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Machine learning the microscopic form of
nematic order in twisted double-bilayer
graphene

João Augusto Sobral 1,2 , Stefan Obernauer2, Simon Turkel 3,
Abhay N. Pasupathy 3,4 & Mathias S. Scheurer 1,2

Modern scanning probe techniques, such as scanning tunneling microscopy,
provide access to a large amount of data encoding the underlying physics of
quantummatter. In thiswork, we showhowconvolutional neural networks can
be used to learn effective theoretical models from scanning tunneling micro-
scopy data on correlated moiré superlattices. Moiré systems are particularly
well suited for this task as their increased lattice constant provides access to
intra-unit-cell physics, while their tunability allows for the collection of high-
dimensional data sets from a single sample. Using electronic nematic order in
twisted double-bilayer graphene as an example, we show that incorporating
correlations between the local density of states at different energies allows
convolutional neural networks not only to learn the microscopic nematic
order parameter, but also to distinguish it from heterostrain. These results
demonstrate that neural networks are a powerful method for investigating the
microscopic details of correlated phenomena in moiré systems and beyond.

Driven by the impressive improvements in machine learning (ML) in
the last couple of years, exploring its potential for quantum many-
body physics has recently become the subject of intense research1,2.
For instance, ML provides powerful tools to solve inverse problems
that occur frequently in physics3–6: given a model, it is often straight-
forward with conventional many-body techniques to compute obser-
vables that can bemeasured experimentally, whereas the often needed
inverse problem of extracting the model and underlying microscopic
physics from observations is much more challenging and typically
even formally ill-defined. A second example of a large class of appli-
cations of ML in physics is ML-assisted analysis of experiments, in
particular of those yielding image-like data like scanning tunneling
microscopy (STM)7–10, photoemission11, and others12–18.

In the context of applying ML algorithms to data from imaging
techniques like STM, van der Waals moiré superlattices19,20 are parti-
cularly promising for three reasons: (i) they display a huge variety of
correlated quantum-many-body phenomena, such as interaction-
induced insulating phases21, magnetism22, superconductivity23,

electronic nematic order24–27, which canalso coexistmicroscopically27,28.
Despite intense research on these phenomena over several decades,
e.g., in the pnictides or cuprates, their origin and relations are still the
subject of ongoing debates. However, compared to these microscopic
crystalline quantum materials, moiré superlattices are (ii) highly tun-
able; for instance, the density of carriers can be varied within a single
sample just by applying a gate voltage (as opposed to chemical doping)
and even the interactions can be tuned29. This allows producing large
data sets of measurements on a single sample, containing a lot of
information on microscopic physics. This aspect, which is crucial for
data-driven approaches, is further enhanced by (iii) the largemoiré unit
cells of these systems compared to that of microscopic crystals,
increasing the relative spatial resolution of scanning probe techniques
significantly. This enables experiments to probe the structure of the
wave functions within the unit cell and thus provides access to micro-
scopic physics compared to conventional quantum materials. For
instance, in the extreme limit of only one degree of freedom (Wannier
state or pixel) per unit cell, the broken rotational symmetry of the
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electron liquid—the defining property of electronic nematic order30,31—
is not visible as a consequence of translational symmetry and thus
requires a careful analysis of the behavior around impurities32.

In this work, we explore these advantages of moiré superlattices
for extracting or learning effective field-theoretical descriptions of
their correlatedmany-body physics fromSTMdata. This canbe viewed
as an inverse problem and is also conceptually related to the goal of
Hamiltonian learning in quantum simulation33–38, albeit in rather dif-
ferent regimes and based on different measurement schemes. As a
concrete example, we use electronic nematic order in twisted double-
bilayer graphene (TDBG)39–45. This moiré system consists of two AB-
stackedbilayers of graphene that are twisted against eachother; asone
can see in Fig. 1a, it exhibits the point groupD3, generated by threefold
rotationC3 along the out-of-plane z-axis and twofold rotationC2x along
the in-plane x-axis. Evidence of electronic nematic order has been
observed in previous STMexperiments42,46 which clearly exhibit stripe-
like features breaking the C3 symmetry spontaneously for certain
electron concentrations. While simple limiting cases have been com-
pared with the data in Samajdar et al.46, there is no systematic analysis
of themicroscopic formof nematicity in the system. To fill this gap, we
consider the more general case in which all leading terms on the gra-
phene andmoiré scaledescribingnematic order in a continuum-model
description of TDBG47 are included. In addition, as it is common in
graphene moiré systems24–26,42,48, we also allow for finite strain. The

Hamiltonian defining the changes in TDBG resulting from nematic
order and strain depends on a set of parameters β, which we recon-
struct from STM data using convolutional neural networks (CNN) in a
supervised learning procedure. As such, our study differs significantly
from recent works, which focused on detecting the presence or
absence of nematic order32 or performed a phenomenological data
analysis of STM measurements49 with ML, rather than extracting the
underlying microscopic physics as we do here.

Results
Nematic order in TDBG
The non-interacting band structure of TDBG features two moiré
minibands per spin and valley close to charge neutrality, where a
variety of correlation-driven phenomena can emerge39–45. In Fig. 1b,
these minibands are denoted as valence (VFB) and conduction flat
bands (CFB). The band structure shown is obtained from continuum-
model calculations close to half-filling of the CFB (band filling
ν =0.475), where electronic nematic order was observed to be the
strongest42, see Supplementary Note 1 for more details. STM experi-
ments probe the band structure and wave functions of a system by
providing direct access to the spatial and energy dependence of the
local density of states (LDOS). Most commonly, the LDOS is studied
either for a fixed position r0 over a range of different energies,Dr0

ðωÞ,
or for a fixed energyω0 covering a spatial region of the system,Dω0

ðrÞ.

Fig. 1 | TDBG, LDOSmaps, and nematicity. a Representation in real space of the
TDBG heterostructure. Green highlighted domains emphasize the emerging moiré
pattern due to the combination of two AB-stacks of graphene bilayers with a rela-
tive twist angle, which in this case is given byθ = 7.24∘. C3 andC2x describe threefold
and twofold rotations along the z- and x-axes, as illustrated in the small coordinate
system. b Band structure for θ = 1.05∘ along highly symmetrical points from the
moiréBrillouin zone (inset). Solid lines represent conductionand valenceflat bands
(CFB/VFB) as well as remote bands (R). The chemical potential corresponds to
roughly a half-filling fraction (ν =0.475) of the CFB. c LDOS for three fixed energies

(black dotted horizontal lines inb) as a function of position, and for varying energy
at fixed high-symmetry positions in themoiré unit cell (black rhombus). TheDω0

ðrÞ
map intensities are always normalized accordingly to the corresponding colorbar.
TheDr0

ðωÞmap is vertically shifted for better visual comparison. The solid lines are
taken from the r0 = (BAAC, ABAB, ABCA) stacking positions in Dr0

ðωÞ maps.
d Schematic real-space illustration of two limiting cases of graphene and moiré
nematicity, along with two samples of LDOS plots for fixed energy in the VFB; both
show clear C3 symmetry breaking.
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The behavior of Dω0
ðrÞ and Dr0

ðωÞ following from the continuum
model for TDBG for three different energies and high-symmetry
positions in themoiré unit cell is shown in Fig. 1c. TheC3 rotational and
translational symmetry of the moiré lattice can be clearly seen in
Dω0

ðrÞ. Meanwhile, C2x is broken, albeit weakly, as a consequence of
the electric field required to control the electron filling to be close to
the middle of the CFB in an open-faced STM sample geometry42.

In graphene moiré systems, there are two fundamentally distinct
sources ofC3 symmetry breaking—strain and electronic nematic order.
Postponing the discussion of the former below, electronic nematic
order30,31 refers to the spontaneous rotational symmetry breaking as a
result of electronic correlations. While recent works also indicate the
possibility of nematic charge-density wave states in TDBG43,50, where
moiré translational symmetry is simultaneously broken, we here focus
on translationally symmetric nematic order since the STM data of
Rubio-Verdú et al.42 preserves moiré translations. The underlying
nematic order parameter we study is a time-reversal- and moiré-
translation-invariant vector Φ=ΦΦ̂φ, Φ̂φ = ðcos 2φ, sin 2φÞ, trans-
forming under the irreducible representation E of D3 (or of C3, taking
into account the weak C2x breaking); Φ and φ stand for the intensity
and orientation of the nematic director, respectively. Themicroscopic
form of nematicity can be modeled by a coupling of Φ to a fermionic
bilinear and reads in its most general form in a continuum-model
description as46

HΦ =
R
r

R
ΔrΦ �ϕσ,‘,s,η;σ 0 ,‘0 ,s0 ,η0 r,Δrð Þ

× cyσ,‘,s,η r +Δrð Þcσ0 ,‘0 ,s0 ,η0 ðrÞ+ H.c. ,
ð1Þ

where c† and c are the electronic creation and annihilation operators.
This general form encompasses couplings between the two sublattices
s =A, B of the microscopic graphene sheets, the four graphene layers
ℓ = 1,…, 4, the valley η = ± and spin σ =↑,↓ degrees of freedom in the
tensorial form factor ϕσ,‘,s,η;σ0 ,‘0 ,s0 ,η0 ðr,ΔrÞ; its two components are
required to transform in the sameway asΦunder all symmetries of the
system. In the following, we will take ϕ to be trivial in the spin and
diagonal in the valley indices,ϕσ,‘,s,η;σ0 ,‘0 ,s0 ,η0 = δσ,σ0δη,η0ϕ‘,s;‘0 ,s0 ðηÞ. This is
motivated by the weak spin-orbit coupling in graphene51,52 and the lack
of indications of interaction-induced spin-orbit coupling, which is also
strongly constrained53. Furthermore, the intervalley-coherent nemati-
city is known to lead to stronger effects on the remote bands46 that
were not observed experimentally42.

Since we are working with a continuum theory, the space of
possible couplingsϕ in Equation (1) is technically infinite-dimensional.
As such, a complete reconstruction of ϕ from experimental data is
impossible given the finite resolution and energy range of the available
data. On top of this, it is not required either as we are primarily
interested in understanding the low-energy behavior of the system. In
the spirit of gradient expansions commonly used in continuum low-
energy field theories, we will therefore only keep the leading terms in
Φ. There is, however, a subtlety associated with the presence of an
additional moiré length scale. We will therefore have to consider two
basic classes of nematic orders, referred to as graphene (GN) and
moiré (MN) nematicity42,46.

In the case of MN, nematic order is associated with the moiré
scale, i.e., we choose Δr =Rm1 ,m2

=m1L
M
1 +m2L

M
2 in Equation (1),

mj 2 Z, with moiré lattice vectors LM
j , to represent the non-trivial

transformation behavior of ϕ under C3. We can thus take it to be
diagonal in the remaining internal indices, yielding

HMN
Φ = 1

2ΦMN

R
r

P
m1 ,m22Z

Φ̂φMN
�ϕm1 ,m2

ðrÞ

× cyαðr +Rm1 ,m2
Þ cαðrÞ+ H.c. ,

ð2Þ

with multi-index α = (σ, ℓ, s, η). We further focus on the lowest moiré-
lattice harmonic by setting ϕm1 ,m2

ðrÞ=ϕm1 ,m2
and only keeping the

terms with the shortest possible Rm1 ,m2
. Intuitively, MN order can be

thought of as a distortion of the effective inter-moiré-unit-cell hopping
matrix elements, as illustrated schematically in the lower right panel
of Fig. 1d.

Conversely, GN acts as a local order parameter,Δr =0 in Equation
(1), without any explicit reference to the moiré scale,

HGN
Φ =ΦGN

Z
r
Φ̂φGN

�ϕ‘,s;‘0 ,s0 ðη; rÞcy‘,sðrÞc‘0 ,s0 ðrÞ: ð3Þ

Here, the correct transformation properties of ϕ result from its
structure in the internal indices. Focusing on the local intra-layer
contributions and the leading (constant) basis function, the most
general form reads as

ϕ‘,s;‘0 ,s0 ðη; rÞ= δ‘,‘0ψ‘

ðeiα‘ηρzρxÞss0
ηðeiα‘ηρzρyÞss0

 !
, ð4Þ

where Pauli matrices in sublattice space are represented by ρj; αl, and
ψl are real-valued parameters. As shown schematically in the upper left
panel of Fig. 1d, one can think of GN as the nematic distortion of the
bonds of the individual graphene layers in a way that preserves the
graphene translational symmetry.

We emphasize that GN and MN should not be viewed as distinct
phases; they break the same symmetries and as such in general mix.
We thus take HMN

Φ +HGN
Φ to describe nematicity in TDBG in the fol-

lowing, which depends on the set of parameters β =
{αℓ,ψℓ,ΦMN,ΦGN,φMN,φGN}. The computation of the LDOS for a spe-
cific set of parameters can be done straightforwardly from the con-
tinuum model. The resulting spatial dependence of the LDOS, Dω0

ðrÞ,
is also shown in Fig. 1d for two different values of β. As opposed to the
plots without nematic order, C3 is now broken, leading to stripes in the
VFB, while translational symmetry is still preserved. The inverse pro-
blem—inferring the value of the parameters β from a given LDOS
pattern—is a much more challenging task. Our goal in the following
sectionswill be to useML, in particular, CNNs to learn the set β directly
from LDOS images.

Data sets and learning stage
Using CNNs to solve this inverse problem can be interpreted as a
supervised learning task2, i.e., a regression-like procedure using syn-
thetic LDOS data labeled by their respective value of nematicity
parameters β. More specifically, our CNNs take as inputs 65 × 65 pixels
of LDOS images and apply consecutive transformations (represented
by a set of weights between each layer) in order to extract meaningful
correlations that represent the set β. One example of the CNN image
inputs is shown in Fig. 2a. The complete data set consists of 12,000
imageswhich aredivided into training (60%), validation (20%), and test
(20%) subgroups. Each image is generated for a randomly sampled set
of nematic parameters β and the intensities in the LDOS are modified
with the addition of Gaussian noise (see Supplementary Note 1). The
motivation for noise is twofold: to avoid overfitting54 and to test the
stability against and performance of the procedurewith noise, which is
inevitably present in experimental data. For a detailed description of
the CNN architecture, see the Methods section and Fig. 2a.

The learning procedure is then defined by the minimization of
the loss function with respect to the CNN’s weights in a backward
propagation procedure55. The loss function can be represented as
the mean-squared error (MSE), which is defined as the difference
between the true and expected set of parameters β in
MSE=

PN
j ðβtrue

j � βpredicted
j Þ2=N, with N representing the number of

samples in the training or validation data sets. Finally, we consider the
adaptive moment estimation (ADAM) for the minimization of the loss
function, with a learning rate of 0.001 and batch size equal to 6456.
After the completion of the training stage, the algorithm is ready to be
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deployed to previously unseen data, returning as outputs the para-
meters βpredicted.

Orientation of the nematic director
As a first investigation, we consider the task of predicting the
orientation φ of the nematic director from Dω0

ðrÞ images at a single
energy in the VFB (ω0 = − 15meV, see Fig. 1b). For this, we consider a
data set with randomly generated MN and GN intensities
ΦMN,ΦGN∈ [0.001, 0.1] eV, and φMN =φGN =φ∈ [0, π]. Further-
more, ψl = 1 and αl = 0 for all layers. The relation between the shape
of the LDOS at single energyDω0

ðrÞ andφ is highly non-trivial for two
reasons: even for a given form of nematicity, changing φ generically
not justmerely rotates the LDOS pattern, due to the lattice, but leads
to complex distortions of its structure. Additionally, by sampling
HMN

Φ +HGN
Φ , even if the same bond direction is favored over the C3-

related ones in the LDOS pattern of two samples, the underlying φ
can be rather different. As can be seen in the three sample LDOS
plots in Fig. 2b with different values of φ, the correspondence
between φ and Dω0

ðrÞ is complex and not apparent to the
human eye.

Using the anglesφ as labels to the data is themost straightforward
choice, but leads to inaccurate predictions around 0 and π due to the
periodicity in the definition of the nematic order parameter,
Φ̂φ = ðcos 2φ, sin 2φÞ= Φ̂φ+π . To circumvent this feature, we use the
two-component label Φ̂φ instead ofφ in the training process and then
fold the network’s prediction back toφwith the arctan2 function57. The
results, shown in Fig. 2b, are consistent with the true labels, including
at theboundaries ofφ’s domain. This shows that evenwhen theprecise
nature of nematicity (predominantly MN or GN or an admixture of the
two) is not known, the director orientation φ can be accurately pre-
dicted with our CNN setup from Dω0

ðrÞ at a single energy. We have
checked that the few outliers in Fig. 2b are directly related to small
nematic intensities, where φ has virtually no impact on the LDOS and
is, thus, impossible to predict.

Form of nematicity
After successfully learning the director orientationφ in the presenceof
different nematicities,weproceed into investigating thefiner details of
these couplings by learning the parameters β = {ΦMN,ΦGN, αl} defined
in Equations ((2)–(4)). To this end, we consider ψl = 1 and αl = α for all
layers. For concreteness, we set φMN =φGN =φ = 2π/3, which is one of
the possible discrete orientations (φMN =φGN = 2π/3,π/6 and sym-
metry related) of the nematic director in the presence of C2x. The data
set now consists of randomly generated MN and GN intensities
ΦMN,ΦGN∈ [0.001, 0.1] eV, and α∈ [0,π]. The intensity values are
chosen such that the stripes in the VFB resemble the experimental

results42. As with φ, instead of learning the angular variable α directly,
the arctan2 mapping is also applied.

Using only the LDOS at a single energy (i.e., oneDω0
ðrÞ channel) in

the ML architecture for this task does not produce accurate predic-
tions. Additionally, both hyperparameter optimization and archi-
tecture modifications did not lead to any significant improvement,
implying that nematic order impacts the electronic structure in com-
plex ways that cascade across energy scales. In fact, this is also intui-
tively clear since, for example, the samples marked by a star and
pentagon in Fig. 3a have fundamentally different nematic couplings
and yet exhibit visually similar Dω0

ðrÞ images at the VFB energy.
In experiments, one can typically obtain single-point spectra

[Dr0
ðωÞ] and real-space LDOS images at fixed energies [Dω0

ðrÞ]. We can
therefore include additional input channels corresponding to Dω0

ðrÞ
and Dr0

ðωÞ for different energies ω0 and points r0, respectively. In the
second case, the individual point spectra are transformed to scaleo-
gram images for consistencywith the input data forCNNs5,58, see upper
left inset in Fig. 3a and Supplementary Fig. 1. The new architecture is
then formed by four channels with Dω0

ðrÞ inputs at fixed energies
ω0 = (−35, −15, 1, 23)meV within the flat and remote bands, such that
they resemble visually the corresponding ones in the experimental
data of Rubio-Verdú et al.42, and three channels forDr0

ðωÞ scaleogram
inputs at stacking positions r0 = (BAAC,ABAB,ABCA), cf. Fig. 1c. Each
channel is passed through parallel Conv-Batch-MaxPool layers as in
Fig. 2a, but instead of flattening each channel separately, they are
concatenated to a Dense-Dropout stage before the last layer (Fig. 3a).

In Fig. 3b–d, predictions on the test data set are represented for
(b) α, and (c) themoiré and (d) graphene nematic intensities; as can be
seen, very good agreement is found between the reconstructed and
true parameters. The outliers in α are related to small ΦGN (brighter
colors). From Equations (3) and (4), it is clear that for small ΦGN,
minimal changes will be induced in the LDOS, irrespective of the true
value of the phase governed by α. This is a similar behavior towhat was
observed for outliers in the nematic director prediction. The results of
Fig. 3 demonstrate that the microscopic form of nematicity can be
extracted from the LDOS if significant energy dependence is included
in the input data set.

Including strain
As already alluded to above, another possible source of C3 breaking is
strain48,59–61, which is believed to be a ubiquitous property of graphene
moiré superlattices at small twist angles. Breaking the same symme-
tries as nematic order, strain can obscure the experimental identifi-
cation of nematic order and their precise interplay is still under
debate24–26,62. Experiments indicate24–26,42,48 that themost relevant form
of strain in graphene superlattices such as twisted bilayer graphene

Fig. 2 | CNN architecture and nematic director prediction. a Schematic figure of
theCNNarchitectureusedwithonly oneDω0

ðrÞ input channel at an energyω0 in the
VFB, see the Methods section for details on the architecture and the main text for
information about the data sets. In the last linear layer, β represents the set of
learnable parameters. b Comparison between true and predicted nematic director
angles φ. The white dashed line serves to guide the eye. R-squared (R2) and mean

absolute percentage error (MAPE) metrics are shown in the inset. Details on how
these metrics are calculated can be seen in the Methods section. Three samples of
Dω0

ðrÞ (star, pentagon, and triangle) are displayed to emphasize that the relation
between the LDOS andφ is highly non-trivial as a result of the presence of different
forms of nematicity.
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(TBG) or TDBG is uniaxial heterostrain. In this case, the matrices Ej

describing the in-plane metric deformation of the coordinates in the
jth rotated Bernal bilayer of TDBG are of the form

E2 = � E1 =
1
2
RðθϵÞ�1 �ϵ 0

0 vϵ

� �
RðθϵÞ: ð5Þ

Here v =0.16 is the Poisson ratio for graphene and R(θϵ) is the 2 × 2
matrix describing rotations of 2D vectors by angle θϵ. We see that
uniaxial heterostrain is characterized by two variables, the strain
intensity ϵ and the direction of strain, parameterized by the angle θϵ.

In the following, we allow for the simultaneous presence of uni-
axial heterostrain and nematic order, leading to two additional para-
meters, ϵ and θϵ, in β. We will study whether our ML approach is still
able to extract the microscopic form of nematicity and also learn the
relative strength and direction of strain. Note that the form of nema-
ticity is still given by Equations ((2)–(4)), with the only difference that
we replace LM

j in the definition of Rm1 ,m2
by the strained moiré lattice

vectors. The data set for this task is built with nematic intensities
ΦMN,ΦGN∈ [0.001, 0.1] eV, with the addition of strain parameters
ϵ∈ [0, 0.8]% and θϵ∈ [0,π/3]. Here, αl = 0, ψl = 1 and
φ =φMN =φGN = 2π/3. The domain for the strain intensities is chosen
based on typical values observed in TBG24, and for θϵon the periodicity
of the unstrained system as θϵ→ θϵ +π/361. The ML architecture
employed in this section is the same as in the previous investiga-
tion (Fig. 3a).

In Fig. 4a–d, predictions on the test data set are shown for ϵ (a), θϵ
(b), and the nematic intensities (c, d). At first sight, the result for the
strain angle in Fig. 4b looks as if the procedure ceased to work since
there are many data points where the true and predicted value of θϵ

differ significantly. However, when indicating the true strain intensity
label ϵ for eachprediction, it becomes clear that theoutliers are related
to small values of ϵ (brighter colors). As such, this behavior is not a
shortcoming of the learning procedure but actually a feature of strain:
for small enough ϵ in Equation (5), the angle θϵ has no meaning. We
have checked that removing the samples with small strain ϵ from the
training and test data set will lead to accurate predictions of θϵ (see
Supplementary Fig. 2). The stability that we find for our learning pro-
cedure in the presence of virtually vanishing ϵ is, however, important
when applying it to experimental data, where the strength of strain is
unknown.

Most importantly, we see in Fig. 4c, d that the nematic couplings
can still be accurately predicted when varying strain is present. The
MAE is equally distributed in these cases, in contrast to the strain
intensity prediction. This shows that not only nematic order can be
identified when strain is present, but also its internal structure and the
strength of strain that is present at the same time canbe resolvedwhen
usingdifferent channels consistingofbothDr0

ðωÞ andDω0
ðrÞ as inputs.

This allows the networks to take into account correlations between
different energies in the STM data, which in turn conveys the crucial
microscopic physics, enabling the model to disambiguate between
lattice and electronic effects.

Experimental data
After demonstrating the effectiveness of CNNs on learning micro-
scopic parameters {βi} from a synthetic (theoretical) data set
Dthðβ1, � � � ,βNth

Þ with Nth samples, we now proceed into applying the
trainedML architecture for predictions of the a priori unknown sets of
parameters fβ0

ig in an experimental data set Dexpðβ0
1, � � � ,β0

Nexp
Þ. For

concreteness, we use the same synthetic training data set as in

Fig. 3 | Predicting the form of nematicity. a CNN architecture used for learning
the nematic microscopic parameters. Each orange rectangle labeled as `Conv2D-
MaxPool-Dense' refers to the structure from Fig. 2a. The last Dense linear layer is
now followed by a Dropout layer to prevent overfitting. The input is based on
scaleograms (see Supplementary Note 1) of Dr0

ðωÞ in addition to the previously
seen Dω0

ðrÞ maps. Both are normalized accordingly to their corresponding color-
bars. b Predicted versus true α parameter, with outliers (brighter colors) being
related to small graphene nematic intensity ΦGN. c, d Predicted versus true

parameters for graphene and moiré intensities, with colorbars representing the
mean absolute error (MAE) in the intensities. The white dashed lines serve to guide
the eye. R-squared (R2) and mean absolute percentage error (MAPE) metrics are
shown in the inset. Details on how these metrics are calculated can be seen in the
Methods section. Star and hexagon symbols are examples indicating that two very
different forms of nematicity can lead to very similar LDOS patterns at a single
energy, making the inclusion of several channels necessary.
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Supplementary Note 2, where only the nematic and strain intensities
are predicted, i.e., β = {ΦMN,ΦGN, ϵ}. The data set Dexp is constituted of
both scaleograms Dr0

ðωÞ and Dω0
ðrÞ maps for different fillings of the

CFB (ns). More details about the preprocessing of the experimental
data Dexp can be found in the Supplementary Fig. 3.

In Fig. 5, predictions of the trained CNN for the set fβ0
ig show

non-zero values of nematicity (a) and strain (b) for all fillings of the
CFB. For ns ≥ 0.47 (gray region), the experimental data shows the
most pronounced signatures of broken rotational symmetry to the
human eye, which was previously interpreted as electronic nematic
order42,46. Here the CNN predicts MN to dominate over GN, although
both are finite (as expected by symmetry). As can be seen in Fig. 5c,
the parameters predicted by the CNN nicely reproduce the key
features in the experimental data, including the strong stripes in the
VFB and the much weaker, albeit finite, signatures of nematicity in
the other bands.

For smaller fillings, ns <0.47, the experimental data still exhibit
distortions that break C3, see Supplementary Fig. 4, but no clear stripe-
like features appear. The CNN tries to assign different anisotropy
sources to these distorted regions, but the agreement between theo-
retical prediction and experiment is less accurate than for largerns. It is
clearly possible that, indeed, a crossover from primarily MN to GN
occurs when lowering ns, as predicted by the neural network, see
Fig. 5a, in particular, since nematic order is also aplausible instability in
non-twisted bilayer graphene29,63. However, we believe that additional
experimental data and refined theoretical models are required to
conclude whether this is really the case.

In contrast to this interplay between the nematic couplings, strain
remains relatively constant for all ns, and slightly decreases in Fig. 5b
for ns ≥0.47 as it approaches the same order of magnitude of
ϵ∈ [0.003 −0.1%] that is expected for the experimental samples in
Dexp

42. We note that at low fillings the value of strain that is predicted
by the neural network is nevertheless significantly greater than the
value extracted from experimental topography. This is likely a

consequence of subtle differences between the continuum-model
calculations and the experimental spectroscopy, which the network
attempts to accommodate by including finite strain.

Discussion
We constructed and demonstrated a ML procedure that can extract
the formof the nematic order parameter in TDBG fromLDOSdata. The
key ingredient was the use of several channels that capture the cor-
relations among different energies. Our work has several important
implications. First, it shows that the presence and even the strength
and internal structure of nematic order can be extracted when the
sample exhibits significant heterostrain; this is a crucial aspect for
moiré systems where the issue of distinguishing between nematicity
and strain has been the subject of debate. Second, our analysis also
shows which type of STM data is needed and most useful to extract
information about nematicity: as we have seen, the LDOS maps at a
single energy, Dω0

ðrÞ, are not enough to deduce the form of the
nematic order parameter and—contrary to what one might have
expected—point spectra, i.e., Dr0

ðωÞ, contain a lot of helpful com-
plementary information for that task (see also the second model dis-
cussed in the Supplementary Note 5). Additionally, by studying the
influence of inhomogeneous disorder in Dω0

ðrÞ maps, we show in
Supplementary Note 4 that our ML procedure is highly robust against
potential impurities, demonstrating further its generality and ability to
disentangle random factors frommicroscopic physics. We emphasize
that this form of solid-state Hamiltonian learning, i.e., of para-
meterizing the leading terms of a set of microscopic order parameters
(like nematic order) or perturbations (such as strain) and extracting
their form using multi-channel CNNs can be more broadly applied to
other systems—see Supplementary Note 5 where we discuss a toy
model for twisted bilayer graphene—and other forms of instabilities,
such as the correlated insulators64,65 or superconductivity. As such, this
could open up ways of revealing the form and role of nematic order
and other phases for the physics of quantum materials.

Fig. 4 | Distinguishing strain and nematicity. Predicted versus true values for the
strain intensity ϵ (a) and angle θϵ (b). The prediction for the nematic intensities is
depicted in panels c andd. Thewhite dashed lines serve to guide the eye.R-squared
(R2) and mean absolute percentage error (MAPE) metrics are shown in the inset.

Details onhow thesemetrics are calculated can be seen in theMethods section. The
CNN architecture used to produce these results is described in Fig. 3a. Similarly to
the prediction of the α parameter in the presence of only nematicity, outliers in θϵ
are related to small ϵ.
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Methods
Details on the ML architecture
The implementation of theML architecture for Fig. 2a was done with
the TensorFlow library66. Each convolutional layer is followed by
batch normalization and max pooling layers (Conv-Batch-MaxPool).
The batch normalization layers normalize the input weights in each
stage, and also reduce the number of epochs necessary for
convergence67. This process is repeated four times, with the con-
volutional layers having a kernel size of 3 × 3 and strides set to 1. The
filters follow a sequence of 16−32−32−16 with rectified linear unit
(ReLU) activation functions68. Padding is set to zero such that the
reduction of dimensionality is performed only by the MaxPool lay-
ers. In turn, these have both strides and pool sizes set to 2 × 2. After a
Flatten stage, dense layers lead to a dropout before the final layer
with filters equal to the number of parameters in β. The Flatten layer
transforms the data to a one-dimensional shape, and the Dropout
reduces overfitting by setting a percentage of 20% adjusted weights
to zero69. Tests on variations of this architecture and the influence of
its components on the performance of the predictions are described
in Supplementary Note 2.

Metrics for parity plots
The additional metrics R2 andmean absolute percentage error (MAPE)

were calculated via R2 =
PN

j ðβpredicted
j � �β

trueÞ
2
=ðβtrue

j � �β
trueÞ

2
=N and

MAPE=
PN

j ðβtrue
j � βpredicted

j Þ=βtrue
j

��� ���=N, whereN stands for the number

of samples in the test data set, and �β
true

=
PN

j βtrue
j =N is the standard

mean over the parameters being learned.

Data availability
The theoretical and experimental data sets used and generated in this
study are available in the Zenodo database under the accession code
https://zenodo.org/record/7698738.

Code availability
The source codes used in this study are available in our Github
repository70.
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