Fig. 5 | Pathogenicity and replication ofmultiple strains of SARS-CoV-2 viruses
inGoldenSyrianhamsters.Golden Syrian hamsterswerechallengedwithHu-WA.1
(unvaccinated n = 12, vaccinated n = 12), Hu-B.1.1.7 (unvaccinated n = 4), B.1.1.7-like
(unvaccinated n = 13, vaccinated n = 13), Hu-B.1.617.2 (unvaccinated n = 11, vacci-
nated n = 12), AY.103 (unvaccinated n = 13, vaccinated n = 13), and AY.25 (unvacci-
nated n = 10). All sample sizes reflect biologically independent animals.
a Microneutralization titers of a-BNT162b2 or lineage specific serum against
representative viruses from this study. For b–e, themean for each group is plotted,
and bars indicate standard deviation. Titers expressed as log10 IC50 were plotted

and described as a fold change from the reference strains. b Body weight loss
comparison between unvaccinated and BNT162b2 vaccinated animals at the peak
of infection, day 7. Mean weights are displayed as a percentage of starting weight.
Nasalwashwas collected (unvaccinated groups only) (c) or lung andnasal turbinate
were harvested (d, e) and used to quantify viral titers. Viral titers expressed as the
log10TCID50were plotted. Statistical analysis wasperformedusing one-wayANOVA
followed by a Tukey post hoc, p values displayed from Tukey’s test statistic, q,
which controls for family wise error rate for multiple comparison.
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were observed between the Hu-B.1.617.2 and the AY.3 or AY.25 nasal
washes from unvaccinated hamsters. The Hu-B.1.1.7 virus showed a
significantly higher titer at 2 dpi compared to the B.1.1.7-like strain, but
that difference was not observed for the later time points (Fig. 5c).
Vaccination resulted in a reduction in viral titers compared to unvac-
cinated hamsters for the majority of strains at 2 dpi and was most
pronounced at 4 dpi (Fig. 5e, d).

Discussion
Three years into the COVID-19 pandemic, gaps in our knowledge of the
virus’s broader ecology and evolution in non-human hosts impede
efforts to fully resolve the pandemic’s zoonotic origins and predict its
future evolutionary trajectory. Here, by capturing the early phase of
SARS-CoV-2 transmission inWTD, we observe how a flexible generalist
virus invaded a new host species without extensive adaptive evolution
or phenotypic change. The persistence of WTD transmission clusters
for 2–8 months provided data with enough resolution to robustly
estimate that SARS-CoV-2 evolves about three times faster inWTDthan
in humans SARS-CoV-2 evolution in WTD using Bayesian approaches.
The high rate of SARS-CoV-2 evolution, apparent lack of extensive
adaptive evolution, and absence of phenotypic change all suggest that
the virus is evolving under purifying selection and transmitting effi-
ciently in WTD without (thus far) necessitating major evolutionary
changes.

Other zoonotic viruses, such as influenza A virus, evolve at dif-
ferent rates in humans and other mammalian species. Higher overall
rates of influenzaA virus evolution innon-humanhosts (e.g., swine and
birds)32 raise questions about how virus evolution is modulated by
population turnover, host metabolism, the activity of RNA editing
enzymes, in particularAPOBEC, andother physiological and ecological
factors. Influenza serves as a reminder of how pathogens that jump
from humans to animals can establish reservoirs with different evo-
lutionary trajectories that can ultimately have consequential effects on
animal and human health33. While new, fitter influenza variants con-
tinuously replace and purge older diversity in humans, pigs sustain
older human strains that shuffle their genomes through reassortment
and periodically spill over into humans, turkeys, and canines, causing
localized outbreaks or global pandemics. It remains questionable
whether the ecology and contact rates of free-rangingWTDcan sustain
an acute respiratory pathogen like SARS-CoV-2 over the long term
without involving other host species or environmental persistence.
The enigma of how SARS-CoV-2 transmits so frequently from humans
to WTD reflects broad gaps in our understanding of SARS-CoV-2
ecology.

Our study demonstrates that SARS-CoV-2 viruses sustained
transmission in free-ranging WTD for up to eight months in Ohio in
2021. First, humans seeded dozens of SARS-CoV-2 outbreaks in WTD,
scattered across the state. Then,WTDmovements spread someviruses
regionally over hundreds of kilometers, both in rural areas and on the
outskirts of metropolitan areas. The persistence and clustering of
alpha and delta lineage SARS-CoV-2 we detected in Ohio WTD are
consistent with recent results from New York16. To understand how
SARS-CoV-2 transmits deer-to-deer between subpopulations, future
efforts should integrate WTD movement data collected over many
years by wildlife biologists tracking pathogens of concern for live-
stock, such as chronic wasting disease and tuberculosis34,35. Our find-
ings are broadly consistent with patterns observed in other WTD
diseases, including higher infection odds in males that travel and
contact otherWTD during breeding season36. Higher infection odds in
December could be a bump after peakmating season, which increases
WTD contact rates and movements through early November. Rising
delta cases in humans could also be a factor. The timing of our sam-
pling coinciding with the fall hunting season seemed to play a large
role in where we detected active outbreaks. The very low odds of
detecting active infection in deer culled from urban counties, in

contrast to the lack of a similar effect in serological samples, points
strongly to the fact that our sampling efforts were not able to catch the
window of active infection in the majority of the culled urban reser-
vation deer populations we sampled. Deer in urban reservations where
hunting is not permitted might interact with humans differently,
driving differences in outbreak timing. All these hypotheses require
quantitative testing with mathematical models built from empirical
movement data and finer resolution, year-round virological
surveillance.

The sheer frequency of human-to-deer spillover observed in Ohio
—and North America—is consistent with a growing consensus that
cross-species transmission of SARS-CoV-2 occurs far more frequently
than previously detected. The yet-to-be-determined interface for
human-to-deer transmission events appears to exist across the entirety
of Ohio, regardless of proximity to major metropolitan areas. We
cannot exclude the possibility that all detected introductions are due
to direct human contact, although it seems unlikely. Indirect envir-
onmental transmission through wastewater and stormwater37,38 is
possible, but the virus has never been successfully isolated from was-
tewater, let alone run-off. The scope of airborne transmission of SARS-
CoV-2 in indoor and outdoor environments has been a source of lively
discussion since the onset of the pandemic. Experimental studies of
SARS-CoV-2 transmission in WTD and other wildlife are needed but
conducting suchexperiments inBSL-3 adds cost and logistical hurdles.
Otherwildlife or domestic species susceptible to SARS-CoV-2 infection
mayhave contactwith and facilitate transmission toWTD.Recentwork
in Virginia, USA, has identified high seroprevalence in species with
shared human habitats including raccoons, squirrels, skunks, and
white-footed and deer mice, in addition to viral shedding in a
opossum39. These species could plausibly interface with humans and
WTD. However, surveillance in wildlife is limited, which makes identi-
fication of other potential intermediate hosts difficult.

There are approximately 30millionWTD in theUnited States, and
that population is increasingly urbanized and in close contact with
humans40. Although there is evidence of transmission of WTD origin
SARS-CoV-2 to humans13, no substantial outbreaks of deer-origin SARS-
CoV-2 in humans have been reported. Our experimental results indi-
cate that, in general, the WTD lineage viruses have not undergone
substantial enough antigenic change to be a risk for immune and
vaccine escape in human populations. Going forward, we predict that
most delta transmission clusters seeded in WTD will die off and fail to
persist long-term, a common phenomenon in SARS-CoV-2 population
genetics that has been documented in humans in intensively
sequenced locations41. However, as we observed for alpha, a subset
might persist in WTD. It is possible that the overall rate of SARS-CoV-2
evolution in deer could decline over time, as occurred in humans, and
that selection on specific epitopes involved in immune escape could
strengthen as deer become more exposed and produce antibodies.
Additional surveillance data will also reveal how successfully omicron
variants invaded North American WTD and whether co-circulation of
delta, alpha, and omicron provided breeding grounds for new
recombinants. SARS-CoV-2 is currently not considered an important
risk for North American livestock, but the continued spread of the
virus in WTD, humans, and other hosts could open new pathways for
SARS-CoV-2 evolution.

Methods
Sample collection
Previously, we collected nasal samples fromWTD innortheasternOhio
focusing on metropolitan area parks11. In the present study, we
expanded geographical study area by approximately 1000-fold to
target the entire state of Ohio. We collected 1522 nasal swabs from
WTD across 83 of Ohio’s 88 counties from October 2021 to March
2022. Of those, 713 samples were opportunistically collected from
hunter-harvested WTD during hunting season (November to
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December 2021) in 81 counties in Ohio, drawing primarily from rural
areas. In addition to hunted WTD, we also collected 801 samples from
WTD culled during deer population management programs from 9
counties in Ohio. We had 2 additional samples collected from roadkill
WTD, and 6 nasal swabs that did not have sufficient metadata to
identify the manner of death. We had a large sample size discrepancy
between adult (n = 1199) and juvenile WTD (n = 297), which con-
tributed to the reduction of power and may bias the estimates. This
large difference in sample between ages is likely due to hunters’
common preference to take larger deer.

Members of the public are permitted to huntWTD in Ohio during
an explicit time frame each autumn (following WTD mating season).
Hunter-harvested WTD samples were collected at locations where
other cervid disease surveillance programs were being conducted
concurrently. Samples from culled WTD were collected in partnership
with each respective population management program at their indi-
vidual deer processing sites. Culled WTD are typically baited at their
respective reservations and managed land sites (where hunting by the
general public is not permitted). Professional sharpshooters then
harvest WTD from those sites to reduce WTD population in accor-
dance with the deer management plan for that location. Nasal swabs
were collected from free-ranging WTD during the six-month period
from October 2021 to March 2022. Most samples were collected dur-
ing November-December 2021, corresponding to the gun hunting
season in Ohio (Fig. S1). Sample collectors from all partner organiza-
tions were trained on standard sample collection methods. Collectors
wore a facemask and changed gloves between all samples. Two sterile
polyester tipped swabs were used during nasal swab collection. The
first swab cleared any debris from the exterior of the nostrils. A second
sterile swab was inserted fully, scraped epithelial cells and nasal fluids
of both nasal passageways and placed into a tube containing 3mL viral
transport media (BD UVT cat #220220). Post-collection, nasal swab
samples were chilled temporarily in the field until transport to our
laboratory at The Ohio State University and stored at −80 °C until
diagnostic testing. We also collected blood samples to test for anti-
bodies against SARS-CoV-2 in collaboration with USDA. We collected
blood samples from 1164 of the 1522 WTD from which we collected
nasal swabs. Blood was collected using 2 high purity cellulose fiber
filter paper (Nobuto strips) dipped into pooled blood from WTD car-
casses to saturate the paper with approximately 0.1mL of blood.
Nobuto strips were labeled and dried prior to transport. Any carcasses
that did not appear fresh, had already been substantially processed,
exterior blood appeared heavily contaminated, or did not have visible
blood sources available for collection were excluded. Due to post-
mortem sample collection, the study was exempt from a scientific
permit from the Ohio Department of Natural Resources and beyond
the scope of The Ohio State University Institutional Animal Care and
Use Committee.

Diagnostic testing
Viral RNA extraction was conducted using the Omega Bio-tek Mag-
Bind Viral DNA/RNA 96 kit (cat# M6246·03), with 200 µl of sample11.
Extracted viral RNA from samples was tested via real-time reverse
transcription polymerase chain reaction (rRT-PCR) using the E gene
primer/probepanel (IntegratedDNATechnologies, Inc. cat #1006804)
with Xeno VIC Internal Control Assay (Life Technologies cat
#A29765)11. Any samplewith a cycle threshold (Ct) value of 40or below
were considered E assay positive. All samples that screened E assay
positive were confirmed using the Charité/Berlin RdRp confirmatory
assay42 (IntegratedDNATechnologies, Inc. cat #10006805) or the CDC
N1/N2 kit (Integrated DNA Technologies, Inc. cat #10006606) diag-
nostic procedure. Samples with a Ct of ≤40 on either confirmatory
assay were classified as positive for SARS-COV-2.

Blood samples were tested for evidence of prior exposure to
SARS-CoV-2 as previously described with minor modifications10.

Briefly, antibody elution from Nobuto strips was accomplished by
incubating each strip in 1mL BupH Tris-buffered saline (pH 7.2) (TBS,
Thermo Fisher) containing 3% nonfat dried milk (Sigma) and 0.1%
Tween 20 (Sigma) (TBSNT). Following incubation, samplesweremixed
by vortexing and debris then removed by centrifugation at 5000 × g
for 10min at ambient temperature. Supernatants were transferred to
sterile microcentrifuge tubes and stored at −80 °C until use. The
effective dilutionof antibody ineach eluatewas estimated at 1:20. Sixty
microliters of each eluted sample was directly (without further dilu-
tion) analyzed using the GenScript SARS-COV-2 Surrogate Virus Neu-
tralization Test (sVNT, L00847-A) in accordance with the
manufacturer’s instructions43. GenScript’s sVNT has a manufacturer’s
provided specificity of 99.40% in humans, but no specificity analysis
has been done inWTD. All samples were tested at least twice, with the
average % inhibition of technical replicates used for the qualitative
interpretation of SARS-COV-2 exposure.

Genomic sequencing
The Ohio State Applied Microbiology Services Laboratory attempted
genomic sequencing on all positive samples with a Ct value of 33 or
lower (n = 86 samples). RNA was reverse transcribed into cDNA and
PCR amplified using the ARTIC v 4.1 SARS-CoV-2 primer panel (Inte-
grated DNA Technologies, Inc. cat #10011442) and NEBNext® FS
Library Prep Kit for Illumina® (New England Biolabs, Ipswich MA) per
manufacturers protocol instructions. Illumina sequencing libraries
were prepared using RNA Prep with Enrichment (L) Tagmentation Kit
(Illumina, SanDiego, CA) permanufacturers protocol with unique dual
indexes (Illumina). Libraries were pooled and quantified using ProNex
NGS Library Quant Kit (NG1201, Promega Co. Madison, WI). Sequen-
cing with NextSeq 2000 (Illumina) and assembly by DRAGEN COVID
Lineage app v.3.5.6 (Illumina) were performed as previously
described11.

Data visualization
Maps were generated using ArcMap (ESRI). For statistical analysis,
location was coded using USDA Rural Urban Continuum Codes44.
Codes range on a scale of 1–9 with increasing numbers corresponding
to decreasing population size. For analysis purposes, an RUCC of 1 was
considered urban – corresponding to counties surrounding Ohio’s
three major metropolitan areas of Cincinnati, Cleveland, and Colum-
bus. All other RUCC values (two through nine) were considered rural
for analysis, but smaller metropolitan areas that fall into this category
are indicated to aid in understanding spatial clustering. To evaluate
risk factors associated with detection of SARS-CoV-2, we fit a mixed-
effects logistic regression model (STATA 14.2, StataCorp LLC). We
included random intercepts for county of sample collection to account
for spatial clustering of sample collection. A highly significant (p
value < 0.00005) likelihood ratio test compared to a standard logistic
model supported that the mixed-effects model was better fit for our
data. To evaluate the potential for unobserved heterogeneity at the
county level, we fit a correlated random effects model incorporating
cluster specific means45 and did not find significant evidence for dif-
ferences in the individual level effects within clusters compared to
their effects between clusters. Fixed effects were estimated for urban
vs rural binary classification for the county, culled vs hunted WTD,
WTD sex, WTD age, and a categorical effect for the month of sample
collection to evaluate any changes over the course of the season
(Table S3).

Phylogenetic analysis
First, to determine how viruses obtained from WTD in Ohio (n = 80)
were genetically related toSARS-CoV-2 viruses circulating inhumans in
Ohio and mink and WTD in other North American locations, a back-
ground dataset of complete genome sequences was compiled from
GISAID (downloaded May 24, 2022). A total of 44,456 human SARS-
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CoV-2 viruses, collected in Ohio during February 2, 2020 – May 10,
2022, were downloaded from GISAID. This study benefited from the
availability of a large number of SARS-CoV-2 sequences generated by
the Ohio Department of Health, the US Centers for Disease Control,
and other laboratories. County-level data was provided by the Ohio
State Department of Health, which confirmed that the dataset was
spatially representative, with the number of sequences available from
an Ohio county proportional to the population size of the county
(Fig. S23). Pangolin46 was used to assign a lineage to each human virus
and ten viruses from each Pango lineage were randomly selected for
the final background dataset using a customized Python script
(n = 1592 human viruses). Outbreaks of genetically similar viruses from
mink in Canada or a US state (Michigan, Oregon, Utah, andWisconsin)
were downsampled to 5 viruses per day, resulting in a total of 140
North American mink viruses in the final dataset. In addition, 145
viruses from WTD were included from Canada and 14 US states
(Arkansas, Illinois, Iowa, Kansas, Maine, Massachusetts, Minnesota,
New Jersey, New York, North Carolina, Oklahoma, Pennsylvania, Ten-
nessee, and Virginia). The dataset was aligned using NextClade with
Wuhan-Hu-1 as a reference. In-house python scripts were used to
remove non-coding regions and mask sites that are known to be
unreliable. A phylogenetic tree was inferred from this dataset using
maximum-likelihoodmethods available in IQ-TREE 247 with a GTR +G
model of nucleotide substitution and 1000 bootstrap replicates,
using the high-performance computational capabilities of the Bio-
wulf Linux cluster at the National Institutes of Health (http://biowulf.
nih.gov). The inferred tree was visualized in FigTree v.1.4.4. White-
tailed deer transmission clusters were defined by monophyletic
groups ofWTD viruses supported by high bootstrap values (>70) and
confirmed or refined using UShER48 (Ultrafast Sample Placement on
Existing tRees). One large cluster of 8 deer viruses in Miami,
Columbiana, Harrison, Summit, and Tuscarawas counties turned out
to be 3 independent human-to-deer transmission events (2 trans-
mission clusters – one in northeast Ohio and one in western Ohio—
and one singleton) upon further inspection in UShER, which created
sub-trees with the 50most closely related sequences out of a dataset
of more than 12million SARS-CoV-2 genome sequences fromGISAID,
GenBank, COG-UK, and CNCB. This exercise illustrated the impor-
tance of not overinterpreting apparent transmission clusters based
on sequence similarity alone and the need to account for missing
data in phylogenies.

Bayesian analysis
Bayesian approaches were used to examine the evolutionary rela-
tionships between alpha variants and delta variants in humans and
WTD in greater detail and compare their evolutionary rates. Separate
datasets were generated for alpha (B.1.1.7) and delta (B.1.617.2 and AY
lineages). In addition to the alpha anddelta sequences obtained for the
ML tree, above, sequences from more recently sampled alpha and
delta viruses inhumans globallywere added toprovide a longer period
of data. The final alpha dataset (n = 786 sequences) included 9 viruses
from WTD in Ohio collected for this study (November 8, 2021 –

December 4, 2021); 31 viruses fromWTD inPennsylvania andNewYork
(October 2, 2021 to December 4, 2021); 677 viruses from humans in
Ohio (December 29, 2020 to August 23, 2021); and 69 additional
human viruses sampled globally from November 1, 2021 to March 31,
2022. The final delta dataset (n = 1094 sequences) included 67 viruses
from WTD in Ohio collected for this study (November 6, 2021 to Jan-
uary20, 2022); 36 viruses fromWTD inotherNorthAmerican locations
(October 28, 2021 to January 30, 2022); 642 viruses from humans in
Ohio (April 26, 2021 to April 18, 2022); 319 additional human viruses
sampled globally from March 1, 2022 to July 19, 2022; plus 30 addi-
tionalhumanviruses sampled fromtheUnited Statesduringpeakdelta
activity (July 10, 2021 to November 24, 2021) that helped resolve por-
tions of the tree where human and WTD viruses were closely related.

We performed a time-scaled Bayesian analysis using the Markov
chain Monte Carlo (MCMC) method available using the pre-release
1.10.5 version of the BEAST49 package available on GitHub (compiled
onOctober 20, 2022), usingGPUs available from theNIHBiowulf Linux
cluster. A host-specific local clock32 was used to accommodate differ-
ences in the evolutionary rate between WTD and humans. Since WTD
viruses were not monophyletic on the alpha or delta tree, owing to
multiple independent human-to-deer transmission events, separate
WTD transmission clusters identified on the ML tree were specified.
The analysis was performed two ways, excluding WTD singleton viru-
ses that arenot positioned in aWTD transmission cluster and including
WTD singleton viruses. A Bayesian non-parametric demographic
model50 was used, with a general-time reversible (GTR) model of
nucleotide substitution with gamma-distributed rate variation among
sites. The MCMC chain was run separately 3–5 times for each dataset
using the BEAGLE 351 library to improve computational performance,
until all parameters reached convergence, as assessed visually using
Tracer v.1.7.2. At least 10% of the chain was removed as burn-in, and
runs for the same dataset were combined using LogCombiner v1.10.4.
A MCC tree was summarized using TreeAnnotator v.1.10.4. To com-
pare evolutionary rates across different regions of the SARS-CoV-2
genome, the analysis was repeated using five genome partitions:
ORF1a, ORF1b, ORF3–ORF8, spike (S), and nucleoprotein (N). Several
additional analyses were performed, including a phylogeographic
discrete trait analysis52 to quantify rates of viral gene flow, particularly
in the directions of human-to-deer and long-distance (across Ohio
county lines) deer-to-deer transmission. A location state was specified
for each viral sequence. All human viruses were categorized as
“human,” whereas WTD viruses were also categorized by location of
collection, with state information used for WTD viruses collected
outside of Ohio and county information provided for all Ohio WTD
viruses collected for this study. The expected number of location state
transitions in the ancestral history conditional on the data observed at
the tree tips was estimated using ‘Markov jump’ counts53,54, which
provided a quantitative measure of asymmetry in gene flow between
defined populations. To estimate absolute rates of synonymous and
non-synonymous substitutions as well as dN/dS, we employ a ‘renais-
sance counting’ procedure that combines Markov jump counting with
empirical Bayes modelling55. The outputs of these analyses (Markov
jump counts, evolutionary rate distributions) were summarized and
visualized using customized R scripts. Finally, we performed a flexible
random effects analysis of the evolutionary substitution process21 to
capture mutational bias differences along the human and WTD bran-
ches of evolutionary history. Mutational bias was measured by devia-
tions from the Hasegawa-Kishino-Yano (HKY) substitution model that
accommodates unequal base frequencies and different rates of tran-
sition and transversion substitutions. To facilitate efficient sampling of
the additional randomeffects parameters, this analysis took advantage
of gradient-based Hamiltonian Monte Carlo for phylogenetics within
BEAST56. As a sensitivity analysis, we repeated our analysis to compare
the early evolution of SARS-CoV-2 inwhite-tailed deer following a host-
switch against the early evolution of SARS-CoV-2 in humans during
December 2019 to February 2020, using the same dataset that was
analyzed in Pekar et al. 21, (787 genomes, predominantly from China)
except no rate prior was used.

Epidemiological data
The epidemiological curve of SARS-CoV-2 cases in humans in Ohio
from January 1, 2021 to January 22, 2022 was generated using the
number of daily reported COVID-19 cases in the state of Ohio (all age
groups), available from the US Centers for Disease Control and
Prevention (https://data.cdc.gov/Case-Surveillance/COVID-19-Case-
Surveillance-Public-Use-Data-with-Ge/n8mc-b4w4). To estimate the
proportion of COVID-19 cases belonging to different Pango lineages
during each week of the epidemic, SARS-CoV-2 sequences collected
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from humans in Ohio during this time period were downloaded from
GISAID. To account for inconsistencies in the intensity of viral sur-
veillance, the number of viruses per lineage per weekwas normalized
against the epidemiological curve derived from COVID-19 case
counts and visualized using R. To further minimize biases only
sequences categorized in the GISAID submission as obtained using a
‘baseline surveillance’ sampling strategy were included in the analy-
sis. The dataset was further trimmed to include only submissions
with complete collection dates and sufficient coverage to assign a
Pango lineage, resulting in a final dataset of 27,187 sequences from
Ohio. For simplicity, sub-lineages of B.1.617.2 (for example, AY.3)
were consolidated into the Delta category, sub-lineages of B.1.1.7 (for
example, Q.3) were consolidated into the Alpha category, and sub-
lineages of B.1.1.529 (e.g., BA.1) were consolidated into the Omicron
category.

Mutation analysis
Weused root-to-tip regression to visualize the rate of substitution over
time for the omicron variant, deer viruses, and all other SARS-CoV-2
lineages. To correctly assign mutation status during annotation to
alignment in the phylogenetic analysis section, reference Wuhan
genome (NC_045512.2) was added with MAFFT version 7.47557; the
Wuhan genome was then removed to preserve the original set of
sequences, while allowing for the correct alignment length repre-
senting all positions in the SARS-CoV-2 genome. This alignment
together with the corresponding phylogenetic tree (see Phylogenetic
analysis section) were used to reconstruct states at all tree nodes with
TreeTime58 ancestral v 0.9.0-b.2 using default parameters. Mutations
were extracted from the tree and reformatted into vcf format.
Obtained vcf files were annotated with SnpEff59 v 4.5, and NC_045512.2
was utilized as a reference. Because mutations that happen along the
tree do not always have the same nucleotide in REF field as position in
genome,wecorrected the annotation for the caseswhen those twodid
notmatch. The final annotated vcf and phylogenetic tree were used to
count the number of mutations occurring from root to each leaf. We
considered all mutations, synonymous and missense independently.
The obtained results were visualized in R. To calculate the linear
regression slope we excluded all WTD samples and human
omicron data.

To accurately analyze mutations accumulating in WTD on delta
and alpha backgrounds, datasets described in the Bayesian analysis
section were utilized. First, we added reference to each alignment as
described above, and then reconstructed phylogenetic trees with
IQTree using the following parameters: --polytomy -m GTR+G --alrt
1000. Root in both cases was placed at the reference genome. States at
nodes were reconstructed as described above. VCF files were pro-
duced independently for WTD clusters and WTD singletons. In alpha
dataset we utilized not only the two clusters from Ohio, but all avail-
able alpha clusters (7 in total, Fig. S20). VCF annotation was produced
as described above.Mutations inknownproblematic siteswerefiltered
out using a list available at https://github.com/W-L/ProblematicSites_
SARS-CoV2. Individual transmission clusters were visualized with ete3
python package60. Observed mutations on the spike trimer were
visualized using the ProteinDataBank (PDB; rcsb.org), structure ID 7JJI.
Structure visualization was performed with Open-Source PyMOL ver-
sion 2.4.0 (Schrödinger, LLC). R-package MutationalPatterns61 was
utilized to reconstruct mutational contexts. For input, we utilized
mutations inWTDclusters and data onmutations in humans, the latter
of whichwas extracted from the public version of the UShER (Ultrafast
Sample placement on Existing tRee) tree downloaded on 2022-07-01
(http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-
CoV-2/2022/07/01/public-2022-07-01.all.masked.pb.gz), containing
5.7million sequences. Variability inmutational contexts inhumanswas
estimated by producing a series of subsamples containing the same
number of mutations as observed in WTD delta clusters. The

10 subsamples were utilized to perform a permutation test to estimate
significance of elevated C >T rate in WTD.

Selection analysis
The HyPhy v.2.5.40 package was used to study positive and negative
selection62. For this analysis we selected the four genes with highest
number of homoplastic sites in clusters (N, S, ORF3a and nsp3). Sam-
ples that contained missing data (Ns) in the studied gene were
removed, because HyPhy is unable to perform calculations on the
missing data. Three differentmethods were run for each gene: aBSREL
and BUSTED to check for positive selection in particular genes inWTD,
and MEME to look for individual sites under positive selection. We
independently tested selection for two sets of branches: all branches
within WTD transmission clusters (called later on ‘clusters’); and clus-
ters set plus singletons and the branches leading to transmission
clusters (called ‘all’). While the clusters set represented the mutations
happening onlywithin theWTDpopulation, the ‘all’ set was potentially
contaminated by mutations that happened before the virus was
transmitted to WTD, but it allowed incorporation of all available WTD
samples. To search for sites under positive selection with MEME, we
only looked for sites in foreground branches (e.g. included in ‘cluster’
or ‘all’ sets) with p <0.001 in comparisonwith all other branches on the
phylogenetic tree (background). The analyses for alpha and delta
datasets were performed independently on the phylogenetic trees
described in the previous section. Foreground branches were marked
on the phylogenetic tree with phylotree.js (http://veg.github.io/
phylotree.js/#). dN/dS value provided in Supplementary Table S6
were extracted from MEME output. Results of aBSREL and BUSTED
outputs showed no signs of gene wise positive selection. As an alter-
native approach, we used codeml (from PAML version 4.9e63) to test
whether there are signs of positive selection on branches leading for
transmission clusters. Codemlwas run in twomodes with fix_omega =1
and fix_omega = 0. The LRT and p-values were calculated from
obtained lnL values for each cluster. Again, no signs of gene wise
positive selectionwere found. To study the frequencies ofmutations in
human populations for comparison to WTD, we utilized the out-
break.info package forR64 that utilizesGISAIDdata. Datawas visualized
with ggplot2 package for R 4.1.2.

In vitro and in vivo experiments
Ethics statement. Animal studies were conducted in accordance with
the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health and approved under St. Jude Children’s Research
Hospital’s Animal Care and Use Committee protocol 442.

Swabs. Positive swabs were received on dry ice and were transferred
into the ABSL3+ at St. Jude Children’s Research Hospital. All virus
isolation, characterization and animal experiments were performed
under ABSL3+ conditions.

Virus isolation. The Vero E6 cell line ectopically expressing both
TMPRSS2 and ACE2 (Vero ACE2 T2) was a kind gift from Dr. Barney
Graham at VRC, NIAID, NIH. Cells were maintained in DMEM (Sigma
D6429) supplemented with 10% heat treated fetal bovine serum
(HyClone SH30071.03) and 10μg/ml Puromycin (Sigma P9620). Cul-
tures were overlaid with 1mLof inoculum consisting of 100μL of swab
suspension plus 900μL of infectionmedia (DMEM supplementedwith
2% heat treated fetal bovine serum and 1× antibiotic solution (Gibco
15240-062)). After 1 h, the inoculum was aspirated off and fresh
infection media was added to the cells. Cultures were checked daily,
and media-cell suspension was harvested when greater than 90%
cytopathic effect (CPE) was observed. The suspension was tested by
BD Veritor System for rapid detection of SARS-CoV-2 (Catalog #
256082) for confirmation of virus isolation and streaked on blood agar
plates for sterility. Select viral isolates were sequenced to confirm
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identity with the original sample sequences that produced the viral
isolates using CLC Genomic Workbench v22.0.1 (Qiagen) and BioEdit
v7.2.5 (open source).

TCID50 assay. Virus stocks or experimental sampleswere titered using
a Vero E6 cell line ectopically expressing the TMPRSS2 gene (Vero E6
T2) sourced from JCRB Cell Bank in Japan (https://cellbank.nibiohn.go.
jp/english/). To determine the 50% tissue culture infectious dose
(TCID50), 96-well culture plates were inoculated with 100μL of a
1:10 serially diluted sample in infection media. After 72 h, the plates
were fixed and stained with 0.1% crystal violet in 10% formalin. Infec-
tious dose titers were determined using the Reed and Muench
method23.

Vaccination. Male LVGGolden SyrianHamster, 4–5weeks of age, were
purchased from Charles River Laboratories (Wilmington, MA),
assigned numbers sequentially upon arrival to the Animal Resource
Center, and assigned to groups based on vaccine treatment and virus
challenge on paperwithout investigators observing individual animals.
Laboratory experiments were performed exclusively with male ani-
mals, as designated by the vendor prior to arrival. Male animals were
chosen as it has been established male Syrian hamsters are more sus-
ceptible to disease caused by SARS-CoV-229. There were 10 total
experimental groups with 120 total hamsters. Hamsters assigned to
vaccine groups were vaccinated intramuscularly with 10μg BNT162b2
vaccine (NewYork, NY), prepared as instructedwith the exception that
it had reached an expiration date andwasno longer suitable for clinical
use. Vaccine was administered in 50μl at 2 injection sites (100μl total
volume) of the rear hind limb. Animals were boosted by the same
procedure, on alternate limb, 21 days post vaccination (dpv). Sera was
collected 21 days post boost (B + 21) and assessed for antibody
response by microneutralization.

Animal challenge. Approximately 3 weeks post boost, vaccinated or
naïve control hamsters were inoculated intranasally with 104 TCID50 of
SARS-Cov-2 virus. Each experimental group had 5 animals that were
used for weight loss measurements, 4 animals that were sacrificed on
2-days post inoculation (dpi), and 3–4 animals thatwere sacrificed on4
dpi for a total of 12-13 animals per group. Except the Human B.1.1.7 and
Deer AY.25, which had 4, 3, and 3 animals for each of those time points
respectively (10 total per group). These groups were limited by animal
availability and included an unvaccinated control group for cross virus
comparisons only (Fig. 5b). At 2 and 4 dpi, animals were sacrificed for
lung and nasal turbinate. Alternatively, on 2, 4 and 6 dpi animals were
anesthetized with 100mg/kg Ketamine and nasal passages were
rinsed with 0.5mL phosphate buffered saline (PBS). Infectious viral
load was determined by TCID50 as described. Longitudinal animals
were scored for clinical signs and weighed daily for 2 weeks. All
surviving animals were exsanguinated at 21 dpi and the serum was
collected for microneutralization comparison. Animals were housed
individually in standard filter top rat cages with day/night cycle from
6 a.m. to 6 p.m. Animal health observations were made at least 1/day
or 2/day during peak infection. We did not observe any adverse
events in these experiments other than the expected animal weight
loss. Statistical analysis for all in vitro and in vivo experiments was
performed using one-way ANOVA followed by a Tukey post hoc in
Prism v.9 (GraphPad).

Neutralization assay. A viralmicroneutralization assay was performed
to measure the neutralizing antibody activity of hamster sera of SARS-
CoV-2/human/USA/WA-1/2020 (WA-1), hCoV-19/USA/CA_CDC 5574/
2020 (Hu-B.1.1.7), SARS-CoV-2/human/USA/COR-21-192500/2021 (Hu-
B.1.617.2), (hCoV-19/deer/USA/OH-OSU-2158/2021) (AY.103), hCoV-19/
deer/USA/OH-OSU-1338/2021 (B.1.1.7-like), and BNT162b2 vaccine
against representative WTD SARS-CoV-2 isolates. Fivefold serial

dilutions were performed on heat inactivated sera (1 h at 56 °C) in
infectionmedium, starting at a 1:40dilution. A standardized amount of
infectious SARS-CoV-2 virus (250TCID50), diluted in infectionmedium,
was added to the diluted serum at a 1:1 ratio and incubated for 1 h at
37 °C. A volume of 100μL of the serum/virus mixture was added to
Vero E6 T2 cells seeded in 96-well plates the previous day and incu-
bated for 1 h at 37 °Cunder 5%CO2. Subsequently, an additional 100μL
of infection media was added and the cells incubated for a further
24–48 h. Following incubation, cells were fixed with 4% formaldehyde
(Polysciences Cat #18814-20) for 30min, washed with PBS (source)
three times and then incubated with a block/permeabilization buffer
(PBS supplemented with 3% Bovine Serum Albumin (BSA; Sigma-
Aldrich Cat #A8327-500ml) and 0.2% Triton-X-100 (Thermo-
FisherSurfact-Amps-X-100, 10% Solution Cat #28314)) for 30min.
Rabbit anti-SARS CoV-2 NPmAb (Sinobiologicals Cat # 40143-R040) at
a 1:2000dilutionwas added for 1 h. Cells werewashed three timeswith
PBS supplemented with 0.5% Tween (PBST; Thermofisher Cat #28314)
before incubation with a secondary goat anti-rabbit IgG –HRP con-
jugated antibody (Cell Signaling Cat# 7074 S) at a 1:3000 dilution for
1 h. After washing the cells three times with PBST, 100 μL of TMB
(Thermofisher Cat #N301) was added and color developed for 10min
before 1 N sulfuric acid (Fisher Scientific Cat #SA212-1) was added to
stop the reaction. The optical density was measured at 450nm on a
Biotek Synergy plate microplate reader and the neutralization titers
were calculated as the reciprocal serum dilution (IC50) causing 50%
reduction of relative light units.

Growth kinetics. Vero E6 T2, Vero ACE2 T2, and Calu-3 cells were
infected at a lowmultiplicity of infection (MOI 0.001 TCID50/cell) with
representative WTD isolates of SARS-CoV-2 and parent viruses,
washed, and maintained in infection medium. Supernatants were col-
lected at 12, 24, 36, and48hpi, then titrated inVero E6T2usingTCID50.
Titrations were calculated by the Reed and Muench method65. Data
shown are mean titers ±SD of triplicate measures for each time point.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Whole-genome SARS-CoV-2 sequences are available on GenBank and
raw sequence read data are available at NCBI SRA, accession numbers
are available in Table S9. Available sequences for background data
were downloaded from GISAID (acknowledged in Supplementary
Data 3 and 4). The 787 genomes analyzed by Pekar et al.21 were used to
compare for rate sensitivity analysis (https://doi.org/10.1126/science.
abp8337). The epidemiological curve of SARS-CoV-2 cases in humans
in Ohio was generated using data available from the US Centers for
Disease Control and Prevention (https://data.cdc.gov/Case-
Surveillance/COVID-19-Case-Surveillance-Public-Use-Data-with-Ge/
n8mc-b4w4). Wuhan SARS-CoV-2 genome NC_045512.2 was used as
reference for the mutation analysis. Observed mutations on the spike
trimer were visualized using the Protein Data Bank (PDB; rcsb.org),
structure ID 7JJI. All other data are included in this article and its
supplementary files.

Code availability
Code generated for analysis is available from GitHub at https://github.
com/garushyants/sars_cov_2_deer_Ohio (https://doi.org/10.5281/
zenodo.8137224)66.
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