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Inherent spatiotemporal uncertainty of
renewable power in China

Jianxiao Wang 1,2,13, Liudong Chen3,13, Zhenfei Tan 4, Ershun Du5, Nian Liu6,
Jing Ma6, Mingyang Sun7, Canbing Li4, Jie Song8,1,2, Xi Lu 9,10 ,
Chin-Woo Tan11 & Guannan He 1,8,12

Solar and wind resources are vital for the sustainable energy transition.
Although renewable potentials have been widely assessed in existing litera-
ture, few studies have examined the statistical characteristics of the inherent
renewable uncertainties arising from natural randomness, which is inevitable
in stochastic-aware research and applications. Here we develop a rule-of-
thumb statistical learning model for wind and solar power prediction and
generate a year-long dataset of hourly prediction errors of 30 provinces in
China.We reveal diversified spatiotemporal distribution patterns of prediction
errors, indicating that over 60% of wind prediction errors and 50% of solar
prediction errors arise from scenarios with high utilization rates. The first-
order difference and peak ratio of generation series are twoprimary indicators
explaining the uncertainty distribution. Additionally, we analyze the seasonal
distributions of the provincial prediction errors that reveal a consistent law in
China. Finally, policies including incentive improvements and interprovincial
scheduling are suggested.

To realize China’s carbon neutrality goal proposed in 20201,
the installed capacity of renewable energy resources should be
significantly increased. As China mentioned in the 2020 Climate
Ambition Summit, the installation of wind and solar energy should
reach no less than 1.2 Terawatt (TW) in 2030, almost 3 times more
than that in 20192, becoming the dominant electricity generation
resource.However, due to the salient intermittency and volatility, wind
and solar energy operation andmodeling face the critical challenges of
a high degree of uncertainty, which must be considered in energy
research3–5.

Various studies have investigated the generalized spatial and
temporal characteristics of renewable energy resources in regional
areas and compiled standardized test datasets, including statistical
analysis studies of current wind and solar resources6–10 and important
impact factors of renewable energy generation11, current wind and
solar energy resource estimation studies using meteorological data
andpredictionmethods12–14, and futurewind and solar energy resource
assessment studies based onwind speed and solar irradiation data15–19.
However, renewable energy resources rely on weather conditions and
thus are highly unstable, posing great challenges to accurate and
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reliable prediction. Some studies have examined the uncertainty of
solar and wind power equipped with energy storage to assess their
potential to meet future electricity demand20. Prediction methods
such as linear regressionmodels and eXtreme Gradient Boosting have
been utilized to forecast the uncertainty of wind and solar generation
in specific regional areas, considering seasonal or yearly analyses21,22.
However, limited research has focused on analyzing the spatio-
temporal uncertainty distributions of renewable energy23,24. There are
research gaps in terms of error analysis benchmarks that consider
long-term, high-granularity, and nationwide scales of wind and solar
output prediction, particularly within the context of China.

Error-analysis benchmarks for wind and solar output forecasting
are of great value in academic research and industry. First, a prediction
error database of the wind and solar output should be obtained via
benchmark prediction methods, e.g., neural network-based25, data
mining26, and regression methods27. Second, a wide variety of studies,
e.g., power system planning and operation28–31, energy scheduling32–34,
and market operation and mechanism design studies35,36, must con-
sider the intermittencyandvolatility of renewableenergy resources via
robust optimization37,38, stochastic programming39,40, and statistical
analysis methods41,42. Third, the prediction error of renewable power
determines the revenue risk of power generation companies, espe-
cially in markets with deviation punishment. In this regard, prediction
error analysis can provide an important reference for the decision-
making of intermittent renewables.

The motivation of this work is to develop a year-long error-ana-
lysis benchmark for hourly wind and solar generation forecasting in 30
provinces ofChina,which is expected to constitute a valuable resource
and toolkit formarket operators or planners. To this end, we use a one-
year standard dataset including hourly wind and solar output data for
30 provinces of China11. Here, we establish a rule-of-thumb prediction
model to conduct hourly predictions of the wind and solar output in a
rolling fashion and to obtain basic prediction datasets. The results
reveal the nationwide spatial distribution of the wind and solar energy
uncertainty through the prediction error. The first-order difference
and peak ratio of output data are determined as primary factors of the
prediction error. To further analyze provincial forecasting character-
istics, weprovide the provincial probability distribution function (PDF)
of prediction errors and distribution regularities, the influence of
power generation intervals on prediction in each province, and the
temporal features of uncertainty via seasonal analysis.

Results
Nationwide analysis of the uncertainty of wind and solar
generation
We obtain an error-analysis benchmark for the forecasting of hourly
wind and solar output potential in 30 provinces of China in 2016 using
the autoregressive integrated moving average (ARIMA) model based
on installation and hourly generation data retrieved from our previous
study11. The spatial distributions of the wind and solar uncertainty
across China are analyzed through the prediction error, as shown in
Fig. 1a, b, respectively, excluding Taiwan, Hong Kong, and Macau, as
well aswind energy in Tibet and solar energy in Chongqing (unsuitable
for wind/solar energy construction10 or data limitations). The predic-
tion error is calculated as the predicted value minus the actual value
(please refer toMethods). Thewind prediction error ranges from2.1 to
13.6%, with the largest error in Tianjin (TJ) and the smallest error in
Yunnan (YN). The overall prediction error of solar energy is smaller
than that of wind energy, ranging from 3.9 to 10.0%, and the largest
provincial prediction error is observed in Shanghai (SH), while the
smallest provincial prediction error comes fromXinjiang (XJ). Detailed
error analysis of wind and solar power for each province is shown in
Supplementary Figs. 1–3, respectively. We divide the 30 provinces into
four groups according to the wind prediction error: (i) >9%, (ii) 7–9%,
(iii) 5–7%, and (iv) <5%. Four groups can also be distinguished in terms

of solar energy according to the prediction error: (i) >8%, (ii) 7–8%, (iii)
6–7%, and (iv) <6%. The details of each group are provided in the
Supplementary Information (SI).

The results demonstrate that, except for Southwest China, the
wind prediction error in the other regions is relatively large, especially
large in the eastern area, i.e., Shandong (SD), SH, Jiangsu (JS), Anhui
(AH), and Henan (HA), and Northern area including Beijing (BJ), TJ,
Liaoning (LN), Jilin (JL), Shanxi (SX), and Hebei (HE), ranging from 8.0
to 11.3% and 5.3 to 13.6%, respectively. These two areas account for
25.0% and 27.9%, respectively, of the total prediction error in China.
Regarding solar energy, the prediction error is concentrated in the
areas of Central China covering Ningxia (NX), Shaanxi (SN), Hubei
(HB), Jiangxi (JX), and Hunan (HN), North China, and East China, ran-
ging from 6.2 to 9.0%, 7.2 to 9.3%, and 6.8 to 10.0%, respectively,
accounting for 17.5%, 25.0%, and 19.1%, respectively, of the total pre-
diction error in China.

We compare the prediction errors of various methods, including
random forest (RF), recurrent neural network (RNN), fully-connected
neural network (FCNN), and support vector machine (SVM), for pre-
dictingnationwide renewable energyoutput. The results are presented
in Fig. 1c and Supplementary Table 1. Our observations indicate that
although each method demonstrates varying prediction error dis-
tributions across different provinces, the overall nationwide predic-
tion errors remain similar among all methods, ranging from 6 to 9%.
Further details can be found in the SI. Notably, ARIMA andRNN exhibit
similar prediction errors and outperform other methods, benefiting
from their inherent ability to effectively handle time series data. In the
following part of this paper, we focus on the prediction error with the
ARIMA model as a benchmark method.

Moreover, we examine the impact of the prediction time scale on
the distribution of nationwide prediction errors for both wind and
solar energy, as illustrated in Fig. 1d. We observe that prediction error
increases with the prediction time scale, with a 2-h prediction resulting
in a 3.40% error for solar and a 2.83% error for wind, a 6-h prediction
resulting in a 6.14% error for solar and a 6% error for wind, and a 24-h
prediction resulting in a 9.25% error for solar and a 10.86% error for
wind. A detailed analysis of each hour’s prediction error reveals that
the error mainly originates from the ending periods, e.g., during 5–6 h
for the 6-h ahead predictions and during 15–24h for the 24-h ahead
predictions.

Key factors affecting prediction errors
Two statistical indicators are proposed to explore the factors
impacting prediction errors. Due to the irregular distribution of the
windoutput and thedaily periodicity of the solar output,weusehourly
and daily output data to analyze the wind and solar prediction errors,
respectively (Methods and Supplementary Fig. 4). We use the coeffi-
cient of determination (CoD) R2, which measures the linear correla-
tion, to quantify the relationship between the prediction error and
various factors. The installed capacity is independent of the prediction
error, with R2 =0:002 for wind energy (Fig. 2a) and R2 =0:076 for solar
energy (Fig. 2b). In addition, the power generation reflected by the
bubble size exhibited no correlation with the prediction error
(Fig. 2a, b).

As shown in Fig. 2c, d, the results indicate that the first-order
difference is a major influencing factor of the prediction error, which
comprises a series of changes from one period to the next. The rela-
tionship between the prediction error and first-order difference is
approximately linear. Regardingwind power, the relationship between
the prediction error and hourly first-order difference yields R2 =0:988
(Fig. 2c), while the daily first-order difference does not impact thewind
prediction error (please refer to the bubble size in Fig. 2c). Regarding
solar power, the CoD between the prediction error and the daily first-
order difference is R2 = 0:676 (Fig. 2d). The hourly first-order differ-
ence, however, could not reflect the prediction error, as indicated by
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the bubble size in Fig. 2d. The reason is that wind power prediction is
conducted hour-by-hour, and the daily wind power generation is
irregular and cannot reflect the hourly wind generation pattern.
Regarding solar power, power generation varies periodically daily, and
the characteristics of the hourly first-order difference could bemasked
by this daily periodicity.

Another significant factor influencing the prediction error is the
peak ratio, which reflects the frequency of the tendency changes in the
power output series, with CoD R2 =0:967 for the hourly wind output
(Fig. 3a) andR2 =0:558 for the daily solaroutput (Fig. 3c). Similar to the
first-order difference, wind and solar energy differ in their hourly and
daily features. To further explore the impact of different power gen-
eration levels on the prediction error, we evenly divide the installed
generation capacity into 10 intervals. We also select a representative
province in each wind and solar energy category for detailed analysis.
The representative wind energy provinces are TJ, SD, SX, and Gansu
(GS); the representative solar energy provinces are BJ, JS, HB, and Inner
Mongolia (IM). We express the peak distribution in each power gen-
eration interval as a frequency (Fig. 3b for wind energy and Fig. 3d for
solar energy). Regarding wind energy, peaks in provinces with a large

prediction error, e.g., TJ: 13.6% and SD: 8.9% occur in both higher and
lower power intervals, and the frequencyfluctuates at 10%.However, in
provinces with a small prediction error (SX: 5.4% and GS: 4.2%), peaks
are concentrated in lower power intervals from 1 to 4, at 76.76% and
83.48%. In contrast, solar energy peaks are mainly located in higher
power intervals, with the peaks in intervals above 4 accounting for
62.59%, 59.38%, 64.90%, and 89.61% in BJ, JS, HB, and IM, respectively.

Temporal analysis of provincial prediction errors
We examine the PDF and prediction error in each province within the
above 10 power generation intervals to analyze further the spatial
characteristics of the prediction error (Fig. 4 and Supplementary
Table 2). The results reveal that the more concentrated the PDF is
within a certain interval, the smaller the prediction error within this
interval. In terms of wind generation, the average prediction error
within interval 1 in TJ is small (only 10.6%), and the PDFs within this
interval are concentrated from intervals 1–4; in contrast, theprediction
error within interval 8 reaches 21.5%, and the PDF within this interval is
distributed across almost all intervals. The prediction errorwithin each
interval also reflects the variance and fluctuationmagnitudewithin the

Fig. 1 | Spatial distributions of wind and solar power prediction errors and the
impactsofdifferentmethods and time scales. aWind energy.b Solar energy. The
larger bubbles indicate the provincial wind and solar energy installations, and the
smaller ones indicate the average wind and solar energy generation (8760 h) by
province. The provinces are divided into four groups according to the provincial
prediction error (average value of 8760 h) and marked with four gradient colors.
The thick red linemarks the boundaries of the four areas of China, I. North China, II.
East China, III. Central China, and IV. Southwest China. Individual provinces are
indicatedwith lighterwhite lines.MWMegawatt, BJ Beijing, TJ Tianjin, HEHebei, SX
Shanxi, IM Inner Mongolia, LN Liaoning, JL Jilin, HL Heilongjiang, SH Shanghai, JS
Jiangsu, ZJ Zhejiang, AH Anhui, FJ Fujian, JX Jiangxi, SD Shandong, HA Henan, HB
Hubei, HN Hunan, GD Guangdong, GX Guangxi, HI Hainan, CQ Chongqing, XZ
Tibet, SC Sichuan, GZ Guizhou; YN Yunnan, SN Shaanxi, GS Gansu, QHQinghai, NX
Ningxia XJ Xinjiang. c Prediction error distribution across 30provinces obtainedby
different methods. The smoothed curve in the left and right parts represents the

prediction error density function across 30 provinces of solar and wind energy,
respectively. The short black line in themiddle of each shape is themedian value of
the data distribution, which visualizes the central tendency of the data distribution
of each method. The algorithm used to fit the density function is Kernel Density
Estimation. RF random forest, RNN recurrent neural network, FCNN fully-
connected neural network, SVM support vector machine, ARIMA autoregressive
integratedmoving average.dNationwideprediction error distributionof eachhour
based on 2, 6 and 24-h ahead prediction. Each box includes 1917, 638, and
159 samples for solar energy and 4297, 1432, and 358 samples for wind energy. The
lower/upper end of each box indicates the minimal/maximal value, and the lower
and upper percentiles indicate 25% and 75%, respectively. The short blue line
indicates the median, and the blue points show the outliers. There are blank areas
for the 2-h and 6-h predictions since these two prediction tasks only contain 2 and 6
time periods, respectively.
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interval. As shown in Fig. 4a, the average prediction error within
interval 8 in TJ is larger than that within interval 1, and the fluctuation
range within these two intervals is 0–72.1% with a variance of 404:2,
and 0–32.9% with a variance of 134:5, respectively.

As illustrated in Fig. 4 and Supplementary Table 2, we also dis-
cover that most of the provinces with large prediction errors reach
wind and solar prediction errors in high power intervals. The propor-
tions of intervals above 5 in TJ for wind energy, SD for wind energy, SX
for wind energy, BJ for solar energy, JS for solar energy, and HB for
solar energy are 64.9%, 64.0%, 60.3%, 61.2%, 56.9%, and 53.4%,
respectively. This phenomenon is more obvious for wind energy
because solar power never occurs at full generation, and there is
almost no solar power generation within intervals 9–10. Instead, the
prediction errors in provinces with a small prediction error are dis-
tributed almost equally among all intervals, e.g., the wind prediction
error within each interval in GS ranges from 8.3 to 22.8%. This occurs
because high power generation generally exhibits peak or inflection
points, which fluctuate wildly and are difficult to predict. The pro-
portion of peaks within each interval is provided in Supplementary
Table 3. Thus, the uncertainty of power generation can be intuitively
assessed based on power generation.

We also analyze the seasonal characteristics of the generation
uncertainty of solar and wind power on a provincial level. Here, we
compare the provincial prediction error in spring, summer, autumn,
and winter. Nationally, we determine that spring and summer are
dominant seasons for wind uncertainty, accounting for 55.48% of the
total prediction error (Fig. 5a), and spring and winter are dominant
seasons for solar uncertainty, accounting for 57.6% of the total pre-
diction error (Fig. 5c). The provincial characteristics are also similar, as

illustrated in Fig. 5b, d. The wind uncertainties in TJ and SD in spring
and summer account for 59.9% and 57.4%, respectively, of the total
prediction error; the solar uncertainties in BJ, HB, and IM in spring and
winter account for 60.4%, 58.0%, and 63.9%, respectively, of the total
prediction error. This occurs because solar irradiation in summer and
autumn is sufficient with fewer rainy days, resulting in more stable
solar power generation and relatively accurate prediction results.

Discussions
We provide an error-analysis benchmark for hourly wind and solar
generation in 30 provinces of China with significance for research,
industry, and policy decision-making. The proposed benchmark
reveals statistical characteristicsofwind and solar uncertainty,which is
indispensable for academic research. First, it can help to build the PDF
of wind and solar generation, providing scenario basis for stochastic
economic dispatch43. Energy scheduling may also use renewable gen-
eration and consider their prediction errors as a probability
distribution44. Second, the benchmark is applicable for robust opti-
mization, because the best andworst-case operating conditions can be
obtained through prediction results. It can also replace the assumed
prediction errors to generate reasonable probability distribution and
be used as expected forms in optimization formulations45,46. Third, risk
assessment can also benefit from the benchmark, as the security
region of power systems can be depicted based on the prediction
results and errors47. Without our work, most of these research use
assumed renewable generation and prediction error. In industry, the
benchmark plays a critical role as a guiding reference for intuitive
analysis of resource distributions and fluctuations,which could help to
evaluate investment revenue and the risk of renewable projects. If
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Fig. 2 | Impacts of installed capacity, power generation and first-order differ-
ence of time series. a wind installed capacity, (b) solar installed capacity, (c) wind
hourly first-order difference, and (d), solar daily first-order difference. Here we use
daily and hourly data to analyze solar and wind energy, respectively, which are
presented in the x-axis. Eachbubble indicates less influential factors, includingwind
or solar generation, wind daily first-order difference, and solar hourly first-order
difference, respectively. The radius of each bubble is the value of each factor. The
number of bubbles is 30, representing the 30 provinces of China, excluding Tibet

(wind), Chongqing (solar), Hong Kong, Macao, and Taiwan. The black linear
regression line fits the center of the bubbles, complemented by the slope, inter-
cept, and coefficient of determination (CoD). The color of each bubble indicates
the different categories: red—category with the largest prediction error; yellow—
category with the second-largest prediction error; blue—category with the third-
largest prediction error; green—category with the smallest prediction error. MW
Megawatt.
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prediction errors are large and renewable generation is unstable,
renewable projects will take more risks, and the investment should be
reduced. In addition, policy-makers and system planners need infor-
mation contained in the benchmark when determining development
strategies for cleaner energy systems. An emergent and valuable issue
entails the implementation of energy storage devices to mitigate the
power balance stress in power systems with an increasing share of
renewable resources48,49, and the optimal sizing and setting processes
of energy storage devices rely heavily on the spatial and temporal
uncertainties of renewable generation. In this paper, we focus on the
inherent uncertainty of renewable generation, and the forecasting
errors are obtained merely by time-series analysis. In practice, the
prediction errors of renewable generation may be impacted by more
complicated factors such as weather forecasting quality and opera-
tional curtailment strategies. In some application scenarios, the fore-
casting tools may result in asymmetric errors conservatively. For
instance, a system operator tends to forecast renewable generation
conservatively for the sake of system reliability. These practical factors
may lead to deviations in the distribution of the forecasting error, and

can be incorporated into the analysis by replacing the benchmark
forecasting model with a more realistic one, which deserves an in-
depth investigation in the future.

The statistical analysis indicates that the first-order difference and
peak ratio of renewable generation are two primary influencing factors
of prediction errors, both reflecting fluctuations in power generation.
The wind prediction error is affected by the hourly power generation
because the prediction model is employed based on the irregular
hourly wind output. In contrast, the solar prediction error is affected
by daily fluctuations since solar generation exhibits daily periodicity.

Our results reveal the provincial distribution of the uncertainty of
wind and solar generation, indicating different priorities for renewable
energy development in different areas. Some of the top 10 provinces
with the largestwindpredictionerror are TJ, SH, JS, andAH,with values
of 13.6%, 11.3%, 9.6%, and 8.4%, respectively. In contrast, the solar
prediction error in these provinces is 9.0%, 10.0%, 7.1%, and 6.8%,
respectively, which indicates that JS and AH should prioritize the
development of solar energy due to the small prediction errors and
fluctuations. SH and TJ are commercial provinces with small areas and
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Fig. 3 | Peaks distribution and the impact on the wind and solar power pre-
diction errors. a Influence of the wind hourly peaks. The radius of each bubble
indicates the ratio of the wind daily peaks. b Wind hourly peak distribution in 10
power generation intervals for Tianjin (TJ), Shandong (SD), Shanxi (SX), and Gansu
(GS). c Influence of the solar daily peaks. The radius of each bubble represents the
ratio of the solar hourly peaks. d Solar daily peak distribution in 10 power gen-
eration intervals for Beijing (BJ), Jiangsu (JS), Hubei (HB), and Inner Mongolia (IM).

In (a) and (c), the number of bubbles is 30, representing the 30 provinces of China,
excluding Tibet (wind), Chongqing (solar), Hong Kong, Macao, and Taiwan. The
black linear regression line fits the center of the bubbles, complemented by the
slope, intercept, and coefficient of determination (CoD). The color of each bubble
indicates the different categories: red—category with the largest prediction error;
yellow—category with the second-largest prediction error; blue—category with the
third-largest prediction error; green—category with the smallest prediction error.

Article https://doi.org/10.1038/s41467-023-40670-7

Nature Communications |         (2023) 14:5379 5



arenot suitable forwind and solar energydevelopment. YN, Fujian, GS,
Zhejiang (ZJ), and Guizhou (GZ) should develop wind energy due to
their smallest prediction errors of 2.1%. 2.6%, 4.2%, 4.9%, and 3.8%,
respectively. ZJ, SX, GZ, and SH are some of the top 10 provinces with
larger solar prediction errors, namely, 7.1%, 7.2%, 7.4%, and 10.0%,
respectively, while the wind prediction errors in ZJ, SX, and GZ reach
4.9%, 5.3%, and 3.8%, respectively, and the potential wind capacity
factor for Sichuan and GZ is approximately 15–25%10. Therefore, wind
energy development in these provinces is a recommended pathway to
reduce the adverse impact of renewable generation on power system
operation.

The temporal analysis demonstrates that renewable generation in
spring exerts the greatest impact on the power system, requiring the
proactive deployment of flexible resources. Combined with the spatial
distribution, the solar prediction error in North China in winter

exhibits a large prediction error, ranging from 9.3 to 11.4%, with an
average value of 10.4%, larger than the total prediction error of
3.9–10.0%, with an average value of 6.7%. As the Chinese government
has issued the Electric Heating Policy to provide heat in North China in
winter, the load demands in the power sector have increased
significantly50. The flexibility-adjustable resources and volatility on the
power source side exhibit inverse distributions, which have become a
central problem in the consumption of renewable energy in these
regions. In contrast, Southeast China achieves the smallest prediction
error in regard to both wind and solar energy in winter, with average
values of 2.8% and 5.1%, respectively. Additionally, existing research
has suggested abundant offshore wind power resources in the area,
with wind capacity factors higher than 50%, almost ranking at the top
in China10,11. Due to the obvious seasonal distribution of offshore wind
power, which dominates in spring andwinter51, wind power represents
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Fig. 4 | Provincial probability distribution function (PDF) andprediction errors
in each interval. a–dThe upper figures show the PDFs of windprediction in Tianjin
(TJ), Shandong (SD), Shanxi (SX), and Gansu (GS), and the lower figures show the
wind prediction error in each interval. e–hThe upper figure shows the PDFsof solar
prediction in Beijing (BJ), Jiangsu (JS), Hubei (HB), and InnerMongolia (IM), and the
lower figure shows the solar prediction error in each interval. PDFs and box plots
are missing in some intervals because the power generation does not reach that
range of the installed capacity, such as TJ wind generation only covers 0–90%
capacity. The PDFs plot indicates the distributionof predicted generation data. The
x-axis indicates the predicted power generation range, and the color corresponds

to the original power generation data in each generation range: pale turquoise:
0–10%; cornflower blue: 10–20%; dark salmon: 20–30%; burlywood: 30–40%; pur-
ple: 40–50%; pale green: 50–60%; light sky blue: 60–70%; yellow: 70–80%; deep sky
blue: 80–90%. Different colors mean the frequency of a certain predicted power
generation is composed of data from different power generation ranges. Each box
shows the distribution of the prediction errors. The lower/upper end of each box
indicates theminimal/maximal value, and the lower and upper percentiles indicate
25% and 75%, respectively. The short red line indicates the median and the bubble
line indicates the average prediction error of each box.
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a suitable alternative resource to offset the winter load peak in North
and Northeast China.

Based on the prediction error analysis, we summarize two policy
suggestions for China. First, the government should provide adequate
policy support and incentives to encourage wind energy development
in the Southwestern and Central areas of China and solar energy
development in the areas of Southwest and Northwest China. These
areas experience limited fluctuations in wind and solar generation,
around 2.1–6.4% and 4.3–7.4%, reducing the adverse impact on the
power system. However, the current installed capacities in these
regions are insufficient, even lower than East area with less land. Sec-
ond, the government should plan interprovincial energy transmission
in the space dimension to reduce the winter load peak in North China
and reduce the adverse impact of renewable energy. As concluded, the
wind and solar fluctuations in North China are notable, accounting for

28.1% and 25.0%, respectively, of the total prediction error in China,
especially during winter, with a proportion of 27.4% and 27.7%. How-
ever, during spring and summer, much energy consumption can be
satisfied by renewable energy, resulting in an unbalance in different
seasons and requiring additional energy sources. As such, the gov-
ernment should improve the power system infrastructure, system-
atically evaluate potential transmission projects, and plan additional
power lines according to the resource and load distribution.

Methods
Wind and solar output data
Hourly wind and solar output data for 2016 pertaining to 30 provinces
of China are retrieved from previous work11, except for Tibet wind,
Chongqing solar, Taiwan, Hong Kong, and Macao. The dataset con-
tains 8760hofwind and solaroutput data, andwind and solar installed

Fig. 5 | Temporal analysis of wind and solar prediction errors. a Wind, (c) solar
prediction error in the 30 provinces in spring, summer, autumn, and winter. Each
chord and arc represent the prediction error (%) between a province and the sea-
son, where the thickness is proportional to the level of prediction error. Regarding
province arcs, each segment corresponds to the prediction error in each season;
regarding season arcs, each segment corresponds to the prediction error in each
province. The number next to the arc indicates the cumulative prediction error.
Different colors in season arcs differentiate each province’s influence. BJ Beijing, TJ
Tianjin, HE Hebei, SX Shanxi, IM Inner Mongolia, LN Liaoning, JL Jilin, HL

Heilongjiang, SHShanghai, JS Jiangsu, ZJ Zhejiang,AHAnhui, FJ Fujian, JX Jiangxi, SD
Shandong, HA Henan, HB Hubei, HN Hunan, GD Guangdong, GX Guangxi, HI Hai-
nan, CQChongqing, XZ Tibet, SC Sichuan, GZGuizhou, YNYunnan, SN Shaanxi, GS
Gansu, QH Qinghai, NX Ningxia XJ Xinjiang. b Hourly prediction error of wind
power in TJ, SD, SX, and GS. d Hourly prediction error of solar in BJ, JS, HB, and IM.
Curves indicate hourly prediction errors (left axis), and bars indicate average pre-
diction errors (right axis) in the four seasons: Green—spring; red—summer; yellow—
autumn; and blue—winter.
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capacity data for these 30 provinces are included. We denote the
hourly wind output as Wi,t + 1,0 and the hourly solar output as Si,t + 1,0,
where i and t are province and time slot indices, respectively, for
i 2 ½1,N�,t 2 ½1,T �, N =30, and T =8760. As previously mentioned, daily
wind and solar output data are also required for the analysis, which can
be calculated as Eqs. (1)-(2):

WDay,i,c,0 =maxðWi,t,0,Wi,t + 1,0, � � �Wi,t + 23,0Þ,t = 24 � ðc� 1Þ ð1Þ

SDay,i,c,0 =maxðSi,t,0,Si,t + 1,0, � � � Si,t + 23,0Þ,t =24 � ðc� 1Þ ð2Þ

where SDay,i,c,0 and WDay,i,c,0 are the daily solar and wind output,
respectively, of province i in time slot t, and c is a day index,
for c 2 1,C½ � andC =365.

Benchmark prediction model
Time series prediction is based on historical data, among which the
autoregressive (AR),moving average (MA), and autoregressivemoving
average (ARMA) techniques are typical methods to study stationary
time series and are suitable for a large number of problems. However,
the fluctuations in wind and solar energy indicate that their power
generation involves a nonstationary time series with a time-varying
mean value and variance, which is difficult to study with these meth-
ods. Thus, to predict nonstationary sequences, the ARIMA prediction
model is introduced by Box-Jerkins. Considering a certain number of
differences in the ARIMA prediction model, wind and solar power
generation series can be converted into a stationary series, convenient
for prediction analysis. In the literature, the ARIMA model is widely
used in short-term renewable forecasting and is validated to yield
satisfactory results.

In predictionmodel construction, it is necessary tofirst determine
whether the series is stationary. If the series is not stationary, it should
be differentiated until the series meets the stationarity requirements.
Suppose the real wind and solar power generation series are Y t , the
differential order can be denoted by d, and the differential process can
be expressed as Eq. (3):

Xt = ð1� BÞdY t ,ADFtestðXtÞ= 1, ð3Þ

where Xt is the stationary series of the original real data, B is the lag
operator, and ADFtest = 1 passes the stationarity test. Except for the
differential order d, the ARIMA model should also determine the
autoregressive order p and moving average order q, and the ARMA
model for Xt can be expressed as Eq. (4):

1�
Xp

i= 1
φiB

i
� �

Xt =μ0 + ð1�
Xq

i= 1
μiB

iÞαt , ð4Þ

whereφi and μi are the autoregressive parameter andmoving average
parameter, respectively, αt is white noise with a mean of 0, μ0 is a
deterministic trendquantity greater than0, andBi is the ith power ofB.
Via the use of the predictionmodel, we can obtain the predicted series
Xpredict,t , which is a differential series of the predicted wind and solar
power generation. Thus, the predicted power generation can be
obtained through Eq. (5):

Ypredict,t = ð1� BÞ�dXpredict,t , ð5Þ

where Ypredict,t denotes the predicted results of the ARIMA-based
prediction model, and in this paper, this variable indicates the wind
and solar output.

There are three major parameters of the ARIMA-based prediction
model: differential order d, autoregressive order p, and moving aver-
age orderq. Parameterd is determinedbasedon theminimumnumber
of differences required to obtain a stationary time series. The d value is

generally smaller than three because the greater the difference order,
the more information would be lost52. It should be noted that para-
meter d is completely determined by the properties of the original
sequence, while the selection of p and q should consider the overall
prediction effect. In general, p and q should remain within 1/5 of the
length of the input data. Due to the large amount of wind and solar
power generation data in eachprovince in one year, usually 8760 h, we
separate multiple prediction windows for each province and used the
moving window method to predict wind and solar power generation.
At present, the methods for p and q determination usually include the
Akaike information criterion (AIC) and Bayesian information criterion
(BIC), but the optimal parameter configuration can only be provided
for a singlepredictionwindow. Tounify thepredictionmodelswith the
different prediction windows in the same provinces and minimize the
prediction error, we randomly select 5 weeks of data throughout the
year as a sample and traverse p and q for each province to obtain the
best parameters with the minimum prediction error. The detailed
parameters for each province are listed in Supplementary Table 4.

Other parameters, such as the autoregressive parameter φi and
moving average parameter μi, can vary with the input data. These two
parameters are determined by the autocorrelation coefficient and
autocovariance, respectively, which can be obtained with the
Yule–Walker estimation, least squares estimation or maximum like-
lihood estimation method53. In this paper, we build the ARIMA-based
prediction model, and all the parameters except p, d, and q could be
automatically generated.

In this paper, we set 6 h as the prediction time scale and 168 h as
the input data dimension to predict wind and solar power generation.
The reason is that 6 h-ahead forecast of renewable generation iswidely
used for power system scheduling and electricity trading in practice.
The 6 h-ahead forecast also results inmoderate errors that can serve as
a benchmark for the uncertainty analysis.

Comparative prediction models
In this paper, we compare four prediction methods including RF,
FCNN, RNN, and SVM. These four methods are all sample-based pre-
diction approaches.We begin by constructing the samples using 168-h
wind and solar generation data as input features and extracting sub-
sequences of 2, 6, and 24h as output for 2-h, 6-h, and 24-h step pre-
dictions, respectively. The RFmethod employs a tree-based prediction
model that builds multiple decision trees during training. The struc-
ture of the decision trees is determined by parameters such as tree
depth, the number of trees, and the maximum number of features
considered when splitting nodes. The FCNNmethod utilizes a network
structure consisting of interconnected perceptron. Each time slot’s
generation data serves as an input feature for the FCNN, and the pre-
dicted generation is the output. The network structure is designed
based on factors such as regularization, batch size during training,
learning rate, and the number of neurons in each layer. The RNN is a
neural network structure specifically designed for time series data,
incorporating hidden variables to carry information from previous
time slots. Similar to the FCNN, the RNN’s network structure is deter-
mined by parameters including the number of neurons, batch size, and
learning rate. The SVM is an initialmachine learningmethod employed
to separate the dataset. The SVM solves an optimization problem to
find an optimal hyperplane. Key considerations for SVM include reg-
ularization parameters, the margin of tolerance around predicted
regression values, and the influence attributed to each sample. Further
details on the network parameters and the tuning process can be
found in the Supplementary Note and Supplementary Table 5.

Prediction error calculation
In this paper, the prediction error of wind and solar energy could be
calculated as the unitmegawatt (MW)prediction error.Whenusing the
ARIMA-based benchmark prediction model, we could obtain the
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predicted wind and solar energy generation, and the prediction error
can then be calculated as Eq. (6):

εW,i,t =
Wi,t,* �Wi,t,0

CW,i
� 100%, εS,i,t =

Si,t,* � Si,t,0
CS,i

� 100%, ð6Þ

where εW,i,t and εS,i,t are thewind and solar prediction error in province
i in time slot t,Wi,t,* and Si,t,* are the predicted wind and solar output,
respectively, of province i in time slot t, and CW,i and CS,i are the wind
and solar installed capacities, respectively, in province i. When deter-
mining the prediction error in a given province, we calculate the
average value over 8760h.

First-order difference
Thefirst-order differencecanbeused to assess the variation indiscrete
time-series data. With the use of the first-order difference, we can
obtain the increment in the original data, which can reflect gradient
information. In this paper, prediction is conducted hour-by-hour, and
the prediction accuracy is primarily determined by the hourly change
in the generation data. Thus, in terms of wind energy, we use the first-
order difference of hourly wind generation data tomeasure the hourly
change, which can be calculated as Eq. (7):

FH,i,t =
Wi,t + 1,0 �Wi,t,0

CW,i
, ð7Þ

where FH,i,t is the hourly first-order difference in province i in time
slot t and Wi,t + 1,0 and Wi,t,0 are the real wind energy generation in
time slots t + 1 and t, respectively. When evaluating the hourly first-
order difference in a province, we calculate the average value
over 8760 h.

Regarding solar energy, power generation exhibits daily periodi-
city, so we use daily solar energy generation data to measure the
fluctuation, which can be expressed as Eq. (8):

FDay,i,c =
SDay,i,c + 1,0 � SDay,i,c,0

CS,i
, ð8Þ

where FDay,i,c is the daily first-order difference in province i on day c.
We also calculate the average value over 365 days to evaluate the solar
energy fluctuations in a given province.

Analysis and calculation of the peak ratio
In this paper, we use the peak ratio to evaluate the prediction error. It
should be noted that all the prediction methods learn the variation
tendency of a given data series to predict future data. The easier a
tendency is to learn, themore accurate the prediction. Thus, we aim to
obtain a feature that could indicate the change in tendency to better
measure the prediction error. The peaks of series data indicate
inflection points, with previous data exhibiting an upward tendency
and subsequent data exhibiting a downward tendency, which is a key
feature reflecting the tendency change.

In regard to wind energy, we use four consecutive time slots to
determine hourly peaks and traverse the time series to find all peaks,
i.e., t = t + 1. The power generation in these four time slots should
satisfy the following conditions to reach a peak: the first three hours
should continuously increase, the first three hours should increase by
more than 10% of the installed capacity, and the fourth hour should
decrease, which can be expressed as Eqs. (9)–(11):

PH,i,t = 1,Wi,t,0 �Wi,t�1, 0< 0,Wi,t�1,0 �Wi,t�2,0 ≥0,Wi,t�2,0

�Wi,t�3,0 ≥0,Wi,t�1,0 �Wi,t�3,0 ≥0:1 � CW,i,
ð9Þ

PN,H,i =
X

t2TPH,i,t , ð10Þ

PR,H,i =PN,H,i=T ð11Þ

wherePH,i,t denotes the hourly peaks in province i in time slot t, PN,H,i is
the number of hourly peaks in province i, and PR,H,i is the ratio of
hourly peaks in province i. We also calculate the average value over
8760 h to evaluate the wind energy fluctuations in each province.

Regarding solar energy, we use daily power generation data to
obtain daily peaks. Similar to the hourly peak calculation, four con-
secutive days are chosen to determine peaks, and similar conditions
should be satisfied, which can be expressed as Eqs. (12)–(14):

PDay,i,c = 1, SDay,i,c,0 � SDay,i,c�1,0 < 0,SDay,i,c�1,0 � SDay,i,c�2,0 ≥0,SDay,i,c�2,0

�SDay,i,c�3,0 ≥0,SDay,i,c�1,0 � SDay,i,c�3,0 ≥0:1 � CS,i,

ð12Þ

PN,Day,i =
X

c2CPDay,i,c, ð13Þ

PR,Day,i =PN,Day,i=C, ð14Þ

where PDay,i,c is the daily peak in province i on day c, PN,Day,i is the
number of daily peaks in province i, and PR,Day,i is the ratio of daily
peaks in province i. The average value over 365 days is also calculated
to express the solar energy fluctuations in each province.

Data availability
The source data underlying Figs. 1–5 and Supplementary Figs. 1-4,
including the data of provincial wind and solar power generation of the
30 provinces in China, are provided as a Source Data file. Other data
used in this study are available from the authors upon reasonable
request. Source data are provided with this paper.

Code availability
The code used in this study is available from the authors upon rea-
sonable request.
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