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National quantifications of methane
emissions from fuel exploitation using
high resolution inversions of satellite
observations
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Reducing methane emissions from fossil fuel exploitation (oil, gas, coal) is an
important target for climate policy, but current national emission inventories
submitted to the United Nations Framework Convention on Climate Change
(UNFCCC) are highly uncertain. Here we use 22 months (May 2018-Feb 2020)
of satellite observations from the TROPOMI instrument to better quantify
national emissionsworldwide by inverse analysis at up to 50 km resolution.We
find global emissions of 62.7 ± 11.5 (2σ) Tg a−1 for oil-gas and 32.7 ± 5.2 Tg a−1 for
coal. Oil-gas emissions are 30% higher than the global total from UNFCCC
reports, mainly due to under-reporting by the four largest emitters including
the US, Russia, Venezuela, and Turkmenistan. Eight countries have methane
emission intensities from the oil-gas sector exceeding 5% of their gas pro-
duction (20% for Venezuela, Iraq, and Angola), and lowering these intensities
to the global average level of 2.4% would reduce global oil-gas emissions by 11
Tg a−1 or 18%.

Methane (CH4) is the second most important anthropogenic green-
house gas after CO2 and is responsible for 0.6°C global warming since
preindustrial times1. Under the Paris Agreement, individual countries
must set goals for mitigating their anthropogenic methane emissions
relative to current baselines. The Global Methane Pledge signed by
over 110 countries commits to reducing collective methane emissions
by 30% by 20302. Emission from fossil fuel exploitation (oil, gas, and
coal) is an important mitigation target because it is estimated to
account for about one-third of the global anthropogenic total and
could be cost-effective to control3–6. National emission inventories
submitted by individual countries to the United Nations Framework
Convention on Climate Change (UNFCCC) under the Paris Agreement
follow bottom-up approaches in which emission factors are applied to

activity data, sometimes with additional facility-specific information.
But these national inventories are typically uncertain by a factor of two
ormore6 and often bymore than an order of magnitude for the oil-gas
sector5. This uncertainty hinders the setting and tracking of mitigation
goals for methane emissions.

Top-down approaches apply inverse methods to infer emissions
from measurements of atmospheric methane. They use prior infor-
mation from the bottom-up inventories and provide an independent
way of improving these inventories. Many previous top-down studies
have exploited methane observations from surface sites, aircraft, and
the Greenhouse gases Observing SATellite (GOSAT) satellite7–16 but
these observations are very sparse. Satellite observations from the
TroposphericMonitoring Instrument (TROPOMI) launched in October
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2017 provide considerably higher global data density, with continuous
daily mapping of methane columns at 7 km × 5.5 km nadir resolution17.
The TROPOMI observations have been applied to detect large point
sources18–20 and quantify emissions from a few source regions21–24. A
global inversion showed artifacts in early versions of the data25 that
have since largely been corrected17.

Here, we conduct a global ensemble of regional inversions of
TROPOMI data to quantify emissions from fossil fuel exploitation
worldwide at up to 50-km resolution, validate the results with field
measurements across the globe, and further report improved inven-
tory estimates for all countries in support of the Paris Agreement.
Furthermore, we use our inversion framework to assess the sensitivity
of the results to different bottom-up inventories, satellite data density,
and choices of inversion parameters, from where we define the con-
ditions under which TROPOMI can provide significant information to
assist national bottom-up estimates.

Results
Correction factors to UNFCCC inventories and evaluation with
field campaign data
We tile the world with 15 domains that account for 96% of global
emissions from fossil fuel exploitation in 2019 according to the Global
Fuel Emissions Inventory version 2 (GFEI v2), which allocates national

emissions reported to the UNFCCC on a 0.1°×0.1° grid5. Figure 1a
shows these 15 domains and the gridded UNFCCC emissions. A few
countries have not reported their emissions to the UNFCCC since
2000, notably Iraq and Libya, and for these GFEI v2 uses standard IPCC
Tier 1 methods5. We conduct inversions of the TROPOMI observations
in each domain from May 2018 to February 2020, using the GEOS-
Chemmodel (https://doi.org/10.5281/zenodo.3634864) for simulation
of atmospheric transport, to quantify emissions with a resolution of
up to 0.5°×0.625° (~50km) for grid cells with significant fuel emissions
(>1 Gg a−1). We apply weight to the gridded bottom-up prior emission
estimates for fuel and other sectors with the TROPOMI observations
using analytical Bayesian optimization to solve for the maximum-
likelihoodposterior estimates ofmethane emissions on the0.5°×0.625°

grid (Eq. 1), and from there we aggregate emissions to the regional and
country scales. Each grid cell includes emissions from nonfuel sectors
as given by the respective prior inventories. Here, we attribute the
posterior corrections to the different sectors in the grid cell on the
basis of their error-weighted contributions to the prior emissions23,24,
and sectors with higher prior uncertainty are subject to larger relative
corrections (Supplementary Note 1). This error weighting is particu-
larly important for grid cells containing wetland emissions, which are
particularly uncertain. We derive the global emissions from fossil fuel
exploitation by summing posterior estimates for all 15 domains and

Fig. 1 | Gridded UNFCCC (United Nations Framework Convention on Climate
Change) inventories from fossil fuel exploitation and satellite-derived correc-
tion factors. a Gridded GFEI v2 inventory of national emissions from fossil fuel
exploitation (oil, gas, and coal) reported by individual countries to the UNFCCC for
2019 or the most recent year and used as the baseline prior estimate in our
inversion of TROPOMI satellite observations. A few countries have not reported
their emissions to the UNFCCC since 2000 (notably Iraq and Libya) and for these

GFEI v2 uses standard IPCC Tier 1 methods. We conduct the inversions for the 15
rectangulardomains shown in the Figure, accounting for over 96%of global GFEI v2
emissions. b Satellite derived correction factors relative to the gridded UNFCCC
inventories. Values are shown at the 0.5°×0.625° resolution of the inversion. The
basemap is from the mapdata package (version 2.3.1) in R (https://cran.r-project.
org/web/packages/mapdata/index.html).

Article https://doi.org/10.1038/s41467-023-40671-6

Nature Communications |         (2023) 14:4948 2

https://doi.org/10.5281/zenodo.3634864
https://cran.r-project.org/web/packages/mapdata/index.html
https://cran.r-project.org/web/packages/mapdata/index.html


adding the GFEI v2 inventory for the 2.8 Tg a−1 of emissions outside of
thedomains (4%of globalGFEI v2 emissions).We conduct anensemble
of inversions with different prior estimates (GFEI v2, GFEI v1, Emissions
Database for Global Atmospheric Research version 6 or EDGARv6) and
different assumptions on error statistics to quantify the uncertainty in
our results. More details are provided in the Methods section.

Figure 1b shows the spatial distribution of optimized correction
factors from fossil fuel exploitation relative to the gridded UNFCCC
inventories. Corrections are upward in most large fuel production
basins including in North America (the US, Canada, and Mexico),
Venezuela, Russia, Central Asia (Turkmenistan and Kazakhstan), Africa
(Algeria, Egypt), Middle East (Saudi Arabia, Iran), and Australia. Nota-
ble countries with downward corrections include Nigeria, Libya,
and China.

Figure 2 compares our top-down emission estimates in large fossil
fuel exploitationbasins to 24 independent estimates of emissions from
field campaigns, including in situ and remote sensing observations
across the globe (Supplementary Table 1-2 for more details). The field
campaigns were carried out over a range of time periods between 2011
and 2020. The correlation coefficient between our TROPOMI-derived
posterior estimates and the field campaign estimates is 0.95 with no
systematic bias. Results further indicate that TROPOMI can success-
fully detect emissions as low as 0.2 Tg a−1 on the basin scale.

Global emission estimates
Our optimized estimates of global methane emissions from TROPOMI
data are 62.7 ± 11.5 Tg a−1 for the oil-gas sector and 32.7 ± 5.2 Tg a−1 for
the coal sector, yielding a total fossil fuel emission of 95.4 ± 12.9 Tg a−1

for the period of May 2018 to February 2020. Here and elsewhere,
uncertainties are reported as two error standard deviations (2σ) from
Monte Carlo analysis of our inversion ensemble using posterior error
covariancematrices. These global estimates have low sensitivity to the
priors used (Supplementary Fig. 1), implying that they are mainly
determined by satellite observations. We evaluate our posterior

emission estimates by implementing them in GEOS-Chem and using
them to simulate column-averaged methane mixing ratios for com-
parison with TROPOMI and GOSAT, and surface concentrations for
comparison with surface measurements from the National Oceanic
and Atmospheric Administration (NOAA) network26. Results show
consistent improvements in the model-observation bias relative to
using prior emissions (Supplementary Fig. 2-5).

Figure 3 compares our global emission estimates to previous lit-
erature in the context of their reporting periods going back to the
1980s and separating oil-gas from coal when available. Bottom-up
estimates tend to show increases over the period, reflecting increasing
production. The GFEI v2 inventory (based on 2019 UNFCCC reports) is
much lower than other bottom-up estimates, largely driven by down-
ward revision of Russian oil emissions reported to the UNFCCC5. Top-
down fossil fuel estimates show large variability (80–110 Tg a−1) but
tend to be lower by 20 Tg a−1 than bottom-up inventories (110–130 Tg
a−1, except GFEI v2), and comparison across top-down studies does not
suggest a global increase of emissions over the 2010–2020 per-
iod (Fig. 3a).

Our satellite-based global estimate of oil-gas emissions (62.7 ± 11.5
Tg a−1) for 2018–2020 is in the range of previous top-down studies
(59–70 Tg a−1) and 30% higher than GFEI v2 (48 Tg a−1) (Fig. 3b), while
our estimate of coal emissions (32.7 ± 5.2 Tg a−1) is higher than previous
top-down studies (20-30 Tg a−1) and in agreement with GFEI v2 (33 Tg
a−1) (Fig. 3c) (details in Supplementary Table 3). The low coal emissions
in previous top-down studies could stem from incorrect spatial dis-
tribution of Chinese emissions in older bottom-up inventories27,28.
When combining oil-gas and coal emissions together, our top-down
estimate (95.4 ± 12.9 Tg a−1) is at the lower 20th percentile of the dis-
tribution of all previous estimates for 2010–2021(80–140 Tg a−1). The
next section attributes these differences to individual countries.

National emission estimates and comparison toUNFCCC reports
Figure 4 shows our posterior estimates of oil-gas and coal methane
emissions from the top emitting countries and compares to the
UNFCCC reports. National data for all individual 93 countrieswith total
fuel emissions larger than 1 Gg a−1 are compiled in Supplementary
Table 4. Posterior estimates of the top-20 oil-gas and coal emitting
countries using different prior inventories can be found in Supple-
mentary Table 5-6. Also shown in Fig. 4a is the methane intensity,
defined as the national oil-gas emissions per unit of total gas
production4 (assuming 90% of methane content as in Alvarez et al.4),
and the coal emission factors per unit production as defined by IPCC29.
Emission factors for the individual oil and gas countries are given in
Supplementary Fig. 6. Overall, our higher global oil-gas emission esti-
mate relative to the UNFCCC is largely driven by underestimates of
emissions from the US, Russia, Venezuela, and Turkmenistan in the
national reports. Of these top emitters, Venezuela, Turkmenistan,
Uzbekistan, Angola, Iraq, Ukraine, Nigeria and Mexico have methane
intensities of 5-25% from the oil-gas sector (>20% for Venezuela, Iraq,
and Angola). Lowering the emission intensity of these 8 countries to
the global average level of 2.4% would reduce oil-gas methane emis-
sions by 11 Tg a−1 or 18% globally, implying a high margin for emission
mitigation. China’s oil-gas emission (2.7 ± 1.1 Tg a−1) is twice higher than
the UNFCCC inventory, consistent with Chen et al.28, and these cor-
rections are largest in the north (Fig. 1 andSupplementary Fig. 7) where
a number of ultra-emitting point sources from the oil industry have
been detected from TROPOMI data20.

Our posterior estimate for Russia’s oil-gas emissions is 9.4 Tg a−1

but with large uncertainty (95% confidence level, 4.5-16.6 Tg a−1) that
reflects both the lowobservation density of TROPOMI at high latitudes
(Supplementary Fig. 8-9) and a wide range in the prior inventories
(Supplementary Fig. 10). Russia previously applied the IPCC 2006
emission factor for developing countries in its UNFCCC reports and
thiswas used inGFEI v1, but its latest UNFCCC2019 report used inGFEI

0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0
Field campaign (Tg a�1)

T
R

O
P

O
M

I (
T

g 
a�

1 )

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0
Surat, Australia
Ibbenburen, Germany
Gronigen, Netherland
Upper Silesian Coal Basin, Poland
Albert west, Canada
Lloydminster, Canada
Bakken2014, US
Bakken2015, US
Barnett, US
Delaware, US
Denver Basin, US
Denver−Julesburg, US
Eagle Ford East, US
Eagle Ford West, US
Fayetteville , US
Haynesville−Bossier, US
Haynesville, US 
Marcellus, US
NE PA, US
Permian, US
San Juan, US
SW PA, US
Uinta, US
Western Arkoma, US

TROPOMI vs. field estimates of emissions from fossil fuel exploitation basins

R=0.95

Fig. 2 | Methane emissions from 24 oil-gas and coal production basins across
the globe. Estimates from field campaigns are compared to results from our
TROPOMI inversions. For the US and Canada basins, we adjust TROPOMI’s results
to campaign years using relative linear trends of observation-derived (surface
measurements + GOSAT) basin-scale emissions from Lu et al.54. The 1:1 line is
dashed, and the correlation coefficient is shown inset. More details, including
references for the field campaigns can be found in Supplementary Table 1-2. The
error bars denote 95% confidence levels. Note the log-log scale.
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v2 applies the emission factor for developed countries, resulting in a
downward revision of its national oil-gas emissions by a factor of 5
(from 20.5 to 2.1 Tg a−1 for oil and from 4.5 to 2.0 Tg a−1 for gas)5.
Overall, our results suggest that the most recent UNFCCC 2019 report
is more accurate but needs to be corrected upward by a factor of two.
Lauvaux et al.20 found a large number of ultra-emitting point sources
from the oil-gas sector in Russia including in particular from pipelines.
Future satellite instruments may be more effective at observing high
latitudes and Russian point sources30.

Venezuela (posterior estimate of 4.0± 3.0 Tg a−1) and Nigeria (1.5±
1.2 Tg a−1) are the two largest oil-gas emitters in the tropics from our
TROPOMI analysis, again with high uncertainty because of low TRO-
POMI observation density related to extensive cloudiness. Spatial co-
location of oil-gas basins with wetlands in Nigeria further increases the
difficulty of separating oil-gas emissions (Supplementary Fig. 11).
Nigeria’s emissions reported to UNFCCC increased from 0.4 (GFEI v1
for 2016) to 3.3 Tg a−1 (GFEIv2 for 2019) after adopting an emission
factor at the upper limit of the IPCC (2006) recommendations31. Our
inversion implies that themore recent report shouldbe reducedby40-
50%. The need for upward corrections of Venezuela’s emissions has
been previously reported in inversions of GOSAT data12,15. Lu et al.15

estimated oil-gas emissions for Venezuela of 7.7 Tg a−1 for 2010-2017.
Our lower value (4.0 Tg a−1) may be related to declining oil production
over the 2016-2019 period as a result of intensified economic
sanctions5 (Supplementary Fig. 12).

Our posterior estimate of Turkmenistan’s oil-gas emissions
(3.6±1.3 Tg a−1) is 2.4 times higher than its UNFCCC report (1.5 Tg a−1),
and makes it the 4th largest oil-gas emitter in the world (Fig. 4). This
could be due to a large population of high-emitting point sources not
accounted for in the bottom-up estimates. We find that the upward
corrections are largest in the southern production basins (Supple-
mentary Fig. 13), consistent with the previous high emitters
identifications32–34.

Figure 4b also displays the top 20 coal-emitting countries in our
posterior estimates. Unlike for oil-gas emissions, we find in general
good agreement with the UNFCCC inventories. This is likely because
the country-scale emission factors from coal production have much
lower variability than for oil-gas (Fig. 4) and emissions originate from a
relatively small number of facilities. China’s coal-based methane
emission is 18.9 ± 3.3 Tg a−1, slightly but not significantly lower than the
UNFCCC inventory estimate. Our estimate for China is comparable to
the range of 16.2-18.0 Tg a−1 from recent satellite-based estimates
(Supplementary Table 7)28. Indonesia is the second largest coal pro-
ducer in the world but its submitted emission to the UNFCCC is only
0.2 Tg a−15; our posterior estimate is 0.7 Tg a−1 but with very large
uncertainty (0.1-2.7 Tg a−1) because of extensive cloudiness and
retrieval difficulties associated with coastlines (Supplementary Fig. 8).
The largest relative correction factors are forAustralia andKazakhstan,
where we find emissions to be respectively 1.8 and 4.8 times higher
than in the UNFCCC reports. Our result for Australia is consistent with
a recent finding that emissions from three large coal mines are seven
times larger than the bottom-up estimates19.

We find that the ability of TROPOMI to quantify fuel emissions for
a given country varies greatly depending on the country, as illustrated
in Fig. 4 and Supplementary Fig. 14. This variability is determined by
the TROPOMI data density, the magnitude of national emissions, and
the prior uncertainty in these emissionswhichweestimate on the basis
of the range of the bottom-up inventories used in our inversion
ensemble (GFEI v2, GFEI v1, EDGARv6). For the top fuel-emitting
countries (>1Tg a−1), the posterior/prior relative uncertainty reduction
for total fuel emissions is 40% on average with a range from 10% to
70%, suggesting the effective role of TROPOMI in improving country-
scale emissions. After combining inversions from the full ensemble
(see Methods for more details), our results show that TROPOMI can
constrain the emissions with a relative posterior uncertainty <30% (2σ)
for most large mid-latitude emitters, including China, the US,

Fig. 3 | Bottom-up and top-down estimates of global methane emissions from
fossil fuel exploitation. Results from our work (thick black segment) are com-
pared to bottom-up inventories and to other top-down estimates for different
years. Bottom-up inventories include GFEI v25 and GFEI v141, which are based on
UNFCCC national estimates, EDGARv6.042, CEDS v202155, ECLIPSE version 6b56,
EDGAR v4.3.243, and US EPA 201257. Top-down estimates include Zhang et al.16, Lu
et al.15, Qu et al.25, Maasakkers et al.12, Saunois et al.3,6, Turner et al.9, and Fraser

et al.58. Isotopic studies include Schwietzke et al.59 and Chandra et al.60. (a) is for the
total emissions fromall fuel exploitation sectors. Fewer studies separate oil-gas and
coal, shown in panels (b) and (c). Note differences in scales between panels. Top-
down error estimates are either not reported or unrealistically low (<5%) (except
Saunois et al.3,6 and Fraser et al.58), which can be found in Supplementary Table 3 for
more details.
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Turkmenistan, Kazakhstan, India, and Canada. It has more difficulty in
Russia and the tropics (Supplementary Fig. 14), where satellite obser-
vation density is relatively low and oil/gas fields are often collocated
with wetlands, so that inversion results have limited information
content and are sensitive to the choice of prior inventory (Supple-
mentary Table 5-6).

Discussion
An additional limitation in quantifying oil-gas emissions at high lati-
tudes and in the tropics is the uncertainty in wetland emissions.
Whereas oil-gas fields at northern mid-latitudes are usually in arid
regions, oil-gas fields at high latitudes and in the tropics are often co-
located with wetlands and separating the two emission sectors can be
difficult. Our prior estimate of wetland emissions is obtained by
averaging the 9 highest-performance members of the wetland
methane emissions and uncertainty dataset for atmospheric chemical
transport models (WetCHARTs v1.3.1)35,36, for a global emission of 149
Tg a−1 in 2019. We conducted another set of inversions using the
ensemble average of all 18 members of WetCHARTs v1.3.1 with prior
wetland emissions that are 10% higher globally, 20-30% higher in the
tropics, and 15% lower in central Russia (Supplementary Fig. 15). The
resultant changes in posterior fossil fuel emissions are 0.7 Tg in
Venezuela and <0.2 Tg a−1 in other countries (Supplementary Fig. 15).

There are other poorly accounted sources of uncertainty in our
analysis. TROPOMI observations are affected by regional bias in some
parts of the world17,25 and the biases not removed by our quality flags
(seeMethods)would propagate to our inversion results. High latitudes
and tropics have large seasonal variations in observation density that

would affect inversion results if fossil fuel emissions were seasonally
variable (we assume that they are not). Independent inversions for
different seasons show near-zero posterior corrections in the winter-
time at high latitudes because of the low observation density (Sup-
plementary Fig. 8-9, 16, Supplementary Note 2). GEOS-Chem transport
error is treated as random through the observational error covariance
matrix, but any systematic transport bias37 would again propagate to
inversion results. Our evaluation of inversion results with field cam-
paigns in Fig. 2 does not reveal obvious biases but these campaigns are
limited to North America and Europe. Offshore oil-gas emissions are
not directly observed by TROPOMI in the source grid cell (TROPOMI
observations over the oceans are limited to the glint mode, which we
do not use here)17 and are optimized solely on the basis of their plumes
transported across coastlines and over land. Global offshore oil-gas
emissions amount to 3.8 Gg a−1 in GFEIv2 (7.9% of total oil-gas emis-
sions) and we find that only 60% of these offshore emissions are
effectively optimized in our inversion (averaging kernel sensitivity
larger than 0.1).

In summary, we have used 22 months of TROPOMI satellite
observations (May 2018 – February 2020) in an inverse analysis to
quantify methane emissions from the fossil fuel industry (oil, gas, and
coal) globally at up to 50 km resolution. We find that global methane
emissions are 62.7 ± 11.5 Tg a−1 from the oil-gas sector and 32.7 ± 5.2 Tg
a−1 from the coal sector, as compared to corresponding global esti-
mates of 47.6 and 32.8 Tg a−1 from the latest compilation of national
bottom-up inventories reported to the UNFCCC. Our higher oil-gas
estimate (by 30% or 15 Tg a−1) is largely driven by underestimate of
emissions from the US, Russia, Venezuela, and Turkmenistan in the

Fig. 4 | National methane emissions from the (a) oil-gas and (b) coal sectors
estimated by inversion of TROPOMI observations and compared to the
UNFCCC reports. The TROPOMI observations are for May 2018 – February 2020,
and the UNFCCC reports are for 2019 (Annex I countries) or most recent (other
countries), as compiled by the GFEI v2 inventory of Scarpelli et al.5. Iraq has not
reported to the UNFCCC since 2000 and its emission is estimated in GFEI v2 using
IPCC emission factors. The top 20 emitting countries are shown here; data for the
93 countries with total fuel emissions larger than 1 Gg a-1 are in Supplementary

Table 4. Vertical bars indicate the 95% confidence levels from the inversion
ensemble. The circles represent the methane intensity from oil-gas production (a),
defined as the total oil-gas emission per unit of gas produced (assuming 90%
methane content for gas)4, and the coal emission factor (b), defined following
IPCC29 as the total coal emission per unit coal produced. The empty rectangles
denote the 95% confidence levels of oil-gas emission intensities and coal-based
emission factors. Note break in left ordinate axis of bottom panel, as Chinese coal
emissions are much higher than for any other country.
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national reports. Eight countries havemethane emissions from the oil-
gas sector in excess of 5% of their gas production (>20% for Venezuela,
Iraq, and Angola), and lowering their methane intensity to the global
average level of 2.4%would reducemethane emission from the oil/gas
sector by 11 Tg a−1 or 18% globally, implying large emission mitigation
potential. TROPOMI can quantify emissions with a relative posterior
uncertainty <30% formost largemid-latitude emitters includingChina,
the US, Turkmenistan, Kazakhstan, India, and Canada, but has more
difficulty in Russia and the tropics where observations are less dense.

Methods
Satellite observations
We use the TROPOMI methane product version 2.02 from the Nether-
lands Institute for Space Research17 for the period May 2018 - February
2020. TROPOMI is aboard the Sentinel 5 Precursor (S5-P) satellite and
has a ~13:30 local overpass time. It provides daily global coverage of
methane columns at a spatial resolution of 7 km × 7 km (7 km × 5.5 km
after August 2019)38,39. The methane column dry mixing ratio (XCH4) is
retrieved from the sunlight backscattered by the Earth’s surface in the
shortwave infrared (SWIR) at 2305-2385 nm with near-unit sensitivity
down to the surface under clear-sky conditions. The retrieval success
rate is limited by cloud cover and by heterogeneous or dark surfaces,
and is 3% globally over land17. We only use recommended high-quality
XCH4 measurements with the following criteria: (1) qa_value ≥ 0.5, (2)
blended albedo ≤0.85, and (3) surface altitudes ≤ 2 km. The blended
albedo, combining the surface albedo in the NIR and SWIR, can be used
to filter scenes covered by snow40. The total number of TROPOMI
observations is 1.4×108 for May 2018-February 2020, with large varia-
bility in observation density across the globe30.

Gridded national bottom-up inventories
We use the Global Fuel Exploitation Inventory version 2 (GFEI v25) in
2019 as the baseline prior inventory for fossil fuel methane emissions.
GFEI v2 is based on the national inventories reported to the UNFCCC
for oil, gas, and coal, spatially allocated to 0.1°×0.1° resolution. We
divide the globe into 15 inversion domains that can account for 96% of
fossil fuel methane emissions based on this inventory. We also con-
sider the GFEI version 1 inventory41 for the year 2016, based on earlier
UNFCCC reports, and the EDGARv6 inventory42 for the year 2018 to
evaluate the sensitivity of our results to the prior estimates (Supple-
mentary Fig. 17). Such sensitivity arises from differences in both the
magnitude and the spatial distribution of emissions among inven-
tories, especially in regions like Russia, theMiddle East, Venezuela, and
Nigeria (Supplementary Fig. 18). Prior anthropogenic emissions from
other sources including livestock, waste, and rice cultivation are from
EDGAR v4.3.243. Wetland emissions are taken from the mean of the
nine high-performance members of the WetCHARTs v1.3.1 inventory
ensemble36. Other natural sources include open-fire emissions from
the Global Fire Emissions Database version 4s (GFED4s)44, termite
emissions from Fung et al.45, and geological seepage emissions from46

with global scaling to 2Tga−147. Details of sectorial contributions canbe
found in Supplementary Table 8.

Forward model
We use the GEOS-Chem 12.7.0 chemical transport model (https://doi.
org/10.5281/zenodo.3634864) as the forward model to simulate the
sensitivity of atmosphericmethane to emissions. GEOS-Chem is driven
by MERRA2 reanalysis meteorological fields with 0.5°×0.625° hor-
izontal resolutionwithin the regional domains of Fig. 1, nestedwithin a
global simulation at 4°×5° resolution. Following Shen et al.23, we ensure
that model boundary conditions are consistent with local TROPOMI
observations by scaling the GEOS-Chem vertical fields in each
boundary grid square both temporally and spatially to match
smoothed TROPOMI column observations. Methane sinks including
atmospheric oxidation and soil absorption are included in our forward

model but are not optimized because they are slow and relatively
smooth.

Construction of the state vector
The state vector for the inversion in individual regions consists of the
spatially resolved emissions to be optimized on the 0.5°×0.625°model
grid, along with boundary conditions for each quadrant. Our inversion
mainly targets grid cells with high fossil fuel emissions, thus we can
aggregate grid cells in areas of less interest, an approach often used by
previous studies23,24,48. Following Shen et al.24, our state vector includes
native 0.5°×0.625° grid cells where prior fuel emissions exceed 1 Gg a−1

and aggregates grid cells elsewhere. Altogether, the state vector con-
sists of 5651 elements globally. The inversion optimizes total methane
emissions for the state vector grid cells including contributions from
all sectors. We follow Shen et al.23 to attribute the posterior correction
factors and variances in each grid cell to individual sectors based on
the error-weighted contributions from these sectors in the prior
inventory.

Atmospheric inversion
We perform the inversion analysis following our previous work in
North America23,24. The optimized methane emissions are obtained by
minimizing a Bayesian cost function that balances the information
from observations and the prior emissions, weighed by the corre-
sponding error covariances49. For this we assemble gridded emissions
and boundary conditions into a state vector x, and the May 2018-
Feburary 2020 TROPOMI methane column data into an observation
vector y. Applying Bayes’ theorem and assuming Gaussian errors leads
to an optimizedmaximum-likelihood estimate for x byminimizing the
cost function J given by

J xð Þ= x� xA

� �TSA
�1 x� xA

� �
+ γ y�Kxð ÞTSO

�1 y� Kxð Þ ð1Þ

Here xA is the vector of prior emissions and boundary conditions,
K= ∂y=∂x is the Jacobian matrix describing the sensitivity of methane
columns to the perturbation of every element in x, and SA and SO are
covariance matrices for prior and observational errors, both taken to
be diagonal. For SA, we assume 50% error standard deviations for
emission elements in the baseline inversion and 5 ppb error standard
deviation for the boundary conditions. For SO, we apply the residual
error method50,51 by calculating the residual standard deviation
between observations and GEOS-Chem simulations that use the prior
estimates xA. The regularization term γ is designed to account for
unresolved observational error covariances in the inversion and thus
avoid overfit to observations52. Following Lu et al.15, we choose γ such
that x̂� xA

� �TSA
�1 x̂� xA

� �
≈ n where n is the number of state vector

elements and is the expected value of the chi-square distribution for a
diagonal matrix. This yields γ in the range 0.01-0.2 for different
inversion domains. Uncertainties in the specifications of SA and γ, and
in the assumption of Gaussian errors, are addressed with the inversion
ensemble described below.

Minimizationof Eq. 1 at∇xJ(x) = 0 yields the optimal estimate x̂ for
the state vector, the corresponding posterior error covariance matrix
Ŝ, and the averaging kernel matrix A as follows

x̂=xA + γKTSO
�1K+ SA

�1
� ��1

γKTSO
�1ðy�KxAÞ ð2Þ

Ŝ
�1

= γKTSO
�1K+ SA

�1 ð3Þ

A= I� ŜSA
�1 ð4Þ

where I is the identity matrix. The averaging kernel matrix A defines
the sensitivity of the solution to the true state. The traceofAquantifies
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the degrees of freedom for signal (DOFS), representing the number of
independent pieces of information that can be effectively constrained
in the inversion53. We construct the Jacobian matrix explicitly column-
by-column by conducting 22-month sensitivity GEOS-Chem simula-
tions perturbing individual state vector elements. This enables
analytical solution for x̂ in Eq. 2 and closed-form expressions for Ŝ
and A following Eq. 3 and 4. Our inversion can constrain 568 pieces of
independent information in the global spatial distribution of methane
emissions (Supplementary Fig. 19).

Running a series of 15 regional inversions to cover the important
source domains for methane (Fig. 1) is much less computationally
expensive than a global inversion, and this allows for much higher
spatial resolution. In addition, use of regional GEOS-Chem model
simulations with TROPOMI boundary conditions regularizes the
inversion by avoiding bias in initializing the model, accounting for the
methane sink, and simulating stratospheric transport48. It also miti-
gates the effect of any large-scale regional biases in the TROPOMI data.
The 15 inversion domains cover 96% of global oil-gas emissions, 82% of
all anthropogenic emissions, and 51%of natural emissions according to
our prior emission inventories (Supplementary Table 8). To calculate
the world’s total emissions, we sum posterior emissions for all 15
domains and retain prior emissions for the rest of the world. Our
posterior estimate for global anthropogenic emission is 363 Tg a−1,
consistent with a global inversion of GOSAT and TROPOMI observa-
tions by Qu et al.25.

Inversion ensemble and uncertainty analysis
The posterior error covariance matrix Ŝ represents the uncertainty
within our choices of inversion parameters, but there is uncertainty in
these parameters. Here we take advantage of the construction of the
JacobianmatrixK to obtain a large ensemble of analytical solutions (x̂,
Ŝ) by varying the parameters and prior estimates in the inversion. The
ensemble has 39 members, including (1) use of either GFEI v2, GFEI v1,
or EDGARv6 as prior bottom-up inventories, (2) regularization factors
γ varied by a factor of 0.5 and 2 from the baseline values; (3) error
standarddeviation of 50% and 75%on the prior estimate; (4) lognormal
error statistics (geometric standard deviation of 2) for the prior esti-
mate. We then use the Monte Carlo method to estimate the posterior
error statistics from the ensemble according to (x̂, Ŝ) for each
ensemble member. We report error statistics on the inversion results
as two standard deviations (2σ), corresponding to the 95%
confidence level.

Data availability
The TROPOMI methane product is from https://doi.org/10.5281/
zenodo.4447228. All data generated in this study are available at
https://doi.org/10.18170/DVN/PRSYW1.

Code availability
The code for the GEOS-Chem 12.7.0 chemical transport model is
available at https://doi.org/10.5281/zenodo.3634864.
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