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The respective activation and silencing of
striatal direct and indirect pathway neurons
support behavior encoding

Christophe Varin 1, Amandine Cornil1, Delphine Houtteman1,
Patricia Bonnavion1 & Alban de Kerchove d’Exaerde 1

The basal ganglia are known to control actions and modulate movements.
Neuronal activity in the two efferent pathways of the dorsal striatum is critical
for appropriate behavioral control. Previous evidence has led to divergent
conclusions on the respective engagement of both pathways during actions.
Using calcium imaging to evaluate how neurons in the direct and indirect
pathways encode behaviors during self-paced spontaneous explorations in an
open field, we observed that the two striatal pathways exhibit distinct tuning
properties. Supervised learning algorithms revealed that direct pathway neu-
rons encode behaviors through their activation, whereas indirect pathway
neurons exhibit behavior-specific silencing. These properties remain stable for
weeks. Our findings highlight a complementary encoding of behaviors with
congruent activations in the direct pathway encoding multiple accessible
behaviors in a given context, and in the indirect pathway encoding the sup-
pression of competing behaviors. This model reconciles previous conflicting
conclusions on motor encoding in the striatum.

The basal ganglia are certainly well known to control both goal-
directed behaviors and natural, self-paced behaviors. The proper
initiation and execution of these behaviors relies heavily on appro-
priate functioning within the basal ganglia, as basal ganglia dysfunc-
tion is at the core of various disorders, including Parkinson’s disease,
autism spectrum disorders, and schizophrenia1. The striatum, which is
the main entry nucleus of the basal ganglia, consists of two types of
striatal projection neurons (SPNs) that differ based on their expression
of either dopamine D1 or D2 receptors and their respective direct or
indirect projections to the output nuclei of the basal ganglia (dSPNs or
iSPNs). This functional organization provides differential control of
basal ganglia outputs by dSPNs or iSPNs, that leads to net activating
or inhibiting effects of thalamocortical circuits, respectively2,3.
This dichotomy between prokinetic dSPNs and antikinetic iSPNs
has been documented using loss-of-function or gain-of-function
experiments4–10, bolstering the traditional go/no-go description of
striatal functioning2,3. This view has been challenged by correlative
descriptions of striatal activity based on recordings of both types of

SPNs, which demonstrated a coactivation of the dSPN and iSPN path-
ways during locomotion and more generally during actions11–16. These
results indicate that concerted and cooperative activity between both
striatal pathways is needed for proper action initiation and execution.

As a result, two antagonistic models of striatal functioning have
been developed that explain how neuronal activity is organized in the
striatum. The selection-suppression model17 postulates that proper
action execution relies on the concurrent activation of a small discrete
subpopulation of dSPNs that encode the ongoing action and the
widespread activation of a large number of iSPNs that inhibit all other
actions, with the iSPNs associated with the ongoing action remaining
silent. This model predicts that dSPNs are more selective for actions
than iSPNs. However, recent investigations highlighted that both
pathways encode behaviors with similar properties and dynamics13–16.
Consequently, a cooperative selection model was proposed13 in which
dSPNs and iSPNs coordinate their activities to select the proper action,
with subsets of dSPNs and iSPNs displaying the same targeted activa-
tion patterns toward actions. Although this model considers the
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coactivation of small ensembles of dSPNs and iSPNs, this model likely
fails to take into account the functional opposition betweendSPNs and
iSPNs4–10. In summary, these models predict different patterns of
neuronal activation in response to various behaviors, particularly the
activity of iSPNs. Therefore, additional investigations are needed to
clarify the function of the two SPN pathways as well as their relative
organization into functional subpopulations for behavior encoding.

Here, we studied the behavior-encoding properties of dSPNs and
iSPNs in the dorsal striatum using one-photon microendoscopy in
mice that freely explored an open field and thus expressed a large
behavioral repertoire at their own pace. We observed that the
behavior-encoding properties of dSPNs and iSPNs differ in a way that
challenges the above models. Furthermore, we used support vector
machine classifiers to precisely analyze the neural code of dSPNs and
iSPNs and their activation patterns during behaviors. We found that,
despite their differences in encoding properties, both populations
contain the same amount of information to reliably infer behaviors.
Moreover,we classified neurons as activatedor silent during behaviors
to evaluate the predictions of the selection-suppression and coop-
erative selection models, and we found that neural codes are orga-
nized differently in dSPNs and iSPNs. Similar to previous observations
in different brain systems, the most important behavior-encoding
feature of dSPNs is their specific activation during some behaviors.
Remarkably, themost important behavior-encoding feature of iSPNs is
their consistent silencing during specific behaviors. Our findings are
reinforced by observations that these properties remain stable
for weeks.

These results provide thefirst correlative evidence thatdSPNs and
iSPNs have distinct encoding properties. Using these observations, we
propose an updated model for motor encoding among SPNs in the
dorsal striatum. This model relies on the congruent activation of
dSPNs, which encode multiple accessible behaviors in a given context
to promote these behaviors, and iSPNs, which encode for and inhibit
competing behaviors. As a result, the coactivation of specific subsets
of behavior-promoting dSPNs and behavior-suppressing iSPNs along-
side specific inhibition of subsets of iSPNs allowing behavior expres-
sion would result in the selection and execution of only one motor
program. This model bridges the gap between various interpretations
of experimental observations that promoted antagonistic models on
striatal functional organization.

Results
Annotation of mice behavior in the open field
To investigate the behavior-encoding properties in both subpopula-
tions in thedorsal striatum,we tracked and reconstructed thebehavior
ofmice freely exploring an open field and simultaneously recorded the
neuronal activity of either dSPNs or iSPNs usingmicroendoscopic one-
photon imaging of GCaMP6s (Fig. 1a). Mouse self-paced behaviors
were identified and labeled using a combination of deep learning tools
and clustering methods to generate a predictive model (Fig. 1b and
Supplementary Figs. 1 and 2a–g). The workflow for behavior annota-
tion consisted of two parts: an unsupervised detection of behavior
clusters, followed by amanual registrationof these clusters into one of
the 12 behaviors capturing the behavioral repertoire expressed by
mice in the open field. In the unsupervised detection of behavior
clusters portion, the coordinates of mouse body parts tracked using
DeepLabCut18 were used to compute six features describing themouse
posture and activity (Supplementary Figs. 1 and 2a, b). After multiple
iterations of non-linear transformations (t-SNE) to retain postural time
series in a low-dimension action space followed by clustering (Gaus-
sian mixture model), the algorithm identified groups of data points
consistently clustered together using Hamming distance (on average
88% agreement between partitions; Rand index) forming postural
archetypes (Supplementary Fig. 2c). Then these postural archetypes
are manually registered into one of the 12 behaviors (Supplementary

Fig. 2d). This second step of manual registration is critical to produce
consistent behavior clusters across different mice and across different
sessions. The distributions of identified behaviors in the feature space
were eventually used to estimate for each time point its likelihood to
belong to each behavior cluster (Supplementary Fig. 2e, f). The beha-
vior was determined according to the maximum likelihood (Supple-
mentary Fig. 2f, g).
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Fig. 1 | Simultaneous calcium imaging and behavioral identification in freely
behavingmice. aMiceexpressingGCaMP6s in either dSPNsor iSPNsandequipped
with a microendoscope freely exploring a well-known open field. b Temporal
evolution of identified behaviors during 30min of open field exploration for all
recording sessions (left panel; 5min long bins; n = 73 sessions in 17 mice) and
average distribution of behaviors over 30min (right panel) in mice expressing
GCaMP6s in dSPNs (D1 mice; n = 33 sessions with 8 mice) or iSPNs (A2A mice;
n = 40 sessions in 9mice). l. locomotion, st. still, immo. immobility. Representative
image from one A2A mouse of the maximum fluorescence intensity projection of
iSPNs labeled with GCaMP6s (c) and the corresponding isolated spatial compo-
nents identified using CNMF-E (d). e Representative fluorescence traces (top panel,
red lines) and deconvolved calcium activity (top panel, black lines) from selected
SPNs (red ind) alignedwith detected behaviors (bottompanel). fQuantification for
each recording session of the identified neuron number (top panel) and decon-
volved calcium activity (bottom panel) for dSPNs (red; n = 33 sessions in 8 mice)
and iSPNs (blue; n = 40 sessions in 9 mice) (permutation-based two-sided t-test,
dSPNs vs. iSPNs: number or cells, p =0.1012; deconvolved activity: ***p =0).
gAverage population activity is significantly higher in dSPNs (red;n = 33 sessions in
8 mice) than in iSPNs (blue; n = 40 sessions in 9 mice) during many behaviors and
significantly lower during immobility (linear mixed effect model followed by post
hoc permutation-based two-sided t-test, dSPNs vs. iSPNs: *p <0.05, **p <0.01,
***p <0.001). loco. locomotion. Data are presented as mean values ± SEM. Detailed
statistics are displayed in Supplementary Table 1. Source data are provided as a
Source Data file.
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To test the performance of our behavior identification pipeline,
we collected annotation data from four experienced annotators on a
common set of 2000 behavior episodes identified by the algorithm.
The annotators were exposed twice to the same episodes to evaluate
their annotation consistency. Despite behavior definitions reflecting
a between-annotator consensus, such a consensus did not prevent
variability in annotation style across individuals and within indivi-
duals (Supplementary Fig. 2h, i) as evidenced by the intra-annotator
comparisons, and comparisons between annotators and annotator
#1 or between annotators and the majority classes. Using two com-
plementary metrics evaluating model performance, namely the
accuracy and the F1 score, we found that our pipeline achieved per-
formances within the range set by the intra- and inter-annotator
agreement (Supplementary Fig. 2i). We observed that our algorithm
displayed lower performance to detect head up mostly because it
under-detected rearing episodes and mislabeled them as head up
events. Similarly, lower performances to detect still sniffing were
caused by confusions between still sniffing, grooming, and immobi-
lity. Importantly, annotators displayed a similar level of confusion
between the same behaviors, which is explained as mice were mon-
itored from above. In general, the behaviors for which our pipeline
had the lowest performance coincided with the behaviors for which
human annotators had less agreement and less consistency (Sup-
plementary Fig. 2j). Overall, when considering all the behaviors, the
average accuracy, precision and recall, and F1 score of our pipeline
was comparable to that of human annotators performance (Supple-
mentary Fig. 2k).

Eventually, using our behavior annotation pipeline, we found
that behaviors distribution was not homogeneous throughout the
course of the open field test, with more locomotor behaviors in the
beginning of the session. Additionally, the behavior distributions of
the experimental groups were similar (Fig. 1b and Supplementary
Fig. 3a–c)

Behavior encoding properties differ between dSPNs and iSPNs
The calcium activity was extracted from simultaneously recorded
microendoscopic images using the CaImAn pipeline19,20, and the
reconstructed temporal traces of calcium activity were deconvolved
using MLspike21 (Fig. 1c–f and Supplementary Figs. 1 and 4a–h). On
average, 179 ± 18 dSPNs and 216 ± 16 iSPNs were identified in each
recording session (Fig. 1f). First, we observed that the average popu-
lation activity of the dSPNs was higher than that of the iSPNs (Fig. 1f).
Then, the population activity was decomposed according to the
identified behaviors, which revealed that the average population
activity was consistently higher for dSPNs than for iSPNs during many
behaviors, including straight locomotion, locomotion with right and
left turns, remaining still with right and left turns, rearing, grooming,
and locomotion sniffing, with the notable exception of immobility,
during which the average population activity was significantly lower
for dSPNs than for iSPNs (Fig. 1g and Supplementary Fig. 4i, j). This
result indicates a substantial difference in the behavioral tuning
properties of dSPN and iSPN ensembles.

To better characterize this potential difference among the SPN
subpopulations, we first evaluated whether SPN activation was con-
sistent during 30min of open field exploration. For each behavior, we
computed theneuronal activation,whichwas calculated as the average
frequency, during the first and the second halves of each recording,
and we evaluated the similarity between these two neuronal activation
maps (Fig. 2a). We observed that neuronal activation similarity was
higher for dSPNs than for iSPNs for all identified behaviors except
grooming, still sniffing, and immobility (Fig. 2b and Supplementary
Fig. 5a, b). Similarly, the inverse coefficient of variation is higher for
dSPNs than for iSPNs for all behaviors except grooming and immobi-
lity (Fig. 2c). These results suggest that, for each behavior, the same
dSPNs are more consistently activated, whereas iSPN activation is

inconsistent. Conversely, this observation between the first and sec-
ond halves of the recordings could result from the fact that both
subpopulations are differentially affected by internal drives that
accumulate or dissipate during open field exploration, such as stress22,
novelty23,24, or tiredness25. To account for this temporal factor, we
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Fig. 2 | Dynamical properties of behavior encoding differ between dSPNs and
iSPNs. a Representative neuronal activation maps of dSPNs (top panels) and iSPNs
(bottompanels) fromone session, illustrating the averaged activationof neurons in
the first half (0–15min) and second half (15–30min) of the recording session for
twobehaviors (locomotion straight, left; still turn left, right).Note that the neuronal
activation appears highly similar during the first and second halves of the recording
in dSPNs during the two behaviors and less similar in iSPNs during the same
behavior. b Neuronal activation similarity between the first and second halves of
the open field exploration was higher in dSPNs (red; n = 33 sessions in 8mice) than
in iSPNs (blue; n = 40 sessions in 9 mice) for all behaviors except grooming, still
sniffing, and immobility (linear mixed effect model followed by post hoc
permutation-based two-sided t-test, dSPNs vs. iSPNs: *p <0.05, **p <0.01,
***p <0.001).cComparisonof the inverse coefficientof variation evaluated for each
behavior during the whole recording period between dSPNs (red; n = 33 sessions in
8 mice) and iSPNs (blue; n = 40 sessions in 9 mice) (linear mixed effect model
followed by post hoc permutation-based two-sided t-test, dSPNs vs. iSPNs:
*p <0.05, **p <0.01, ***p <0.001). loco. locomotion. Data are presented as mean
values ± SEM. Detailed statistics are displayed in Supplementary Table 1. Source
data are provided as a Source Data file.
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computed the same similaritymetric by using all possible partitions of
time into two 15-min sets (e.g., 30min segmented into 5min long sli-
ces). Regardless of the timepartition, we observed the samedifference
in neuronal activation similarity between dSPNs and iSPNs (Supple-
mentary Fig. 5c). Furthermore, the neuronal activation similarity was
computed by comparing odd and even frames, by comparing one
episode out of two to complementary episodes, and by using the dot
product between neuronal activation vectors, yielding the same
observations as described above (Supplementary Fig. 6a–c). More-
over, as an additional control to verify the reliability of the similarity
measure, we disturbed SPN signaling by artificially increasing dopa-
mine release through acute injection of amphetamine (Supplementary
Fig. 7a–d). The neuronal activation similarity of both dSPNs and iSPNs
was strongly alleviated after amphetamine administration (Supple-
mentary Fig. 8b). All the above results demonstrate that the difference
in neuronal activation similarity is a substantiated time-invariant
property of behavior encoding in dSPNs and iSPNs; for each behavior,
the same dSPNs are more consistently activated, whereas iSPN acti-
vation displays either a milder specificity toward behaviors or is more
variable.

Moreover, a comparison of pairs of behaviors revealed that, in the
dorsal striatum, similar behaviors are encoded by highly similar neu-
ronal ensembles, whereas dissimilar behaviors are encoded by mildly
overlapping neuron groups. Furthermore, this encoding property is
equivalent for both SPN subtypes14. For each pair of behaviors, we
compared the similarity between the average neuronal activity (neu-
ronal activation similarity) to the similarity between behaviors (beha-
vioral similarity). The latter quantifies the similarity in movement
trajectories and body shape between each pair of behaviors. We
observed a strong positive correlation between pairwise neuronal
activation similarity and pairwise behavioral similarity for both dSPNs
and iSPNs (Fig. 3a–e). However, when the correlation coefficients of
pairwise neuronal and behavioral similarities were compared, we
observed a significantly higher correlation for dSPNs than for iSPNs
(Fig. 3f). This result indicates that the behavioral space representation
differs between the two populations. This result contradicts that of a
previous report14. To understand this result, we first verified that this
difference was not due to the use of a different neuronal similarity
measure (Supplementary Fig. 9a). Another key difference is the dura-
tion over which animals explored the open field: the animals explored
the field for 10–15min in Klaus et al.14, whereas our experiments lasted
30min. Thus, we calculated the correlation coefficients between the
neuronal andbehavioral similarities for different recording lengths. No
difference was detected between dSPNs and iSPNs for durations of up
to 10min (Supplementary Fig. 9b–d). Therefore, extended recordings
may be required to collect more samples of neuronal activity during a
larger variety of internal or external contexts in order to properly
uncover differences in neuronal activation variability for episodes of
different behaviors. Overall, these results demonstrate that the cou-
pling between behavior similarity and neuronal similarity is tighter
among dSPNs than among iSPNs.

The above observations demonstrate fundamental differences
between dSPNs and iSPNs in terms of their dynamical behavior-
encoding properties. Moreover, this new set of evidence is incon-
sistentwith existingmodels of striatal organization. In particular, these
models do not account for the existence of different neuronal activa-
tion patterns during different episodes of the samebehavior. Thus, our
results call for a deeper analysis of the neural codes and properties of
dSPNs and iSPNs that may convey different behavior-relevant
information.

Behaviors can be reliably decoded from either dSPNs or iSPNs
The first step in our analysis of the neural code in the dorsal striatum
was to assesswhether animal behaviors can be reconstructed based on
instantaneous neuronal activity recorded from either dSPNs or iSPNs.

We thus trained several support vector machine linear classifiers for
each pair of behaviors and used the majority rule to combine the
outputs of individual binary classifiers (66 individual binary classifiers
for each recording) to predict animal behavior (one vs. one multiclass
support vector machine) (Fig. 4a). The behavior reconstruction error
was calculated for each prediction using the behavioral distance
between the predicted behavior and the actual behavior. The instan-
taneous prediction of behaviors (combined output of binary classi-
fiers) using either dSPN or iSPN activity performs significantly better
than chance, which was estimated by decoding behaviors using clas-
sifiers trained on time-lagged data. Moreover, dSPNs and iSPNs have
similar decoding accuracies and average reconstruction errors
(Fig. 4b, c and Supplementary Fig. 16a, b). The prediction accuracy
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associated with individual binary classifiers (separation between pairs
of behaviors) is similar for dSPNs (81.8 ± 1.1%) and iSPNs (82.5 ± 0.8%)
(p = 0.295). Strikingly, this result appears to contradict previous
observations, which indicate differences in behavior encoding
between dSPNs and iSPNs. A lower prediction accuracy would be
expected when using iSPNs (because of their lower activation simi-
larity) and a larger prediction error would be expected when using
iSPNs (because of the lower coupling between pairwise neuronal and
behavioral similarities). To confirm the relevance and robustness of
our classification strategy, we evaluated whether the decoding

accuracy is affected when SPN activity is strongly disturbed after
amphetamine administration. We observed that the decoding perfor-
mance was considerably reduced following amphetamine adminis-
tration (Supplementary Fig. 8a, c, d). A closer inspection of the
performance of individual classifiers revealed that the decoding
accuracy was higher when distinguishing dissimilar behaviors, and
lower when distinguishing similar behaviors (Fig. 4d). This property is
the same for dSPNs and iSPNs. For example, for dSPNs, the separation
between considerably different behaviors, such as locomotion turn
right and immobility (behavior distance: 3.93 ± 0.06), is more accurate
(accuracy: 90.2 ± 1.1%) than the separation between more similar
behaviors, such as locomotion turn right and locomotion turn left
(behavior distance: 1.79 ± 0.06; accuracy: 76.1 ± 1.3%). These results
indicate that despite previous evidence on differences in dynamical
behavior encoding, both striatal populations contain and encode the
same amount of information in response to behaviors.

Neural code in dSPNs is biased toward activation
To better characterize the neural code in the dorsal striatum, we
attempted to identify which features in the response properties of
individual cells contribute most to behavior encoding.

We first identified which neurons were significantly activated
during specific behaviors and defined these neurons as behavior-active
when themutual information between the behavior time series and the
recorded neuronal activity (behavior information) was statistically
significant26,27 (Fig. 5a, b and Supplementary Fig. 10). Based on this
criterion, theproportionof behavior-active cells is higher amongdSPNs
than among iSPNs (Fig. 5b and Supplementary Fig. 11a). Interestingly,
the proportion of behavior-active dSPNs is significantly larger for
contralateral turns (right turns) than ipsilateral turns during locomo-
tion or without locomotion (Supplementary Fig. 11a) (dSPNs; loco. turn
right vs. loco. turn left, permutation-based t-test, p =0; still turn right
vs. still turn left, permutation-based t-test, p =0). Similarly, the pro-
portion of behavior-active iSPNs is larger for contralateral turns than
ipsilateral turns during locomotion (iSPNs; loco. turn right vs. loco. turn
left, permutation-based t-test, p =0.0006), whereas no difference was
observed between turn directions without locomotion (iSPNs; still turn
right vs. still turn left, permutation-based t-test, p =0.079). According
to this classification of whether individual neurons are behavior-active,
we evaluated whether behaviors could be decoded based on the
activity of behavior-active or non-behavior-active neurons. For dSPN
recordings, the prediction was significantly more efficient when using
behavior-active cells than when using non-behavior-active cells,
whereas, for iSPN recordings, the prediction performance was similar
wheneither behavior-active cells or non-behavior-active cellswereused
(Fig. 5c, d and Supplementary Figs. 11b, c and 16c–f). Moreover, the
decoding performance was similar when non-behavior-active dSPNs or
iSPNs were used, whereas the decoding performance was significantly
higher when behavior-active dSPNs were used than when behavior-
active iSPNs were used (Fig. 5c, d). This observation was maintained
when the level of significance of behavior information for classifying
neurons as behavior-active was changed (Supplementary Fig. 11d). The
same results were observed when significantly activated neurons were
detected using a shuffle procedure for each behavior independently
(Supplementary Fig. 12). Taken together, these findings demonstrate
that the neural code for behaviors is biased toward behavior-active
dSPNs, whereas this feature is more evenly distributed among iSPNs.

Neural code in iSPNs is biased toward silencing
According to the selection-suppression model17, indirect pathway
SPNs are activated to suppress all motor programs except the one
being executed. As a result, iSPNs responsible for suppressing a par-
ticular behavior are never active during this behavior. Thus, following
this postulate, we investigated the relative contribution of neurons
that remain silent during behaviors to the neural code. We thus
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identified SPNs that are consistently silent during episodes of each
behavior by computing, for each neuron, how often this neuron is
active during all episodes of this behavior (Fig. 6a). For each behavior,
if this activation occurrence is sufficiently low (threshold of 2.5% of
episodes; Fig. 6a), the neuron is labeled as behavior-silent for this
behavior (Supplementary Fig. 13). Strikingly, the proportion of
behavior-silent neurons was higher in iSPNs than in dSPNs for each

behavior (Fig. 6b), with the notable exception of immobility, for which
the proportion was similar in dSPNs and iSPNs. Then, we separated
SPNs classified as behavior-silent or non-behavior-silent and evaluated
the information content of these groups of cells to accurately separate
the associated behavior from other behaviors (one behavior vs. rest
decoding accuracy) (Fig. 6c). We chose this measure because,
according to the selection-suppressionmodel17, consistent silencing in
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some iSPNs should indicate that the animal is currently engaged in a
given behavior, whereas their activation, leading to the suppression of
this given behavior, should indicate that the animal experiences any
other behavior without enabling to directly identify this other beha-
vior. For dSPNs, the separation accuracy of all behaviors was similar
when behavior-silent cells or non-behavior-silent cells were used,
except fast locomotion and immobility. On the other hand, we
observed that the separation accuracy was consistently higher for
behavior-silent iSPNs than non-behavior-silent iSPNs during ambula-
tory behaviors (i.e., behaviors involving locomotion or right and left
turns without locomotion), indicating that silencing is an important
feature of the neural code in iSPNs during these behaviors. Conversely,
this difference in separation accuracy between behavior-silent and
non-behavior-silent iSPNs was not observed for static behaviors (i.e.,
head up, rearing, grooming, still sniffing, and immobility) (Fig. 6c and
Supplementary Fig. 16g–i). This distinction between ambulatory and
static behaviors could be because the detected static behaviors may
contain additional substates that were not separated in our classifica-
tion. Furthermore, this distinction may represent different modes of
encoding in iSPNs during ambulatory and static behaviors, such as
spatial mapping in the dorsal hippocampus, which is characterized by
place cells that display their specific place fields mostly during
locomotion28,29. Additionally, similar results were observed for iSPNs
when the classification relied on the comparison of activation occur-
rence to the distribution of activation occurrences obtained from
random permutations (Supplementary Fig. 14a–d). We also observed
the same results for both dSPNs and iSPNs when we used an alternate
cell classification, which was based on a threshold on the average
activity during behaviors (Supplementary Fig. 15a–c). In conclusion,
these observations support a key distinctive feature of iSPNs for
behavior encoding, namely, that iSPNs are consistently silent during
behaviors, a property that is not observed for dSPNs.

Long-term stability of neural code over weeks
To reinforce our previous findings and assess their reliability, we
investigated their long-term stability. Thus, for each animal, we per-
formed a longitudinal registration of neurons30 across pairs of
recording sessions over 1 month (Supplementary Figs. 1 and 17a). The
registration performance was similar for dSPN and iSPN recordings
(Supplementary Fig. 17b). On average, 104 ± 5 cells were recovered
between any pair of sessions (Supplementary Fig. 17c), corresponding
to an overlap of 33.9 ± 0.8% in the subset of cells identified in both
sessions, ranging from 36.2 ± 1.5% after ~5–7 days to 32.5 ± 1.4% after
~30 days. As described above, we first quantified the neuronal activa-
tion similarity for each behavior between pairs of sessions. For all
behaviors, the neuronal activation similarity was higher for dSPNs and
iSPNs than for their respective shuffles, as evaluated by either random
permutations of registered cell pairs or by replacing one cell or each
pair with its closest neighbor (Fig. 7a and Supplementary Fig. 17d, e).
These controls provide an additional post-hoc validation of the long-
itudinal registration procedure. Then, comparisons between dSPNs
and iSPNs revealed that, with the exception of immobility, the neuro-
nal activation similarity was consistently higher over time for dSPNs
than for iSPNs (Fig. 7a and Supplementary Fig. 17d, e). This result
appears to indicate that neuronal activation patterns are preserved
better for dSPNs than for iSPNs, which may reflect the previously
established bias toward activation in the neuronal code of behaviors
in dSPNs.

Following this idea, we evaluated the stability of the behavior-
coding properties across sessions by comparing the classification of
cells into the behavior-excited or behavior-silent categories using
the Jaccard index (intersection over union) for binary attributes. We
observed that within registered cells between pairs of sessions,
the proportion of neurons that remained classified as behavior-
active for the same behaviors was higher among dSPNs than among

iSPNs (Fig. 7b). Conversely, during ambulatory behaviors, behavior-
silent iSPNs overlapped between sessions more often than
behavior-silent dSPNs (Fig. 7b and Supplementary Fig. 18c). This
result indicates that the classification of dSPNs as behavior-active
and the classification of iSPNs as behavior-silent are more con-
sistent over time than their respective counterparts in the other
striatal population.

To deepen this observation on the categorization of single neu-
rons and extend it to neural ensembles, we quantifiedwhether support
vector machines trained on neuronal activity and behavior time series
on a given day can efficiently predict the behavior using the neuronal
activity of the same neurons on a different day. For both dSPNs and
iSPNs, the longitudinal prediction of behaviors using support vector
machines is consistently more accurate than the predictions obtained
with classifiers trained on time-lagged data (Fig. 7c and Supplementary
Fig. 18a, b). Interestingly, the longitudinal prediction of behaviors
performs better with dSPNs than with iSPNs, which might reflect the
higher long-term stability of neuronal activation similarity for dSPNs.

Finally, we analyzed whether the activity of dSPNs and iSPNs
categorized as behavior-active or behavior-silent on a given day can be
used to efficiently predict behaviors on a different day. We observed
that for dSPNs, behavior predictions were significantly more accurate
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when only behavior-active cells were used than when non-behavior-
active cells were used (Fig. 8a). In contrast, the accuracy is similarwhen
behaviors are predicted with either behavior-active iSPNs or non-
behavior-active iSPNs (Fig. 8a). This finding indicates that the bias of
the neural code toward behavior-active dSPNs and the information
content of these cells in response to behaviors remain conserved for
weeks. For behavior-silent neurons (or behavior-inactive neurons,
using the alternate definition), we noted that the prediction of ambu-
latory behaviors is significantly more accurate with behavior-silent
iSPNs than with non-behavior-silent cells (Fig. 8b and Supplementary
Fig. 18d), whereas no difference was observed for static behaviors. On

the other hand, there is no difference in the prediction accuracy when
either behavior-silent or non-behavior-silent dSPNs are used (Fig. 8b
and Supplementary Fig. 18d). This finding highlights the long-term
preservation of the bias toward behavior-silent iSPNs in the striatal
neural code. Overall, these results demonstrate the long-term stability
of the neuronal encoding properties established in individual record-
ing sessions, reinforcing the reliability of our findings.

Thus, our findings demonstrate that neuronal representations of
spontaneous self-paced behaviors in striatal ensembles are biased
toward activation in dSPNs and silencing in iSPNs and that these
representations are preserved for weeks. These results provide new
original insights into both the neuronal organization of striatal
ensembles for behavior encoding and efficient motor program selec-
tion. In addition, our observations allow us to propose an updated
model for behavior encoding in the two striatal pathways that solves
discrepancies raised by previously formulated hypotheses.

Discussion
Neurons in the dorsal striatum exhibit diverse and heterogeneous
responses to different external variables11,13,14,31. These responses can-
not be easily interpreted and highlight the challenge of identifying the
distinct encoding properties of the two parallel efferent pathways in
the dorsal striatum. In this study, we evaluated the neuronal encoding
properties of SPN ensembles during self-paced natural behaviors in an
open field. In this experimental paradigm, animals can express
unconstrained naturalistic behaviors forming a large behavioral
repertoire. In our experiments, we observed previously unreported
differences between direct and indirect pathway SPNs. These differ-
ences most likely reflect the higher variability of iSPNs in neuron
ensembles that are activated during different episodes of the same
behavior, which could be observed only during long sessions of open
field exploration. However, despite these heterogeneous response
properties, the behaviors could be reliably decoded from the activity
of either dSPNs or iSPNs, demonstrating that both pathways contain
the same level of information with respect to the ongoing behaviors.
Therefore, it questions the respective organization of the neural code
in both pathways.

Many formulations have been proposed to explain the organiza-
tion of neuronal activity in the two striatal pathways. Among them, a
“complete selection-suppression” model proposes prokinetic and
antikinetic functions for the direct and indirect pathways,
respectively4–6,17 (Supplementary Fig. 19a). This model proposes that
propermotor program execution relies on the congruent activation of
a small discrete subpopulation of dSPNs that encode this motor pro-
gram and a large number of iSPN ensembles associated with all other
motor programs that inhibit all other behaviors. Such amodel predicts
that dSPNs are more selective for actions than iSPNs, which is incon-
sistent with observations in previous reports11,14–16 and our results.
However, this model is compatible with our observation that the
neural code among dSPNs is biased toward activation, whereas the
neural code is biased toward inhibition in iSPNs because during a given
behavior, dSPNs associated with this behavior are activated, whereas
iSPNs associatedwith the samebehavior remain silent (Supplementary
Fig. 19d). On the other hand, the “cooperative selection” model13

(Supplementary Fig. 19b) proposes the cooperative activation of dis-
crete dSPNs and iSPNs ensembles that are similarly tuned toward
behaviors to select proper motor programs. Although this model
accurately incorporates the coactivations of similar size dSPNand iSPN
ensembles during actions, it does not account for the functional dis-
similarities of dSPNs and iSPNs4–6 or our observations of dissimilar
encoding dynamics between the two striatal pathways, in particular
the bias toward silencing in iSPNs (Supplementary Fig. 19d). As a result,
the current models of striatal organization must be reevaluated. This
reevaluation needs to take into account our novel observations. Here,
we report for the first time divergent behavior-encoding properties
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Detailed statistics are displayed inSupplementary Table 1. Sourcedata are provided
as a Source Data file.
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between dSPNs and iSPNs, which may reflect their functional dissim-
ilarity. In particular, our observation that the same dSPNs are more
consistently activated for each behavior, whereas iSPNs activation is
more inconsistent, reveals that behavior specificity is milder in iSPNs
than in dSPNs. This consideration is compatible with the general fra-
mework of the “complete selection-suppression” model. Additionally,
one aspect of our recordings that should be considered is the high
variability in neuronal activation in both dSPNs and iSPNs for different
episodes of the same behavior. This feature has not been integrated
into current models and likely reflects the large effect of external and
internal contexts for all occurrences of a given motor program. We
thus propose a novel formulation we call “adaptive selection-sup-
pression” (Supplementary Fig. 19c), which attempts to reconcile the
abovementioned models, previously reported observations, and our
observations (Supplementary Fig. 19d). We hypothesize that dSPNs
encode a small subset of accessible behaviors in the overall behavioral
repertoire, including the observed behavior, and are highly dependent
on the ongoing context and activated to promote these behaviors.
Furthermore, specific iSPNs that encode competing behaviors, which
are also highly dependent on the context, are activated to suppress
these competing behaviors. In the subsequent basal ganglia nuclei, the
comparison between selecting dSPN activations and suppressing iSPN
activations dictates the ongoing motor program. This model supports
our observation that similar behaviors correspond to comparable
neuronal activations in dSPNs and iSPNs, as adjacent, highly similar
behaviors could be more often competing with each other than con-
siderably different behaviors. However behavior similarity is probably
a poor estimator of the degree of competition between behaviors and
a further understanding of this phenomenon would require a proper
dedicated measure of behavior competition. Moreover, an important
feature of the neural code in this model is that specific subgroups of
dSPNs are activated in response to the expressed motor program,
whereas specific subgroups of iSPNs are consistently inactive. This
finding is substantiated by our observation that the most relevant
information for predicting behaviors is located in dSPNs that are
activated during behaviors and iSPNs that remain silent during beha-
viors. This model guarantees the coactivation of discrete subsets of
dSPNs and iSPNs during each behavior and supports the broad
prokinetic and antikinetic functions of the direct and indirect
striatal pathways, respectively. Alternatively the continuous context-
dependent representation of the action space in SPNs could reflect the
propensity or the value associated with the execution of possible
movements on a more abstract level gathered in broad action cate-
gories instead of highly defined complex behaviors14,15,32–34. Further
studies investigating the neuronal activity in the dorsal striatum and in
downstreamnuclei arenecessary to clarifywhether the specificationof
detailed actions occurs in the striatum or downstream in the basal
ganglia.

As described above, for eachobservedmotor program,ourmodel
incorporates the notion of inter-episode variability, which depends on
the context dictated by both internal and external factors. Indeed, the
dorsal striatum incorporates different representations of various
contextualmodalities, such as spatial information31,35, visual and tactile
cues36, timing37, rewarding and aversive drives38, task constraints15, and
sleep drive25. These studies substantiate the idea of rich, highly
context-dependent behavior representations supported by SPNs.
These representations likely originate in cortical areas39,40 and are
transferred to the dorsal striatum for subsequent processing and
integration41–43. Moreover the information about behaviors and con-
textual modalities is probably highly distributed across individual
neurons. Our analyses show that non-behavior-active or non-behavior-
silent cells contribute to the encoding of behaviors (e.g., decoding
behaviors using non-behavior-active dSPNs performs better than
chance). This observation may be explained by the fact that, although
some neurons, when evaluated individually, encode behaviors weakly

(do not pass the criterion for being categorized as behavior-active or
behavior-silent), these “untuned” cells may contribute to behavior
encoding through shared ensemble activity patterns or because of
their correlations with behavior-active or behavior-silent SPNs. A
contribution of these “untuned” neurons to the neural code was
identified, for example, in the hippocampal formation or in the pre-
frontal cortex26,44,45. In addition, our model proposes that dSPNs are
activated not only in response to the expressed behavior but also in
response to additional, often similar behaviors. The concurrent acti-
vation of specific iSPN ensembles enables the proper filtering of only
one action, most likely the most appropriate action in a given context.
This mode of organization likely supports efficient shifts in the beha-
vioral strategy depending on an animal’s internal state or task
contingencies46.

In addition, in our study, we did not observe a bias toward silen-
cing among iSPNs during static behaviors. This could be because these
behaviors contain supplemental substates that we could not separate
with our analysis pipeline. Alternatively, this could be a consequence
of different modes of encoding in iSPNs during ambulatory and static
behaviors, similar to spatial mapping in the dorsal hippocampus,
which is prominent mainly during locomotion28,29. This alternation
between encodingmodesmay rely on functional interactions between
the dorsal hippocampus and the dorsal striatum47,48.

Furthermore, we demonstrated the long-term stability of the
neural code in SPNs. We observed that behavior-related information
was retained for weeks in behavior-active dSPNs and behavior-silent
iSPNs, reinforcing our findings. More precisely, behavior-coding
ensembles display a fluctuating membership that ultimately pre-
serves behavior-related information. This finding supports the idea of
stable behavioral representations in the dorsal striatum that exhibit
some day-to-day fluctuations at the single-cell level. This coding
turnover could preserve a certain level of flexibility within the system,
which may enable the formation of new traces for encoding similar
motor programs that occur in different environments or varied con-
texts. This mechanism could be critically engaged during procedural
or episodic memory formation49.

In summary, we identified clear functional differences
between SPNs in the direct and indirect pathways in the dorsal
striatum in response to self-paced spontaneous behaviors. Our
data indicate that ongoing behaviors can be decoded based on
dSPN and iSPN activity patterns, despite the fact that these pat-
terns resemble those associated with similar behaviors. Behavior-
specific firing and silencing are more prominent in dSPNs and
iSPNs, respectively. Our observations are consistent with a model
in which dSPN activations represent the ongoing behavior
alongside competing motor programs, while iSPNs specific for
the ongoing behavior become silent and iSPNs specific for com-
peting behaviors become active. These observations are critical
for a deeper understanding of striatal functional organization and
strengthen the view that direct and indirect pathways coopera-
tively orchestrate motor programs in a manner that is highly
dependent on the ongoing context by selecting a small subset of
accessible behaviors while suppressing competing behaviors.

Methods
Animal care and use
All procedures were performed according to the Institutional Animal
Care Committee guidelines and were approved by the Local Ethical
Committee (Comité d’Ethique et de Bien-Être Animal du pôle santé de
l’Université Libre de Bruxelles (ULB), Ref. No. 646N). Mice were
maintainedona 12-h dark/light cycle (lights on at 8 pm)with ad libitum
access to food and water. The room temperature was set to 22 ± 2 °C
with constant humidity (40–60%). The behavioral tests were per-
formedduring the dark photoperiod. Bothmale and female transgenic
mice (≥8 weeks) were used in all behavioral experiments.

Article https://doi.org/10.1038/s41467-023-40677-0

Nature Communications |         (2023) 14:4982 9



Transgenic mouse generation
The genetic background of all transgenic mice used in this paper is
C57Bl/6J. The mice were heterozygous and maintained by breeding
with C57Bl/6 mice. All lines were backcrossed with C57Bl6 mice for at
least 8 generations. Three transgenic mouse lines were used: A2A-Cre

7,
D1-Cre (EY262; GENSAT)50 and Ai162/TIT2L-GC6s-ICL-tTA2 (Ai162D;
Allen Institute)51. Simple transgenic A2A-Cre or D1-Cre mice (A2A(AAV)
and D1mice, respectively) were used for the virallymediated targeting
of iSPNs or dSPNs, respectively. Double transgenic A2A-Cre x Ai162/
TIT2L-GC6s-ICL-tTA2 mice (A2A(Tg) mice) were generated by breed-
ing and used for targeting iSPNs without virus injection. For this
breeding, mice were maintained with doxycycline food pellets (A03
1 g/kg doxycycline hyclate pellet; SAFE, France) to prevent GCaMP6s
expression during development and early life stages in offspring.
Standard food was introduced when offspring were weaned (3 weeks
postnatal). The results of A2A-Cremice expressing GCaMP6s through a
virus-mediated strategy (A2A(AAV) mice) or through a double trans-
genic strategy (A2A(Tg) mice) were compared, and no differences
were observed (Supplementary Fig. 4d, e, h). As a consequence, these
animals were pooled.

Viral injections and chronic lens implantation
Under isoflurane anesthesia (induction 4%,maintenance 1% inO2; 0.5 l/
min), male and female A2A-Cre and D1-Cre mice (≥8 weeks old), which
targeted iSPNs and dSPNs, respectively, received two injections
(500nl per site at 100 nl/min) under stereotaxic control in the left
dorsal striatum (AP: +1.2mm; ML: −1.75mm; DV: −3mm; and AP:
+1.2mm; ML: −1.75mm; DV: −3.3mm relative to Bregma according to
the Franklin and Paxinos atlas third edition) of a Cre-dependent virus
encoding GCaMP6s (AAV-Dj-EF1α-DIO-GCaMP6s; Stanford Vector
Core, titer 5.02 × 1012 vg/ml; UNC Vector Core, titer 3.9 × 1012 vg/ml),
which was delivered through a cannula connected to a Hamilton syr-
inge (10 µl) placed in a syringe pump (KDS-310-PLUS, KDScientific).
Cannulas were lowered into the brain and left in place for 10min after
infusion. Mice (4–5 weeks after virus injection or ≥8 weeks old for
A2A(Tg) mice) were then prepared for in vivo calcium imaging. A
gradient index (GRIN) lens (1.0mm or 0.6mm diameter, ID-1050-
004605 or ID-1050-004608; Inscopix, Palo Alto, CA) was implanted
into the left dorsal striatum under stereotaxic control directly above
the injection site (AP: +1.2mm; ML: −1.9mm; DV: −2.8mm relative to
Bregma). Once the lens was positioned, the lens was secured to the
skull usingMetabond (C&B, SunMedical Co. Ltd, Japan) and protected
using tape. Two weeks after lens implantation, a microendoscope
baseplate (ID-1050-004638; Inscopix) was attached to the skull with
Metabond in the optimal imaging plane (550 µmabove the lens for the
0.6mm diameter lens and ~300 µm above the lens for the 1.0mm
diameter lens). The behavioral experiments began at least 1 week after
the baseplate was fixed to ensure that the field of view was adequately
cleared.

Open field behavior
The behavior experiments were conducted in an open field arena
(40 cm× 40 cm× 40 cm, length ×width × height) withwhitewalls in a
dark environment (0 lux). Before the first recording session, mice
were habituated to the open field and the microendoscope for at
least 5 consecutive days by using a dummy microscope (ID-1050-
003762; Inscopix) mounted in place of the actual microscope. The
animal behavior was recorded for 30min for 4–5 sessions spaced
over 5–7 days using a camera (sampling rate: 40 fps) mounted on the
ceiling ~1.5m above the arena controlled through EthoVision XT14
(Noldus). One photon calcium imaging was sampled at 20 fps using a
nVista 3.0 microendoscope (Inscopix) controlled through Inscopix
Data Acquisition Software (IDAS, versions 1.2.1 to 1.5.1; Inscopix). A
commutator (Inscopix) attached to the ceiling was placed between
the camera and the acquisition box to minimize cable entanglement.

To prevent photobleaching, calcium frames were acquired with a
2min OFF/3min ON pattern, and time synchronization between the
calcium recordings and open field videos was programmed and
managed through EthoVision XT14. Proper alignment between
behavior videos and calcium imaging videos was ensured thanks to
the recording by the Inscopix DAQ box of the trigger TTL signal
emitted by EthoVision XT14 and the recording by Ethovision XT14 of
the status of the Inscopixmicroscope generated by the Inscopix DAQ
box. The comparison betweenboth signals enabled to correct for any
delay or differences in acquisition rate between behavior videos and
calcium imaging videos.

At the end of some recording sessions, mice received an intra-
peritoneal (i.p.) injection of either saline or amphetamine (3mg/kg in
saline) and were immediately placed back into the open field arena for
an additional 45min of behavior and calcium imaging following the
same acquisition protocol. Amphetamine treatment always occurred
on the last day of recording to prevent any effect on neuronal activity
due to the long-lasting effects of amphetamine.

Histology
After the behavioral experiments were completed, mice were deeply
anesthetized with avertin (2,2,2-tribromoethaol 1.25%, 2-methyl-2-
butanol 0.78%; 20 µl/g, i.p.; Sigma-Aldrich) and transcardially per-
fused with PBS followed by 4% paraformaldehyde in PBS. Brain were
removed and postfixed overnight at 4 °C. Then, 40-µm coronal slices
containing the striatum were cut with a vibratome (VT1000 S; Leica)
and stored in PBS. Sections were washed for 10min in PBS, incubated
for 10minwithHoechst 33258 (1:10,000 inPBS), andmountedonglass
slides and coverslipped with Fluoromount. Slices were imaged using a
microscope (V16; Zeiss) confirming for all mice the adequate locali-
zation of the lens in the dorsal striatum.

Identification of behaviors
To identify the behaviors that mice displayed during open field
explorations recorded through EthoVision XT14 (Noldus), we com-
bined deep learning tools and clustering methods to generate a pre-
dictive model for labeling behaviors. First, the x-y coordinates of
different mouse body parts (nose, neck, left ear, right ear, micro-
endoscope camera, body center, tail start, and tail end)were identified
using a DeepLabCut18 deep neural network trained using 800 ran-
domly selected and manually annotated frames taken from 40 dif-
ferent videos. The training regimen was set to the DeepLabCut
default18. Any coordinate detected by DeepLabCut with a likelihood of
less than0.9was removed from further analysis. For each video frame,
the above body parts were used compute six features describing the
mouse posture: the body speed, whichwas computed as the projection
of the body center speed vector along the mouse body axis; the head
speed, which was defined as the norm of the difference between the
body center speed vector and the camera speed vector; themovement
angle, which was calculated as the angle between the body center
speed vector in the previous and subsequent frames; the body length,
which was calculated as the sum of the distance between the neck and
body center and the distance between the body center and tail start;
the neck elongation, which was measured as the distance between the
neck and body center; and the head elevation, which was calculated as
thedistancebetween theneckand thepoint definedby theorthogonal
projection of the camera position along the vector orthogonal to the
vector defined by ears positions. The temporal evolution of these six
features was smoothed over 20 frames. Then, using a quarter of the
data points, a nonlinear dimension reduction algorithm (t-distributed
stochastic neighbor embedding, t-SNE) was applied to identify potent
clusters in 3 dimensions, corresponding to the number of dimensions
required to achieve ≥70% variance explained using principal compo-
nent analysis. Ten replications of the t-SNE algorithm were computed
for the same data. The clusters were then identified using a Gaussian
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mixture model (GMM). Fifty replications of the GMM clustering with
random initializations were calculated for each individual t-SNE
replicate. The resulting 500 classifications of the frames were subse-
quently clustered using the Hamming distance to identify groups of
frames thatwere consistently classified together by the tSNE andGMM
methods. Clusters with less than 20 frames were removed. The
remaining clusters were merged in ascending order using the Was-
serstein distance (aka earth mover’s distance) until a cutoff of 1 was
reached. The resulting clusters were manually registered by visually
inspecting the corresponding video frames and evaluating the dis-
tribution of cluster elements in the feature space as one of the fol-
lowing behaviors: locomotion fast (body speed greater than ~15 cm/s);
locomotion straight (nonzero body speed, movement angle of ~0);
locomotion turn right (nonzero body speed, nonzero positive move-
ment angle); locomotion turn left (nonzero body speed, nonzero
negative movement angle); still turn right (body speed of ~0 cm/s,
nonzeropositivemovement angle); still turn left (body speedof ~0 cm/
sec, nonzero negative movement angle); head up (body speed of
~0 cm/s, small neck elongation, high head elevation); rearing (body
speed of ~0 cm/s, small body length, small neck elongation, high head
elevation); grooming (speed of ~0 cm/s, nonzero camera speed, small
body length, large movement angle variations); locomotion sniffing
(nonzero body speed, large body length, high neck elongation); still
sniffing (body speed of ~0 cm/s, large body length, high neck elonga-
tion); or immobility (body speed of ~0 cm/s, camera speed approxi-
mately of 0 cm/s). Finally, using these defined clusters and their
distributions in the feature space, we evaluated for each frame its
likelihood of belonging to each behavior cluster. The behavior was
determined according to the highest likelihood. Any behavior episode
of less than 100ms (i.e., 4 frames) was removed. In cases in which
some video frames were unlabeled, the first half of these series was
attributed to the previous behavior, while the second half was attrib-
uted to the following behavior. The resulting identification of spon-
taneous mouse behavior in the open field exploration was
systematically visually inspected to ensure proper classification.

Validation of the behavior identification pipeline
In addition to the visual inspection, a pool of four annotatorsmanually
scored 2000 short video lasting 0.8–1.2 s created from a random
selection of behavior episodes identified by the algorithm from all
mice and from all recording sessions. All annotators had extensive
experience in scoring mouse spontaneous behaviors. Video clips pre-
sentation was randomized between annotators. Annotation was per-
formed using a customMATLAB interface. To evaluate intra-annotator
variability in scoring performance, all annotators were exposed twice
to the same video clips. Annotators’ classifications and predictions
obtained from the behavior identification pipeline were compared to
classes selected by annotator #1 (chosen as the annotator displaying
the highest consistency between the two classifications of the same
videos) and to a “majority classification”, whichwasdrawnby assigning
for each observation the behavior class that received the higher
number of votes from all annotators. Any observation that received
less than 50% positive votes was discarded from the “majority
classification”.

To quantify the performance of behavior classification, we used
the following metrics: accuracy, precision, recall, and F1 score. Accu-
racy was defined as the sum of true positives and true negatives over
the total number of observations. Precision was defined as the number
of true positives over the sum of true positives and false positives.
Recall was defined as the number of true positives over the sumof true
positives and false negatives. F1 score was defined as:

F1 score = 2 ×
precision × recall
precision+ recall

ð1Þ

All the abovemetrics were calculated for each individual behavior
and average values combining all behaviors were calculated as the
arithmetic mean of the per-class accuracies, precisions, recalls, and
F1 scores with equal weights to each class.

Calcium signal extraction, deconvolution and longitudinal cell
registration
The calcium movies were preprocessed for spatial binning (down-
sampled by 4; OpenCV, Python) and subsequently motion-corrected
and analyzed using CaImAn19 to take advantage of the capabilities
offered by the constrained nonnegative matrix factorization for
endoscopic data (CNMF-E) algorithm to estimate and correct for
background neuron somata20. The temporal CNMF-E components
were manually curated to remove components with poor signal-to-
noise ratios (peak-to-noise ratio of less than ~3), large baseline fluc-
tuations, or inappropriate spatial footprints. The selected temporal
calcium components were also deconvolved to estimate spike trains in
the calcium measurements using MLspike21. To register cells across
imaging sessions for the same animal, we used CellReg30, which uses a
probabilistic method to automatically register cells that are present in
two or more recordings from the same mouse.

To control for longitudinal registration, two control lists of
registered pairs of cells between pairs of sessions were generated: the
first relied on a random shuffling of registered neurons in one of the
two sessions, while the second relied on replacing all the neurons
identified in one of the two sessions with their closest neighbor.

Quantification of neuronal activation similarity and behavioral
similarity
Twomeasures of neuronal similarity were used: the first compared the
neuronal activation during each behavior over time during one
recording session (or between recording sessions using pairs of
longitudinally registered cells present in both sessions), while the
second compared neuronal activation between different behaviors
within a given recording session.

For the measure of the neuronal activation similarity for each
behavior during one session (30min long), we first split this session
into two 15-min halves. For each time period, we calculated for each
behavior the average value over time (15min) of the deconvolved
activity for each neuron, denoted as X1 and X2. The similarity was
evaluated as:

�jjX1=jjX1jj � X2=jjX2jjjj ð2Þ

where ||X|| is the Euclidean norm of X. As a control, the same similarity
metric was computed by calculating X1 and X2 based on all possible
partitions of 30min into two periods using 5-min-long segments. We
also calculated the neuronal similarity between odd and even frames
by computing X1 and X2 in odd and even calcium frames. Finally, the
neuronal activation similarity was also evaluated for each behavior by
calculating X1 in one episode every two episodes and calculating X2 in
the remaining episodes of each behavior. The spatial shuffle similarity
was calculated as the mean of 10 random permutations of indices
from X2.

In addition, the neuronal activation similarity between pairs of
behaviors was calculated using the same formula as above. The aver-
age neuronal activity for each behavior was calculated over the dura-
tion of the entire session (30min) except otherwise mentioned, and
the similarity was computed for each pair of behaviors. The distance
betweenbehaviors (behavioral distance)was estimated for eachpairof
identified behaviors as the summation of theWasserstein distances for
each of the six features describing the mouse posture (body speed,
head speed, movement angle, body length, neck elongation, and head
elevation). The similarity between behaviors (behavioral similarity)
was calculated as the opposite of the behavioral distance. Similar
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results were obtained using similarity metrics based on the Wasser-
stein distance or Bhattacharyya distance. To evaluate the relationship
between the neuronal activation similarity and the behavioral simi-
larity, we used the Spearman correlation coefficient.

For all of the above experiments, if the sampling duration over
which the average activity was computed was less than 5 s, the data
were excluded from further analyses.

Support vector machine decoding of behavior based on SPNs
activity
To decode behaviors based on neuronal activity, we trained a set of
binary support vector machine (SVM) classifiers for multiclass classi-
fication using the one-vs.-one strategy (scikit-learn Python package)52.
Data were first split into a training set and a test set (80%/20% split).
The training was performed using 5-fold cross validation to predict the
detected behavior time series, with the deconvolved calcium activity
convolved over a 500ms squarewindow. The outputs of the classifiers
were combined, and the behavior with the highest number of votes
was identified as the most likely behavior. The decoding accuracy was
estimated using the test set as the fraction of time bins during which
the predicted behavior corresponded to the observed behavior. The
behavior reconstruction error was calculated using the behavior dis-
tance between the predicted and observed behaviors. Alternatively, to
estimate the capability of SVM classifiers to separate one given beha-
vior from any other behavior, which is referred in the text as one
behavior vs. rest decoding, we calculated the accuracy as the simple
matching coefficient between the observed and predicted behaviors
(i.e., the true positive prediction for this behavior and the true negative
prediction for this behavior).

The chance level for the decoding performance was obtained by
training SVM classifiers on time-lagged data. Briefly, we flipped the
behavior time series (the first element becomes the last and vice versa)
and applied a cyclic permutation with a random time lag. This proce-
dure destroys the relationships between the behavior and calcium
activity time series but preserves the time correlations of the neural
activity time series. For each recording session, 10 random time lags
were used. For each random time lag, we trained a new set of SVM
classifiers and evaluated its performance in predicting the original
behavior using the original calcium time series. When plotted, the
individual points for SVM decoding based on the shuffled data repre-
sent the average of the 10 random time lags.

For longitudinal predictions between pairs of recording sessions,
the SVMclassifierswere trainedonone session using only neurons that
were registered in these two sessions and the corresponding behavior
time series. The decoding performance was evaluated using calcium
events from the second session of cells registered in both sessions. If
less than 40 neurons were identified in both sessions, the analysis was
discarded.

Detection of behavior-active neurons
To characterize the statistical significance of neuronal activation dur-
ing identifiedbehaviors, we employed abehavior information criterion
that was calculated as the mutual information score between the cal-
cium event occurrence and the mouse behavior. The behavior infor-
mation for each cell was calculated using the following formula:

BI =
XN

i= 1

pi
f i
f
log2

f i
f

ð3Þ

where i is the behavior, pi is the fraction of time spent performing
behavior i, fi is the average event frequency during behavior i, and f is
the overall average event frequency. We corrected this measure for
sampling bias in the information measures by using shuffled dis-
tributions of the events. For each cell, we generated 1000 random
permutations of the events and calculated a behavior information

value for each permutation, thus generating 1000 random behavior
information values to which the actual behavior information value was
compared. We labeled a cell as a behavior-active cell if the behavior
information value was more than 4 sigma from the shuffled
distribution (significance of BI above 4)26,27.

When this method was used in conjunction with SVM-based pre-
dictions, analyses were discarded if less than 40 neurons were labeled
as behavior-active in a given session.

Detection of behavior-silent (and behavior-inactive) neurons
To characterize cells that were consistently silent during a given
behavior, we calculated for each neuron and each behavior the
average event rate for all episodes of this behavior. We then eval-
uated for each cell and each behavior an activation occurrence
value, which described how often this neuron was active during
episodes of this behavior (event rate >0). For each behavior, a
neuron was labeled as behavior-silent if its activation occurrence
was less than 0.025. Alternatively, for each behavior, we labeled a
cell as behavior-inactive if its average event rate during this beha-
vior was less than 0.1 Hz.

When this method was used in conjunction with SVM-based pre-
dictions, analyses were discarded if less than 20 neurons were labeled
as behavior-silent (or behavior-inactive) in a given session.

Quantification and statistical report
Unless otherwise stated, the mean± standard error of the mean (SEM)
wasused to reportdata. For all statistics,we used a linearmixed-effects
model followed by analysis of variance to account for between-subject
and within-subject effects in the case of incomplete design (exclusion
criteria mentioned in the above sections). To compare the dSPN and
iSPN groups, post hoc analyses were performed using permutation-
based t tests. For hypothesis testing, the significance was set to 0.05.
Statistical analyses were performed in MATLAB (MathWorks). Animals
were excluded prior to data acquisition if the imaging quality or focal
plane were poor or after acquisition but before secondary analyses if
movement artifacts were impossible to correct using CaImAn. The
details of the statistical procedures and results are provided in Sup-
plementary Table 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings are available within the article and its
Supplementary Materials and are available from the corresponding
author upon request. Source data are provided with this paper.

Code availability
DeepLabCut was used for processing the open field videos. CaImAn,
CellReg, and MLspike were used for processing calcium imaging data.
The custom codes used for this study are available on GitHub (https://
github.com/deKerchove-Lab/Varin_2023_NatComm)withDOI (https://
doi.org/10.5281/zenodo.8158538).
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