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Spatial organization of the mouse retina at
single cell resolution by MERFISH

Jongsu Choi1,4, Jin Li2,4, Salma Ferdous2, Qingnan Liang1, Jeffrey R. Moffitt 3 &
Rui Chen 1,2

The visual signal processing in the retina requires the precise organization of
diverse neuronal typesworking in concert.While single-cell omics studies have
identifiedmore than 120 different neuronal subtypes in themouse retina, little
is known about their spatial organization. Here, we generated the single-cell
spatial atlas of the mouse retina using multiplexed error-robust fluorescence
in situ hybridization (MERFISH). We profiled over 390,000 cells and identified
all major cell types and nearly all subtypes through the integration with
reference single-cell RNA sequencing (scRNA-seq) data. Our spatial atlas
allowed simultaneous examination of nearly all cell subtypes in the retina,
revealing 8 previously unknown displaced amacrine cell subtypes and estab-
lishing the connection between the molecular classification of many cell sub-
types and their spatial arrangement. Furthermore, we identified spatially
dependent differential gene expression between subtypes, suggesting the
possibility of functional tuning of neuronal types based on location.

The retina is a highly organized tissue that captures andprocesses light
signals before relaying the information to the visual cortex of thebrain.
This complex function is achieved through coordinated action among
diverse types of neurons, each with distinct characteristics. Five major
neuronal cell types exist in the retina: photoreceptor cells (rod and
cone), amacrine cells (ACs), bipolar cells (BCs), horizontal cells (HCs),
and retinal ganglion cells (RGCs), which can be further classified into
many subtypes basedon their distinctmorphology, function, and gene
expression. In recent years, single-cell transcriptomics studies have
identified 128 distinct neuronal subtypes in the mouse retina1–3; how-
ever, it remains largely unknown how the large number of subtypes is
spatially organized.

The characteristic laminar organization of the major retinal cell
types is critical for the light signal procession in the retina, which is
facilitated by synaptic connections in the plexiform layers4,5. Thor-
ough investigations of the plexiform layers have characterized
unique dendrite and axon patterns of certain neuronal subtypes in
the specific sublaminae6,7. In contrast, the spatial organization of
neuronal somas at the subtype level has not been systematically
investigated. Previous studies indicate that some cell subtypes may

also follow a general laminar organization. For example, the two AC
subgroups, GABAergic and glycinergic ACs, show distinct sublayer
localization within the inner nuclear layer (INL) with GABAergic ACs
basally positioned closer to the ganglion cell layer (GCL) in general8.
Furthermore, previous studies have suggested that the laminar
position of cell somas could affect its function and neurites remo-
deling of interacting cells9–11.

In addition to the laminardistribution, diverse cell typesmust also
disperse across the tissue to ensure proper coverage of the vision field.
While the cellular distribution in the retina allows maximum visual
coverage, variations within the cell type composition and density exist
across the retina. For example, cone photoreceptors expressing dif-
ferent opsins exist in gradients across the dorsal-ventral axis of the
mouse retina with the S-opsins enriched in the ventral retina12. The
spatial preference of a cell type such as the S-opsin cone photoceptors
in the upper visual field likely stems from an evolutionary adaptation
that is advantageous to survival12. Downstream of cone photoceptors,
several bipolar cells are also shown to possess spatial preference such
as the OFF subtypes decreased in the dorsal region and s-cone bipolar
cells increased in the ventral/nasal regions12,13.
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Although recent progress in single cell transcriptomics technol-
ogies has generated a near complete molecular map for all cell sub-
types in the retina, the current droplet-based methods require
dissociation of the tissue into single cells prior to profiling, resulting in
the loss of spatial information14,15. Given that a precise organization of
cells contributes to proper synaptic connections for the circuitry and
function of the central nervous system9–11, charting the organization
and interaction among neurons is critical. So far, the spatial informa-
tion of cell subtypes in the retina has primarily been generated based
on antibody staining and in situ hybridization of cell type specific
markers. Due to the largenumber of cell types, coupledwith the lackof
truly unique specific markers for most cell subtypes, these traditional

approaches are not scalable or feasible to generate a complete spatial
map. Using a recently developed imaging-based spatial tran-
scriptomics method, MERFISH16–22, we sought to investigate the intri-
cate organization of different cell types and subtypes in the retina by
establishing the spatial map of the mouse retina at single cell resolu-
tion (Fig. 1a). Through integration with single-cell RNA sequencing
(scRNA-seq) reference data, we annotated over 100 cell subtypes and
identified striking laminar organization of the retinal cell subtypes. By
examining the dorsal/ventral and temporal/nasal regions of the retinal
sections, we also investigated the cellular distribution patterns. Mul-
timodal integration of MERFISH and scRNA-seq data further allowed
for imputation of the entire transcriptome and revealed differential
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Fig. 1 | Overview of spatial transcriptome profiling in the mouse retina.
a Overview of the MERFISH protocol workflow. MERFISH experiment was con-
ducted on 10-µm-thick mouse retina cross-sections. Cell membrane staining and
in-situ hybridization of transcripts were imaged through multiple rounds of
readout hybridization. b Heatmap of MERFISH probe transcript expression in
reference scRNA-seq data. A total of 368 markers specific for major cell types and
subtypes were selected from scRNA-seq data. c Distribution of major cell type
markers in the retina tissue. Decoded transcripts show expected patterns across
the tissue such as photoreceptor markers Pde6a and Pde6c in the ONL,

interneuron markers Grm6, Tfap2a, and Onecut2 in the INL, and ganglion cell
marker Slc17a6 in the GCL. A local density filter was applied to remove likely false
positive transcripts. d Transcript count comparison between MERFISH and bulk
RNA-seq. A high correlation shows MERFISH transcription detection level is
comparable to RNA-seq. e Cell boundary staining image and segmentation result.
The representative field of view shows typical staining and cell segmentation.
f Scatter plot of cell diameter and transcript counts per each MERFISH cells. The
single-cell QC metrics shows ~80 transcript counts per cell with ~7-µm diameter
on average. a was created with BioRender.com.
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gene expression among the same AC subtypes located between the
INL and GCL, highlighting the importance of spatial information in cell
type classification. In summary, the spatially resolved single cell
reference map of the mouse retina generated in this study serves as a
valuable resource for the entire vision science community and lays the
foundation for many future studies, including development, cell-cell
interaction, and circuitry.

Result
Spatial transcriptome profiling of the mouse retina
We designed a panel of 368 genes specific for major cell types and
subtypes based on published and in-house generated scRNA-seq
data1–3 to capture the cell heterogeneity of the mouse retina (Fig. 1b,
Supplementary Data 1). We performed MERFISH experiments using
this panel on 21 wild-type C57B1/6 J mouse retinal cross-sections to
generate single-cell spatial transcriptomics profiles (Fig. 1a). To
investigate spatial distribution patterns of retinal cells, we performed
additional MERFISH experiments on 21 wild-type cross-sections each
positioned in dorsal/ventral and temporal/nasal orientations using an
improved panel design of 500 genes23 (Supplementary Fig. 1a, Sup-
plementary Data 1). Several lines of evidence indicate the high quality
of our MERFISH dataset. First, the total copy number of individual
genes identified in tissue sections and experimental replicates showed
high correlation, indicating excellent reproducibility (Supplementary
Fig. 1a). Second, we observed proper spatial distribution of known cell
typemarker genes, such as photoreceptormarkers Pde6a and Pde6c in
the outer nuclear layer (ONL), BC and ACmarkers Grm6 and Tfap2a in
the INL and RGC marker Slc17a6 in the GCL (Fig. 1c). Finally, the total
transcript count obtained in our MERFISH experiments exhibited high
correlation with the gene expression levels measured by bulk RNA-
seq (Fig. 1d).

Proper cell segmentation is critical for generating high-quality
single-cell spatial transcriptomics profiles. This is particularly challen-
ging in the retina as retinal cells are densely packed with variable size
and morphology. As a result, nuclei staining alone, as utilized in pre-
vious MERFISH studies, is not sufficient to precisely identify the
boundary of individual cells in the retina. To solve this issue, cell
membrane co-staining using oligo-conjugated antibodies was per-
formed along with the gene panel. As shown in Fig. 1e, the intensity of
cell boundary staining varies across different layers with stronger
staining observed at the RGC layer, making cell segmentation chal-
lenging. To achieve optimal segmentation for cells across all retinal
layers, we combined two deep-learning segmentation algorithms24,25,
whose performance varied in different retinal layers, to determine
individual cell boundaries (Fig. 1e, Supplementary Fig. 2a, b, c). Upon
segmentation, we obtained a total of ~390,000 cells with an average
diameter of around 7 µm, which corresponds well with immunohis-
tochemistry images (Fig. 1f). Themean number of assigned transcripts
per cell was around 80 (Fig. 1f).

Integrative clustering analysis26,27 of MERFISH single-cell tran-
scriptome profiles identified 38 retinal clusters and 8 non-retinal
clusters (Fig. 2a, Supplementary Fig. 3a). The retinal single-cell clus-
ters were annotated as one of the six major cell types based on
marker expressions such as Pde6a for rods, Pde6c for cones, Vsx2 for
BCs, Pax6 for ACs, Vim for MGs, Onecut1 for HCs, and Slc17a6 for
RGCs (Fig. 2b). After excluding photoreceptor cells, we performed
sub-clustering analysis to examine non-retinal cells, which resulted in
3 non-neuronal clusters. Because our panel design did not include
many variable genes expressed in non-neuronal cells, the transcript
numbers in non-neuronal clusters weremuch lower in comparison to
retinal cells (Supplementary Fig. 3b). Two non-neuronal clusters were
labeled as muscle cells and oligodendrocytes by their differentially
expressed genes such as tropomyosin 2, a muscle-specific protein
and their specific spatial localizations outside of the retina and in the
optic nerve (Supplementary Fig. 3c–d). The other non-neuronal

cluster was labeled as microglia and astrocytes based on their loca-
lization in the INL and GCL as well as the expression of Glul (Sup-
plementary Fig. 3c–d). The proportion of major cell types was largely
consistent with the known composition of the mouse retina with rod
cells comprising around 60% of the total population and other
interneuron cell types, cone, and RGC subsequently trailing (Fig. 2c).
The relative lower number of photoreceptors cells4 identified in our
study may be attributed to the use of 10 µm sections, which contains
multiple rod layers, smaller photoreceptor cell size, and the design of
our gene panel primarily targeting interneurons and ganglion cells.
The cell type annotation was confirmed by back-plotting the cell
coordinates, which demonstrated proper layering patterns of the
retina (Fig. 2d).

Subtype classification through integration with scRNA-seq data
Bipolar cells identified in the clustering analysis could be grouped into
threemajor bipolar cell types, ON rod,ONcone, andOFF cone types by
the confined expression of respective markers Prkca, Grm6, and Grik1
(Supplementary Fig. 4a). Our probe panel was not sufficient to clearly
cluster and separate all BC subtypes (Supplementary Fig. 4b). To
achieve better resolution in subtype annotation, we leveraged scRNA-
seq data to perform co-embedding and integration28 and identified all
15 BC subtypes in our MERFISH data (Fig. 3a, Supplementary Fig 3b, c
and Methods). Each cluster of annotated BC subtypes exhibited clear
and exclusive expression of known subtype markers (Fig. 3b). In
addition, the resulting cell subtype proportion was relatively similar to
previous estimates based on scRNA-seq data1 with a few differences
that can be attributed to the cell type enrichmentmethod29 used in the
scRNA-seq study (Fig. 3c).

Similarly, annotated amacrine cell clusters also exhibited confined
expression of canonical GABA and glycine neurotransmitter markers
Slc6a1 and Slc6a9 (Supplementary Fig. 4d). Through co-embedding
analysis with scRNA-seq reference data3, we achieved a significantly
higher resolution map (Methods), allowing for subsequent cluster
annotation to their corresponding subtypes (Fig. 3d, Supplementary
Fig. 4e). Our MERFISH AC subtypes showed consistent expression
patterns of known subtype markers3 (Fig. 3e). As the established AC
subtype markers largely consisted of differentially expressed genes
identified in scRNA-seq clusters3 and have not been experimentally
validated, our observations provide the confirmation tomany subtype
markers. Furthermore, overlaying the subtype annotation from the co-
embedding result on the lower dimensional space calculated using
only MERFISH features showed confined sub-structures of subtype
labeling, providing further confidence to our prediction (Supplemen-
tary Fig. 3f). The population abundance of AC subtypes ranged from
0.006-10.26%, largely consistent with the scRNA-seq data3 with a few
notable differences (Fig. 3f). In fact, the proportion of starburst sub-
type (AC17) identified in our study was ~5.5% of all ACs, which is closer
to the 5.2% estimate based on whole-mount staining experiment4

compared with ~2% reported in the scRNA-seq study3 with enrichment
method.

Weannotated45 knownretinal ganglioncell subtypes through co-
embedding with scRNA-seq reference data2 (Fig. 3g). Examination of
the known combinatory RGC subtypemarkers2 indicated that our RGC
subtype annotation exhibits comparable subtype-specific marker
expression (Fig. 3h). The proportion of annotated RGC subtypes in our
dataset was reasonably correlated with previous estimates2 (Fig. 3i).
The annotated RGCs showed expected localization exclusively in the
GCL (Supplementary Fig. 4g).

Laminar organization of the neuronal subtypes in the retina
Retinal circuitry requires the laminar organization of major retinal cell
types30; however, it is not well understood to what extent the same
principle extends on the subtype level. Previous studies on specific
retinal cell subtypes havemainly relied onantibody labeling and in-situ
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hybridization31, which are limited to a few targets at a time. Thus, no
systematic studies have been done to examine the spatial relationship
among a large number of subtypes simultaneously. Using our estab-
lished spatial atlas, we investigated the positioning patterns of inter-
neuron subtypes by determining the cell position along the
normalized INL. As expected, we observed BCs distributed around the

apical half of the INL.On the subtype level, rodONBC (RBCs) exhibited
the most apical cell body relative to other BC subtypes, positioned
within the top 20% of the total INL length on average (Fig. 4a, Sup-
plementary Fig. 5a, p-value 0.001). In addition, RBCs showed a strong
proximity enrichment with HCs, the most apical cell type in the INL,
which agrees with previous observations32,33 (Supplementary Fig. 5a).
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In contrast, BC1B, a rare population of OFF BC subtype1,34, showed the
largest distance away from the apical boundary of the INL relative to
other BC subtypes with the average position of more than 50% along
the total INL length (Fig. 4a, Supplementary Fig. 5b, p-value 0.001).
Located toward the middle INL, BC1B showed a high proximity
enrichment with MGs (Supplementary Fig. 5b). The intriguing pre-
ferential lamination pattern of BC1B is in agreement with previous
reports of BC1B having amacrine-likeness in morphology and
positions1,34. While we found no difference between the average ON
and OFF cone bipolar cell positions (Supplementary Fig. 5c), each BC
subtype showed overlapping yet distinct sublaminar distribution
(Fig. 4a). Specifically, certain subtypes such as BC9 and BC6 exhibited
more apical positioning, while subtypes like BC5C and BC1A showed
more basal positioning. The birth timing of cone BCs precedes RBCs in
general35 and the OFF subtypes are born significantly earlier than the
ON subtypes36. Our observation of intermixed BC subtype spacing in
the INL suggests that the laminar organization is not entirely deter-
mined by the birth order of BC subtypes and a significant migration
occurs during or after subtype genesis.

More than a 4-fold higher number of AC subtypes exists com-
pared with BCs. Furthermore, the morphology or physiological func-
tions of the majority of molecularly distinct 63 AC subtypes remain
unknown. Our comprehensive annotation of AC subtypes revealed
distinct positioning of each subtype in the distal INL (Fig. 4b). We
observed that glycinergic subtypes were among the most apically
positioned subtype whereas GABAergic subtypes were more basal,
consistent with previous reports based on broadly separated AC
subtypes8,37. Interestingly, non-GABAergic and non-glycinergic (nGnG)
subtypes (AC10, AC24, and AC30), which share transcriptional simi-
larity with glycinergic subtypes3, were among the most apically posi-
tioned subtypes. Our observation of apically positioned nGnG
subtypes is consistent with previous Ebf immunostaining reports of
GlyT- ACs8, which is specifically expressed in the 3 nGnG subtypes, in
the central sublayer of the INL. A significant number of cells outside of
the INL were also observed, which represent displaced ACs in the
GCL4,38 (Fig. 4b).

Identification of 12 displaced amacrine cell subtypes
About half of the GCL is composed of ACs out of their usual location
in the INL, named displaced ACs4,38. Several displaced ACs such as
starburst, CRH+, VIP+, nGnG, and nNOS+ types have been identified
based on their morphologies and marker labeling39–44; however, the
complete list of AC subtypes that are preferentially displaced in GCL
remain unknown due to their complexity. Based on our MERFISH
result, all cells including ACs can be mapped to their location on the
native tissues. Thus, all displaced AC subtypes in the GCL can be
readily identified, allowing the calculation of the displacement ratio
for each AC subtype. We identified 12 AC subtypes with significant
displacement ratios ranging from 20% to 85% (Fig. 4c, d, p-value <
0.01). Starburst AC was the most abundant displaced AC type and
accounted for nearly 20% of all ACs in the GCL, consistent with
previous observations based on whole-mount experiments4,45,46

(Fig. 4c). In addition, CRH1 (AC37), nGnG-4 (AC36), and nNOS (AC48
and AC54) were also identified as displaced subtypes, confirming
previous reports39,41,44. Out of the 12 displaced ACs, 7 subtypes (AC2,
AC7, AC21, AC32, AC39, AC44, and AC46) have not been previously

studied or reported as displaced ACs to our knowledge. Interestingly,
all displaced subtypes ACswith the exception of AC36 (nGnG-4) were
GABAergic. To validate subtype-specific displacement, we performed
RNA in-situ hybridization47 against molecular markers specific to the
displaced AC subtypes in conjunction with pan-AC marker Slc32a1
and pan-RGC marker Slc17a6. Consistent with MERFISH results, we
observed cells positive for AC subtype markers and Slc32a1, but
negative for Slc17a648 in both the INL and RGC layer, confirming their
displacement (Fig. 4e).

Asymmetrical distribution of neuronal subtypes in retinal
quadrants
The proper coverage of the visual field is achieved by diverse neuronal
types that are distributed across the retina tissue49–54, yet regional
variations in thedistributionpatternexists for species-specific features
such as the fovea in human. In mouse, a sub-population of cone pho-
toreceptors exclusively expressing S-opsin are enriched in the ventral
region with a few of the cone BC subtypes also showing similar dorsal-
ventral patterns12,13. This unique distribution pattern in mouse is
believed to provide advantageous benefits in the upper vision field for
predator detection12. To investigate the cellulardistributionpatterns in
different regions of the retina,weperformedMERFISHexperiments on
21 retinal sections each positioned in dorsal-ventral and temporal-
nasal orientations and examined the cellular distribution patterns
across the four retinal regions. At the major cell type level, we did not
observe any obvious difference in distribution, except for a subtle
enrichment of RGCs in the ventral region55 (Supplementary Fig. 6a, b).
Within BCs, we observed a significant decrease in overall OFF BC
subclass in the dorsal region as previously reported13 (Fig. 5a). Inter-
estingly, we identified adecrease in the RBC ratiowithinBCpopulation
from ~35% to ~30% in the ventral region while no difference was seen
between the temporal and nasal regions (Fig. 5a). To validate the
dorsal/ventral asymmetry in RBC density, we performed immuno-
fluorescence staining against Prkca, a well-known RBCmarker in cross-
sections and similarly observed a relative ~8% decrease in RBC num-
bers in the ventral region compared with the dorsal region (Fig. 5b, c).
No significant difference in RBC numbers between temporal and nasal
regions was observed. (Fig. 5b, c).

Some of the known subtype distribution patterns were observed
in our data such as the relative dorsal depletion in individual OFF BC
subtypes (BC1A, BC2, BC4)13 as well as the temporal enrichment of
42_AlphaOFF-S RGC subtype56 (Fig. 5d, Supplementary Fig. 6c). In
addition to the known patterns, we further observed many trends and
several statistically significant patterns that have not been previously
described. For example, a dorsal enrichment in 16_ooDS_DV RGC
subtype (dorsal and ventral preferringONOFF direction-selective) and
the nasal enrichment in 7_Novel RGC subtype were observed (Sup-
plementary Fig. 6c) Although no obvious distribution pattern was
observed inACs,we foundpreferential distributionpatterns across the
temporal and nasal regions in three displaced AC subtypes (AC21,
AC44, AC48) that are specific to the GCL (Fig. 5e). While the cross-
sections used in our study limits the power to investigate cellular
distributions typically done in retinal wholemounts, the distribution
patterns observed in our study establishes the spatial description of
molecularly classified retinal cell identities, of which many have not
been previously reported.

Fig. 2 | Major cell type identification of MERFISH single-cell profiles.
a Visualization of integrated MERFISH single-cell clusters by UMAP. Integrated
clustering analysis of ten MERFISH experiments resulted in 38 distinct retinal
clusters, whichhavebeen annotatedasmajor retinal cell types and8 clusters, which
have been annotated as non-major retinal cell types. b Major cell type marker
expression in retinal single-cell clusters. Cell type-specific markers show distinct
and exclusive expressions in each cluster. The following transcripts were used to

annotate cell type: Rod - Cngb1, Pde6a, Reep6, and Susd3; Cone - Kcne2, Adrb1,
Cngb3, and Pde6c; BC - Otx2, Vsx2, Isl1, and Grik1; AC - Pax6, Slc32a1, Tfap2a, Gad2,
and Slc6a9; RGC - Slc17a6, Rbpms, and Pou4f2; HC - Onecut1, Onecut2, and Lhx1;
MG - Id3, Kdr, and Vim. c Composition of major cell type annotation. The ratio of
major cell types matches known cell type composition. d Tissue plot showing
annotated major cell type. Major cell types can be found in appropriate retinal
layers.
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Spatial map of the whole transcriptome through imputation
In addition to the spatial information of each cell subtype, it is highly
desired to obtain spatial profiling at the individual gene level. The full
spatial transcriptome can enable the systematic characterization of
novel transcriptomic insights into cell type organization and cell-cell
interactions. As an in-situ based spatial transcriptomics method,

MERFISH experiments with a larger gene panel will cost the overall
measurement time and accuracy. Thus, we sought to resolve the
genome-wide spatial profiling through a computational approach19. To
obtain the spatial information for the entire transcriptome, we per-
formed an imputation of thewhole transcriptomeby taking advantage
of the co-embedding maps we generated between MERFISH and
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scRNA-seq data. Upon co-embedding of MERFISH with scRNA-seq
data, imputed gene expression of each MERFISH cell was calculated
from weighted expression values of its neighboring scRNA-seq cells in
the low dimension space55 (see Methods for details). As showcased in
Fig. 6a, the UMAP visualization of cell clusters constructed by the
imputed gene expression showed expected major cell types as well as
subtypes. To further evaluate the results, we examinedmajor cell type
markers in raw MERFISH and imputed transcriptomes and observed
appropriate expression patterns in cell clusters and tissue location of
cells (Fig. 6b, Supplementary Fig. 7a). In addition, known cell type
markers not included in the MERFISH panel such as Rho for rods, Crx
for rods, cones, and BCs, Apoe for MGs, and Scgn in certain BC sub-
types also showed proper tissue location (Fig. 6c). Furthermore, a high
positive correlation was observed between MERFISH and imputed
gene expression across ten MERFISH experiments (Fig. 6d, 0.6 PCC).
Lastly, we examined the Pearson correlation of cell type-specific gene
expression across all cells in raw MERFISH and imputed expression
profiles, which showed high correspondence (Fig. 6e). Taken together,
we generated a highly accurate spatial transcriptomic map through
imputation by integrating scRNA-seq with MERFISH, which can be
explored to reveal new biological insights.

Gene expression is influenced by the location of the cell
Although a very powerful approach, classifying a cell type entirely
based on its transcriptomic profile has its limitation as the informa-
tion of cellular physiology or morphology of the cell type is not
considered. As an example, Starburst amacrine cells (SAC) can be
classified into ON andOFF types based on their distinct functions and
locations in the GCL and INL, respectively56. While a distinct tran-
scriptional profile is observed between ON and OFF SACs during
maturation, the transcriptional difference diminishes with age and
the two types of SACs cannot be distinguished via scRNA-seq by
P1857. In contrast, displaced SACs can be readily identified by MER-
FISH, allowing us to test if there are any subtle gene expression dif-
ferences between ON and OFF SACs. Consistent with the previous
scRNA-seq results, SACs found in the INL and GCL in our dataset were
also mapped to only one cluster based on the imputed tran-
scriptome, indicating their overall transcriptome profile is similar
(Fig. 7a). Surprisingly, when differentially expressed gene (DEG)
analysis was performed between SACs located in the INL and GCL,
many genes previously known to be expressed specifically in ON and
OFF SACs were identified (Fig. 7b, Supplementary Data 2). For
example, Fezf1 and Cntn5, which are reported to be key transcription
regulator and surface protein that modulate the homophilic inter-
action with certain RGCs, were enriched in SACs located in the GCL
(Fig. 7b)57. Within SACs in the INL, genes such as Rnd3, Zfhx3, and
Tenm3 were enriched, which support proper OFF SAC function
through neurite modulation (Fig. 7b)57.

We further extended our DEG analysis to all displaced AC sub-
types located between the INL and GCL and identified a significant
number of DEGs in AC2, AC7 and AC21 that potentially contribute to
differential cell localizations (Supplementary Fig 8a). To investigate
common factors driving AC displacement, we identified several con-
sistent genes specific to the INL and the GCL across all displaced AC

subtypes (Fig. 7c, Supplementary Data 2). Within ACs found in the INL,
we observed increased expressions of two transcription factors Tcf4
and Neurod2, which show specific expression in glycinergic and nGnG
types3,58 as well as Cntn members. Given the preferential apical pat-
terning of glycinergic and nGnG ACs, increased expression of Tcf4 and
Neurod2 in non-displaced ACs may be involved in the preferential cell
localization fate and patterning in the INL during retinal development.
Within ACs displaced in the GCL, we found enrichment of membrane
associated genes such as Cdhr1 and Clstn2 as well as neurofilament
genes. Several cell-cell adhesion relatedmembrane proteins have been
shown tomediate interactions between specific retinal neuronal types
such as ON SACs and RGCs57,59. Therefore, the differential gene reg-
ulation in membrane associated proteins we observed may highlight
the combination codes of cell-cell adhesion related proteins required
in the neuronal interactions of displaced and non-displaced AC sub-
types. Gene ontology analysis of the DEGs revealed several biological
pathways involved in the axonogenesis, synapse and cell-cell adhesion
related processes (Fig. 7d). These biological pathways could be
attributed to the physical constraints provided by the cell body loca-
lization of ACs in the INL and the GCL, which likely influence dendrite
projections and synaptic connections. In short, our results indicate
that distinct transcriptional regulation exists within the same subtype
depending on the location of the cell. This demonstrates how spatial
information canbeused to furtherdivide subtypes intodistinct groups
with functional and transcriptional differences, which cannot be
achieved through scRNA-seq alone.

Interactive visualization of the mouse retina spatial atlas
To facilitate the visualization and access of our mouse retina spatial
atlas, we developed a user-accessible database using the CELLxGENE
software (http://cellatlas.research.bcm.edu)60. The database can be
used to visualize the imputed genes on the representative retina tis-
sues (Supplementary Fig. 9). Moreover, the database interface allows
examination of pre-computed metadata including annotated major
cell types and subtypes. In conclusion, our database provides a user-
friendly interactive exploration of themouse retina spatial atlas, which
will serve as a valuable tool for the vision community.

Discussion
We generated the spatially resolved single-cell atlas of the mouse
retina using an adapted MERFISH protocol and addressed key tech-
nical challenges posed by the high density and heterogeneous nature
of the retina tissue. Due to the unique structure of the retina, in which
each layer contains a different cell type composition, segmentation
algorithms based on cell membrane staining images demonstrated
varied performance in different layers. Using the combination of seg-
mentation results from two different algorithms, we identified accu-
rate cell boundaries to generate high-quality spatial single-cell profiles.
Furthermore, we performed high-resolution annotation of our spatial
single-cell profiles by integration with scRNA-seq data. We identified
most known neuronal subtypes in the retina, which can be as rare as
0.05% of the entire cell population. The analysis pipeline developed in
this study provides framework for similar spatial studies in other sys-
tems and tissue types.

Fig. 3 | Subtype identification of MERFISH cells by integration with scRNA-seq
reference. a Co-embedding plot of bipolar cells betweenMERFISH and scRNA-seq.
A high-resolution clusteringmap is obtainedby integration betweenMERFISH (left)
and scRNA-seq (right)with strongoverlap.bDotplot ofbipolar cell subtypemarker
expression in annotated MERFISH subtypes. MERFISH BC subtypes show clear
expression of known subtype markers. c Bar plot of annotated bipolar cell subtype
ratio. The ratio of annotatedBCsubtypes show similaritywith thepublished scRNA-
seq study. d Co-embedding plot of amacrine cells. Integration between MERFISH
(left) and scRNA-seq (right) ACs show reasonable overlap and separation from each
subtype cluster. e Dot plot of AC subtype marker expression. Annotated AC

subtypes show clear expression of known subtypemarkers. f Bar plot of annotated
AC subtypes ratio. The ratio of annotated AC subtype is largely consistent with
published scRNA-seq studies with a couple of exceptions such as the relatively high
number of starburst amacrine cells in the MERFISH experiment. g Co-embedding
plot of retinal ganglion cells. Integration between MERFISH (left) and scRNA-seq
(right) RGCs shows strong overlap. h Dot plot of RGC subtype marker expression.
Annotated RGC subtypes show clear expression of known subtype markers. i Bar
plot of annotated RGC subtype ratio. The ratio of annotated RGC is comparable
with the published scRNA-seq study.
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The compendium of cellular distribution generated in our study
permitted us to investigate the spatial organization of nearly all retinal
cell types systemically, which has previously not been possible. On a
broader scale, we observed the proper distribution ofmajor retinal cell
types in the corresponding layers with a high concordance of known
marker gene expression. On the subtype level, we also observed rea-
sonable expression of known subtype markers and population com-
position. More interestingly, the distribution of interneuron subtypes
such as BCs and ACs exhibited overlapping yet distinct positions along
the retinal depth axis in the INL. Within BC subtypes, we observed

preferential localization of RBC and BC1B in the apical and central INL
respectively. The spatial validation of a rare subtype such as BC1B
supports the accuracy of our integration analysis and the subsequent
subtype annotation. The spatial distribution of ACs demonstrated an
increased population of glycinergic subtypes positioned in central INL
and GABAergic subtypes in basal INL, consistent with previous lami-
nation pattern report on broadly separated amacrine subtypes8.
Intriguingly, three out of four nGnG subtypes, which are tran-
scriptionally close to glycinergic subtypes3, were among the most
apically positioned subtypes. Our observation of AC laminar patterns
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Fig. 4 | Laminar organization of neuronal subtypes in the retina. a Boxplot of
bipolar subtype position in the normalized INL length. BC subtypes showed over-
lapping, yet distinct positioning patterns (ON types in red, and OFF types in blue).
RBCs were positioned most apically compared with other subtypes (p-value <
0.001, pairwise t-test, n = 10), whereas BC1B showed significant basal positioning
against other subtypes (p-value < 0.001). OFF andONBC subtypes aremarkedwith
blue and red bars, respectively. b Boxplot of amacrine subtype position in the
normalized INL length. Most AC subtypes showed distinct positioning within the
bottom half of the INL (GABAergic in blue, glycinergic in red, nGnG in yellow, and
dual in purple). Displaced AC subtypes showed an increased distribution of cells in
the GCL. Glycinergic subtypes showed general apical positioning, whereas
GABAergic subtypes showed more basal positioning. 3 nGnG subtypes were the
most apically positioned subtypes. GABAergic, glycinergic, nGnG, and dual sub-
types are marked with blue, red, yellow, and purple bars, respectively. In the box

plots, the bounds of the boxes represent 25 to 75% percentiles with the center lines
showing the median. The whiskers extend 1.5 times beyond inter-quartile ranges.
Individual points determined to be outliers are visualized outside of the whiskers.
c Bar plot of displacement proportion in each amacrine subtype and a pie chart of
displaced subtype composition in the GCL. Twelve AC subtypes showed significant
displacement using a permutation test by shifting the subtype label for 100 times
(p-value < 0.05, n = 59 sections across 10 independent experiments) and made up
about 70% of all ACs in the GCL. d Tissue plot of displaced amacrine subtypes.
Displaced AC subtypes showed distribution across both INL and GCL. e In-situ
hybridization images of displaced AC subtype markers in the ganglion cell layer
(n = 2). Specific markers against nine displaced AC subtypes were profiled in con-
junctionwith pan-ACmarker Slc32a1 andpan-RGCmarker Slc17a6. Specific subtype
markers in yellow showed co-localization with the pan-ACmarker in green, but not
with the pan-RGC marker in red.
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Fig. 5 | Asymmetrical distribution of neuronal subtypes in retinal quadrants.
a Box plot of bipolar subgroup population ratio in each of the four retinal domains.
A significant reduction in the number ofOFF BCswas observed in the dorsal region
compared to the ventral region (p-value <0.0005). A significant reduction in the
number of RBC was also observed in the ventral region compared with the dorsal
region (p-value < 0.005). b Immunofluorescence staining against Prkca, a well-
known RBC marker, in retinal cross-section (n = 3 each in dorsal-ventral and nasal-
temporal orientations). Prkca staining; green, DAPI nuclei staining; dark blue. Scale
bar: 50μm. c Boxplot of relative RBC population difference quantified in the
immunofluorescence staining. The overall number of RBCs in the dorsal region
showed a relative ~8% increase compared with RBCs in the ventral region (p-
value < 0.0001). No significant difference in cell numberwas observed between the
temporal versus the nasal regions. d Boxplot of individual bipolar subtype

population ratio in each of the four retinal domains. Some, not all, of individualOFF
BC subtypes were observed show decreased cell number in the dorsal regions (p-
value < 0.05). e Boxplot of three preferentially displaced AC subtype population
ratio in INL and GCL across the four retinal domains. A temporal enrichment of
AC21 was observed specifically in the GCL (p-value < 0.05, two-sample t-test). AC44
and AC48 showed GCL specific enrichments in the nasal retina (p-value < 0.0005
and p-value < 0.05, two-sample t-test). All cell type and subtype population ratios
were examined over 16 nasal-temporal sections and 15 dorsal-ventral sections each
across 3 independent experiments. The statistical tests were performed by two-
sided Student’s t-test. In the box plots, the bounds of the boxes represent 25 to 75%
percentileswith the center lines showing themedian. Thewhiskers extend 1.5 times
beyond inter-quartile ranges. Individual points determined to be outliers are
visualized outside of the whiskers.
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provides further molecular insight into the general basal-to-apical
patterned AC subtype genesis model with earlier-born subtypes
(GABAergic) distributed between the GCL and the basal INL and the
later-born subtypes (glycinergic) in the central INL8,37.

Although several AC types have been previously subjected to
extensive studies, the recent molecular classification of 63 AC

subtypes3 demonstrated that most subtypes remain uncharacterized
and their morphology and physiology still unknown. Our spatial atlas,
which provides the connection between themolecular classification of
cell types and their spatial arrangement, allows us to examine cell
types with no previously available labeling method. As such, we
observed 12 preferentially displaced AC subtypes with significant
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distribution across both the INL and GCL, of which 5 have been pre-
viously reported. For example, 3 nNOS+ AC types,NI, NII, and displaced
cells have been identified based on varying antibody staining intensity
and morphology. Our identification of 2 nNOS AC subtypes with
varying displacement ratio suggests that the NII and displaced type
likely match to AC52 and AC48, respectively. In addition to the sub-
types previously reported to be displaced, we identified seven addi-
tional novel AC subtypes without any established key marker prior to
the scRNA-seq study. The AC subtypes that are not preferentially dis-
placed accounted for about 30% of total ACs in the GCL. It is not clear
whether the displacement of ACs occurs due to the functional neces-
sity exemplified by their axon strata or simple mis-migration during
development. One possibility is that the ~30% of amacrine cells we
identified in the GCL with no statistical displacement may truly have
their cell bodies mis-localized in the GCL.

Variation in cellular density across the retina is driven by the
biomolecular gradient and differential gene expressions during
development and likely serves species specific purposes. Thus,
spatial mapping of numerous neuronal subtypes in the retina is
important in understanding how the complexity in cell type dis-
tribution arises during development and how their regional varia-
tion drives functional consequences. While much remains to be
elucidated, our attempt at investigating subtype dispersion across
the tissue confirmed some previously reported observations as well
as patterns that have not been described. In fact, the reduced
number of RBCs in the ventral region observed in our study was
unexpected; however, as RBCs are known to form no direct con-
nections with RGCs, the relative decreased RBC density in the
ventral region may coincide well with the increased RGC density in
the ventral region. Spatial transcriptomics studies with retinal
wholemounts or 3-dimentional spatial omics technologies will aid in
our future studies to further explore and validate the neuronal
subtype distribution and variation across the retina. The transcript
panel containing 368 marker genes enabled comprehensive anno-
tation of most retinal cell types and subtypes in our study. Yet, the
spatial information of the remaining transcriptome remains
unknown. To expand the limited MERFISH panel, we inferred gene
expression through imputation by leveraging our co-embedding
integration with scRNA-seq. We provide an evaluation of our
imputation through several factors. First, we observed high con-
cordance between the imputed and measured gene expression.
Second, we examined a set of known marker expressions not mea-
sured by MERFISH. Third, our cell type annotation through co-
embedding integration confirms accurate spatial localization of
even rare subtypes such as BC1B and known displaced AC subtypes.

While comprehensive scRNA-seq studies have nearly exhausted
the cell type catalog of many tissue types including the retina, mole-
cular classification of discrete cell types remains often challenging
without taking account of features such as morphology and environ-
mental factors. To testwhether spatial information can provide insight
into cell type classification, we examined displaced AC types, which
possess distinct functional differences, yet cannot be distinguished
into discrete clusters based on current experimental and computation
methods3,57. Examination of the inferred transcriptome revealed many
DEGs betweenACs found in the INL andGCL including theON andOFF

SACs, indicating the importance of spatial information as a factor in
achieving a complete cell atlas.

Methods
Animal Studies: Mouse housing, experiments, and handling were
approved by the Baylor College of Medicine Institutional Animal Care
and Use Committee, and the studies were conducted in adherence
with the ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research and followed the guidance and principles of the
Association for Assessment and Accreditation of Laboratory Animal
Care. C57Bl/6 J micewere bred in-house andmaintained in a 14 h light/
10 h dark cyclic environment with the temperature 20 ± 2 °C and
relative humidity 50± 5%. Animals were housed by Baylor College of
Medicine Center of Comparative Medicine.

Sample Collection: Mice were anesthetized with isoflurane and
euthanized by cervical dislocation. Whole eyes were enucleated and
immediately flash frozen on dry ice after being embedded in Tissue-
TEK O.C.T. compound (VWR Cat No. 25608-930). Samples were then
stored in −80 °C prior to MERFISH or RNAScope experiments.
Experiments were performed using about P90 mice with no sex
information (no difference in retinal tissue or cell organization
betweenmale and femalemice are expected). The dorsal and temporal
regions of the whole eye weremarked with tissuemarking dyes before
enucleation for experiments that require anatomical orientation
information.

MERFISH probe panel design: In designing the initial probe panel
of 368 genes, we included a handful of major cell typemarkers for rod
photoreceptors, cone photoreceptors, BCs, ACs, RGCs, HCs, andMGs.
In addition, several transcription factors critical for the retina tissue
function were included. To capture the cell heterogeneity on the
subtype level, we included 3 to 4 top-ranked genes of each BC subtype
cluster and 1–2 top-ranked genes of each AC and RGC subtype cluster
identified in the publicly available scRNA-seq data1–3. The heatmap of
the probe transcript expression was plotted using a down-sampled
reference data containing 1000 of rod photoreceptors, cone photo-
receptors, BCs, ACs, RGCs,MGs, and 359HCs. The second probe panel
was built on top of the initial 368 genes with a few genes replaced that
showed lower than expected expression in the initial MERFISH
experiments. In addition, we used SCMER (single-cell manifold-
preserving feature selection) tool23 to choose additional genes that
contribute to the manifold preservation in the reference scRNA-seq
data, which brought up the total number in the second panel to
500 genes.

Multiplexed Error-Robust Fluorescence in situ Hybridization
(MERFISH): This protocol was adapted for fresh frozen retinas by
Vizgen. In brief, 20-mm functionalized coverslips (Vizgen, #FCS01)
were treated with 1% polyethyleneimine for 1 h at room temperature
andwashedwith nuclease-freewater.Coverslipswere thencoatedwith
yellow green fluorescent fiducial beads (Polysciences, 17149-10) in PBS
for 10min at room temperature. The coverslip was washed twice
briefly with nuclease free water and allowed to air dry. Afterwards, 10-
µm-thick cryo-sectionswere cut near the vicinity of the optic nerve and
placed onto the bead coated surface of the coverslip. The tissue sec-
tions were fixed at −20 °C with pre-chilled 100% ethanol for 30min.
The sample was brought to the benchtop and permeabilized in fresh

Fig. 6 | Imputation of the entire transcriptome through integration between
MERFISH and scRNA-seq. a Visualization of single-cell clusters constructed from
imputed gene expression.bGene expression patterns ofmajor cell typemarkers in
MERFISH and imputation. Both raw MERFISH and imputed transcriptome show
proper expression of cell type markers in corresponding cell type clusters.
c Inferred spatial gene expression patterns of cell type markers from imputation.
Cell type-specific markers such as Rho, Crx, Apoe, and Scgn imputed from scRNA-
seq data show appropriate localization. All segmented cells are included in the plot

for viewing. d Violin plot of the correlation coefficient between MERFISH and
scRNA-seq by each dataset. Positive correlation in all ten datasets indicates reliable
imputation (PCC 0.65). The bounds of the boxes represent 25 to 75% percentiles
with the center lines showing the median. The whiskers extend 1.5 times beyond
inter-quartile ranges. e Correspondence between cell type marker expression
between MERFISH and imputed transcriptomes. Pearson correlation coefficients
between gene expression across cells show close similarities between MERFISH
profiles and imputation.
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room temperature 100% ethanol for 1 h. The sample was re-hydrated
by sequentially exchanging buffers to 90% and 70% ethanol in a
5-minute interval and washed briefly in 2X SSC buffer. The sample was
incubated for 30min at 37 °C in 5mLof formamide buffer before 50 µL
of a custom designed probe panel containing 22 bits (Vizgen) was
placed directly onto the retinal tissue. The sample was incubated with
the probes in a 37 °C cell culture incubator for 36–48 h (about 2 days).

After probe hybridization was complete, the sample was washed
twice with formamide buffer for 30min each at 47 °C and then briefly

with 2X SSC three times to remove any residual formamide buffer. Cell
membrane staining was done using oligo-conjugated primary and
secondary antibodies provided by Vizgen (Vizgen, #CB-MM). In brief,
the tissue is blocked for 1-hour at room temperature with 105-µL total
volume of blocking solution (100 µL of blocking buffer plus 5 µL of
murine RNAse inhibitor). Then a 1:100 primary antibody dilution was
made in the blocking solution and incubated on the tissue for 1 h at
room temperature. The sample was washed three times with PBST for
5min eachon a rocker and then a 1:33 secondary antibody solutionwas

**

*

ba

c

b – cont.

d

Fig. 7 | Differential gene expression by location. a Visualization of merged star-
burst amacrine cell cluster. ImputedSACs in the INL (orange) and theGCL (blue) are
indistinguishable in one cluster. b Volcano plot of differentially expressed genes
between INL and GCL starburst amacrine cells, dot plot of known location-specific
genes and representative plot of Fezf1 and Rnd3 gene expression plots. Differential
gene-set enrichment analysis was performed by the DESeq2 package. The p-values
are calculated by the likelihood ratio test and adjusted by the Benjamini-Hochberg
procedure (seemethods). Several knowngenes expressed byONSAC such as Fezf1,

Cntn5, and Slit2 are enriched in the GCL, and genes involved in OFF SACs such as
Zfh3, Tenm3, andRnd3are enriched in the INL. Starburst amacrine cells aremarked
with red outlines and arrows in INL and GCL in the tissue plot. c Volcano plot of
differentially expressed genes in all displaced AC subtypes between INL and GCL.
The consensus differential expression analysis was performed by the DESeq2
package. The p-values are calculated by the likelihood ratio test and adjusted by the
Benjamini-Hochberg procedure (see methods). d Gene pathway analysis of differ-
entially expressed genes in all displaced AC subtypes between INL and GCL.
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incubated on the tissue for 1 h at room temperature. The sample was
thenwashed three timeswith PBST for 5min each on a rocker and then
three timeswith 2X SSC. Afterwards, the samplewas incubated in 50 µL
of an acrylamide/bis-acrylamide based gel solution for 1.5 h at room
temperature before being cleared overnight or until the tissue
becomes transparent at 37 °C. After tissue clearing, the sample was
washed several times in 2X SSC before the initial hybridization of
fluorescence readout probes against the oligo-conjugated antibodies
for 15min at room temperature. Lastly, the sample was incubated in
the wash buffer from the Vizgen Imaging Reagent Kit (Vizgen, #IK-24)
for 10min at room temperature before sequential barcode images
were imagedon theVizgenAlpha Instrument. Sequential extinguishing
of the fluorescent signal and re-hybridization fluorescent read-out
probes were performed by the automatic fluidic system on the Vizgen
Alpha Instrument.

Immunofluorescence
Immunofluorescent staining was performed using paraffin sections.
Micewerefirst anesthetizedwith isoflurane and euthanized by cervical
dislocation. The orientation of the mouse eyes wasmarked with tissue
marking dye. The eyes were enucleated and fixed in modified David-
son’s fixative overnight followed by serial dehydration steps using
ethanol. Dehydrated eye tissues were cleared in xylene and embedded
in paraffin. The 7 µm sections were deparaffinized, and the antigen
retrieval stepwas performedby boiling in 10mMsodiumcitrate buffer
(pH 6.0) for 30min. The slides were washed in PBS, incubated in
blocking buffer (10% normal donkey serum, 0.1% Triton X-100, in PBS)
for 1 h followed by incubation with primary antibody (1:1000, anti-
PrkcaSigmaP4334) overnight at 4 °C.On the followingday, slideswere
washed in PBS, incubated with secondary antibody (1:100, Cy5 Donkey
anti-Rabbit IgG Jackson ImmunoResearch 711-175-152) for 2 h, stained
with DAPI at room temperature. The slides were mounted using anti-
fade medium (Prolong; Invitrogen), and the fluorescent images were
captured using a Zeiss Apotome.2 microscope (Zeiss Axio Imager).
Three biological replicates in each orientation (dorsal-ventral and
temporal-nasal) wereperformed.We counted Prkca+ cells inmore than
7 sections for each biological replicate. The retinal region that Prkca+

cells belonged was separated by the middle point with equal distance
to the peripheral ends in each cross-section.

Data analysis
MERlin decoding: Raw MERFISH images were decoded by the MERlin
pipeline (v0.1.9, provided by Vizgen)61 using the 22-bit codebook
designed for 368 genes in the MERFISH panel. Decoded transcripts,
which represent single pixels, were exportedwith their barcode ID and
coordinates in csv file format.

Cellpose and Mesmer cell segmentation: To detect cell bound-
aries in MERFISH images, cell segmentation was performed on cell
boundary staining and DAPI images of individual field-of-views (FOVs).
To increase relative brightness and darkness of cell membrane and
DAPI staining from the background, images were adjusted by contrast
enhancement using CLAHE Histogram Equalization function in
OpenCV62. To increase the number of segmented cells per FOV, con-
secutive stacks Z0 and Z1 were blended by averaging intensities of the
two stacks. Using the blended cell membrane images, Cellpose
(v0.6.5)25 was used to predict cell boundaries using the “cyto2”mode,
which was trained on a larger dataset submitted by users. Due to the
difference in compactness of the three nuclear layers that results in
distinct background and staining intensities, the Cellpose generated
definitive segmentation result in the ONL and INL, but not in the GCL.
This may be attributed to the high signal intensity coming from the
dense extracellular matrix in the GCL. To rescue non-segmented cells
particularly in the GCL, we applied Mesmer24 using “nuclear” for
compartment parameter and 0.1667 for image_mpp parameter using
2-stack cell membrane and DAPI images. Mesmer resulted in near

complete segmentation in the GCL, but often showed high doublet
detection rate in the ONL and INL. To achieve optimal segmentation in
all three retinal layers, segmented cells from Mesmer were retained if
they overlapped <0.1% area of cell polygons by Cellpose. Decoded
transcriptswere then assigned to segmented cells by searchingnearest
polygons using the k-d tree algorithm in the SciPy63. To retain high-
quality cells, segmented cells were further filtered by average DAPI
intensities (>=80), radius of minimum enclosing circles (>=10, <=80),
area of polygons (>=500, <=10,000), perimeter of polygons (>=50,
<=400), and total transcripts (>=10).

Integration between MERFISH experiments: To reduce the batch
effect between MERFISH experiments, batch correction was done to
integrate different samples using scVI26, which models the gene
expression on a batch variable as well as library size and latent repre-
sentation. To perform the scVI integration, raw counts of 359 genes
that overlap between the two MERFISH panels were used with the
“sampleID”s as the batch variable with 2 hidden layers for encoder and
decoder neural networks and 30 dimensionality of the latent space.
The generated 30 dimensional scVI low-representations were used to
calculate a 2D UMAP for visualization of MERFISH cells by Scanpy64.
The low-representations were also used to measure dissimilarities
among cells, and the dissimilarities were used to calculate the cell
clustering by the Leiden algorithm27 with resolution 1.5.

scRNA-seq meta analysis: scRNA-seq meta analysis: The scRNA-
seq referenceused in subtype annotationwas generated by combining
publicly available scRNA-seq data for BC, AC, and RGC1–3 and in-house
single-cell/nuclei RNA-seq data. Our in-house data, which have not
been published, are composed of about 130,000 cells, inwhich 14,000
ACs, 70,000 BCs, 400 RGCs are included. Collected datasets under-
went a standardized preprocessing to exclude empty droplets, ambi-
ent RNAs, and estimated doublets (https://github.com/lijinbio/cellqc).
Retained data were integrated using scVI26 to reduce the batch effect.
The trained low-dimensional representations were used to calculate
the dissimilarities among cells, and cell clusters were detected by the
Leiden algorithm27. To annotate themajor cell types, top ranked genes
were calculated compared to the rest of cell clusters andused tomatch
major cell typemarkers. Similarly, forAC, BC, andRGC-subtyping, data
integration and cell clustering were performed on corresponding
subtypes, respectively. Published subtype labeling was retained and
used to guide the annotation of subtype cell clusters. BC and RGC-
subtyping showed exhausted subtypes. After integrating our in-house
data, over-clustering of some AC subtypes annotated in public data-
sets weremerged into single cell clusters. To retain the public subtype
labels, the merged cell clusters were labelled by the subtype of the
majority number of cells. For example, a merged cell cluster was
labeled as AC21 while it includes subtypes AC21, AC54, and AC63 in the
public datasets.

Cell identity assignment: To identify the cell type of MERFISH
cells, a two-level annotation was performed for major cell type anno-
tation and subtype annotation in sequence. To annotate themajor cell
type of MERFISH cells, we first calculated top ranked genes of Leiden
cell clusters using Scanpy and manually inspected the known major
cell type marker genes to assign major cell type identities27,64. Follow-
ing themajor cell type annotation, subtype annotation was performed
by co-embeddingmethod using scRNA-seq reference data for isolated
BC, AC, and RGC subset. Using bindSC28, scRNA-seq reference and
MERFISH countmatriceswerebridgedby optimizing correlation in the
sample and feature levels simultaneously. Using bindSC, which inte-
grates twodifferent single-cellmodalities by optimizing correlations in
the sample and feature levels simultaneously, the reference scRNA-seq
and MERFISH count matrices were aligned. The generated canonical
correlation vectors are co-embedding low-dimensional (e.g., 15) latent
representations for scRNA-seq and MERFISH cells. These co-
embeddings were used to calculate a 2D UMAP between the two
modalities. To annotate subtypes of MERFISH cells, the cell labeling of
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scRNA-seq reference was transferred by SVM classifiers. Specifically,
the latent representations of scRNA-seq cells were used to train multi-
class SVM classifiers by the known scRNA-seq cell labels. Per MERFISH
cell, scRNA-Seq neighbors (e.g., 3 neighbors) were detected in the co-
embedding latent space, and the average of low-dimensional repre-
sentations was used to represent the feature for the classification.
Classification probabilities were calculated against the trained SVM
classifiers, and the cell type was assigned by the maximum classifica-
tion probability of the classifiers. BC, AC and RGC subtypes are
annotated by applying the label transfer using the bindSC co-
embedding.

Cell clustering using MERFISH genes and subtype annotation
overlay: Subtype annotation from co-embedding analysis using refer-
ence scRNA-seq data was overlaid on the graphical clustering map
derived from using only MERFISH transcriptome. Subsets of BCs, ACs,
and RGCs were extracted from a representative MERFISH experiment
(“sampleID” = “merfish_wt_JC2”). Leiden clustering was performed
using Scanpy in each cell type data subset27,64, and cells were colored
by the subtype annotation labels from bingSC co-embedding.

Boundary estimation and distance calculation: The ONL and INL
boundaries were estimated by approximating surrounding curves that
cover the centroids of segmented cells in micrometers. To do this, the
R package alphahull65 was used to calculate the alpha-shape and alpha-
convex hull of cell centroids. Alpha-shape was defined as an extension
of convex hull, where the shape was segments connecting alpha-
extreme points. A cell was called an alpha-extreme point when anopen
ball of radius alpha existed with the centroid on the boundary and did
not cover other cells. The alpha-convex hull stored the arcs of open
balls that connect neighboring alpha-extreme points. The alpha value
of 100 µm generated the alpha-shape with a tight estimate of tissue
boundaries including basal and apical boundaries. To separate basal
and apical boundaries, the nature of anarc-shape for a retina tissuewas
utilized. Each section of retina tissue was assumed to have a hypo-
thetical center. This tissue center was compared with each arc of the
alpha-convexhull. Apical boundaries contained arcs thatwereoutward
away from the tissue center. On the contrary, arcs of basal boundaries
were inward to the tissue center. A small number of mis-labeled
boundaries were corrected interactively using the R package shiny66.
To calculate distances of cells to the two estimated boundaries, per-
pendicular distances were calculated to each segment of boundaries
using the function nearestPointOnSegment() in the R package
maptools67. The minimum distance of segments was the calculated
distance of a cell to a boundary. To normalize the thickness among
tissue sections, the distance ratiowas calculated by the distance to the
basal distance over the sum of distances to the two boundaries.

Determining significance of cell displacement: To identify AC
subtypes displaced in the GCL, the INL boundary information pre-
viously generated was used to assign ACs to their resident layer. For
each subtype, the proportion of cells displaced in the GCL was calcu-
lated. To determine the significance of displacement, we applied a
permutation test to calculate the expected proportion of displaced
ACs by shuffling the subtype label within tissue sections for 1000
times68. The p-value was calculated as the percentage of permutations
that have a greater proportion of cells in the GCL layers compared to
the observed proportion. The AC subtypes with p-value < 0.05 were
determined to be significantly displaced.

RNAScope in-situ hybridization: TheRNAscopeHiPlexAssay (ACD
Biosystems)47 was performed according to the ACD protocol for fresh-
frozen tissue. In brief, mice were anesthetized with isoflurane and
euthanized by cervical dislocation. Whole mouse eyes were then
enucleated and embedded in TissueTEK O.C.T. compounds, cut in
10 µm sections and placed on glass microscope slides. After fixation
with 4% FPA in PBS and permeabilization using Protease IV (RNA-
Scope), the tissue sections were incubated with probes against dis-
placed AC markers, pan-AC marker Slc32a1 (319191-T1), and pan-RGC

marker Slc17a6 (319171-T2). Following probes were used to stain for
specific displaced AC subtypes; AC17 (448771-T5), AC21 (495681-T7),
AC32 (402021-T9), AC36 (834921-T10), AC37 (316091-T3), AC39
(421011-T6), AC44 (317451-T11), AC46 (452981-T5), AC48 (413561-T6).
The probes were amplified according to the manufacturer’s instruc-
tions and labeledwith the following fluorophores for each experiment:
Alexa 488 nm, Atto 550 nm, and Atto 647 nm. The Zeiss Apotome.2
microscope (Zeiss Axio Imager) was used to visualize the FISH signals.

Calculating the periodicity of each retinal cell types and subtypes
across the four retinal regions:

The coordinates of spatial single-cell profiles in each cross-section
were rotated so the most posterior part of the section (optic nerve
side) is at the top. Using the minimum and the maximum XY coordi-
nates of cells, the dorsal-ventral cross-sections and the temporal-nasal
cross-sections were divided in the middle (close to the optic nerve) to
assigndorsal, ventral, temporal, nasal regions.The labelsof four retinal
regions were visually inspected to ensure the sections were divided
equally. The number of each cell type and cell subtype occurrence was
counted separately within the two retinal regions per each section, and
the proportion was normalized by the number of all cells or within the
specific cell type. Any cell type proportion difference between the two
regions with p-value less than 0.05 was considered significant.

Tangram imputation: To resolve the entire transcriptome of
MERFISH cells, we impute the gene expression by mapping single-cell
RNA-Seq reference to spatial cells usingTangram55. Tangramcalculates
the imputation by summingover scRNA-seq gene expressionweighted
bymappingprobabilities. Tangram trains themappingprobabilities by
optimizing correlations between imputed expressions and MERFISH
measurements of the MERFISH panel. To reduce the bias caused by
scRNA-seq cells with a different cell type from a MERFISH cell, map-
ping probabilities of the only scRNA-seq cells with the same cell type
were used for the imputation. To minimize the crossover and retain
the spatial proximities of subtypes in the co-embedded space, impu-
tation was performed within isolated AC, BC, and RGC subtypes
separately with the subtype labeling annotated by bindSC co-
embedding. To measure the performance of Tangram imputation,
Pearson correlation coefficients have been calculated between impu-
ted gene expressions and MERFISH measurements for the genes
included in the MERFISH probe panel. A UMAP69 was also generated
using imputed gene expressions to visualize the labeling of
MERFISH cells.

Gene ontology analysis: To identify any enriched biological
pathways or functions in the DEGs between ACs in the INL and dis-
placed ACs, we performed gene ontology (GO) analysis. First, gene
symbols of DEGs were searched against the GO term annotation
databases using the R function enrichGO() of the package
clusterProfiler70,71. GO terms categories include biological processes,
cellular components, andmolecular functions. The enriched GO terms
were identified under q-value < 0.05. To cluster GO terms that share
common gene symbols, the enrichment map was generated for the
enriched GO terms using the R function emapplot()72.

Data resource visualization: Access to the spatial map of mouse
retina is hosted at https://bcm.box.com/s/bwh011jg0m7b6t38j
3q6chsvf9xbk0wg. The data is shared in a.h5ad format with gene
expression matrix and curated metadata. To provide a user-friendly
interactive exploration of the spatial map, the imputed gene expres-
sion are made accessible via cellxgene60. The two plots contained in
the data resource; the tissue plot showing the coordinates of identified
MERFISH cell centers and UMAP visualization graph calculated using
the imputed gene expressions. The metadata of annotated cell types
can be used to color the cells in the plots. Furthermore, expression
pattern of a gene or set of genes canbe visualized in a histogramand in
the tissue plot with the color scale as expression value. The URL of the
cellxgene web service is accessible at http://cellatlas.research.
bcm.edu.
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Differential gene expression analysis by location: To identify the
differentially expressed genes between ACs in the GCL and ACs in the
INL, we adapted the workflow of DESeq273 for the imputed gene
expression. First, the imputed gene counts were normalized using the
function computeSumFactors() in the R package scran. Per each dis-
placed AC subtype, the normalized values were fit into a negative
binomialmodel byglmGamPoi. The likelihood-ratio test was applied to
test the statistical significance by comparing with a reduced model ~1,
and the calculated p-values were adjusted by the Benjamini–Hochberg
procedure. The log2 fold changes were also reported in the Supple-
mentaryData 2. Differentially expressed geneswere identified under q-
value < 0.05 and |log2FoldChange | > 0.2. To calculate the shared DEGs
across 12 displaced AC subtypes, a generalized linear model was used
to detect the consensus DEGs across displaced AC subtypes (Full
model: ~ subtype + layer; Reduced model: ~ subtype). To visualize the
DEGs, the volcano plot was generated by the R package
EnhancedVolcano74.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheMERFISHdata generated in this study havebeendeposited and are
available at Zenodo (https://doi.org/10.5281/zenodo.8144355). Source
data are provided with this paper.

Code availability
The code for MERFISH image analysis is available at https://github.
com/RCHENLAB/SpatialMmMERFISH and Zenodo (https://doi.org/10.
5281/zenodo.8143414).
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