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Sequence anticipation and spike-timing-
dependent plasticity emerge from a
predictive learning rule

Matteo Saponati 1,2,3 & Martin Vinck 1,3

Intelligent behavior depends on the brain’s ability to anticipate future events.
However, the learning rules that enable neurons to predict and fire ahead of
sensory inputs remain largely unknown. We propose a plasticity rule based on
predictive processing, where the neuron learns a low-rank model of the
synaptic input dynamics in its membrane potential. Neurons thereby amplify
those synapses that maximally predict other synaptic inputs based on their
temporal relations, which provide a solution to an optimization problem that
can be implemented at the single-neuron level using only local information.
Consequently, neurons learn sequences over long timescales and shift their
spikes towards thefirst inputs in a sequence.We show that thismechanismcan
explain the development of anticipatory signalling and recall in a recurrent
network. Furthermore, we demonstrate that the learning rule gives rise to
several experimentally observed STDP (spike-timing-dependent plasticity)
mechanisms. These findings suggest prediction as a guiding principle to
orchestrate learning and synaptic plasticity in single neurons.

Predicting the future is pivotal in guiding interactions with the world,
for example in reward learning1,2 and in action planning3. Predicting
future states entails that a system can anticipate and signal events
ahead of time. Indeed, there is evidence for anticipatory neural activity
in various brain systems4–10. Furthermore, the predictability of sensory
events can evoke different neuronal signals, in particular enhanced
firing rates for surprising inputs, whichmay guide the update ofmodel
predictions in other brain areas10–13. Yet, the associations among sen-
sory events and their predictability should not only result in specific
patterns of neural activity, but should also have specific consequences
for synaptic plasticity and neuronal outputs14.

In particular, one would expect that synaptic inputs that carry
much information about the future receive high credit, whereas
those synaptic inputs that are redundant and predicted by other
inputs are downregulated. We conceptualize this credit assignment
as a form of predictive plasticity. As a consequence of credit
assignment to predictive synaptic inputs, neurons might learn to
anticipate and signal future events that are predicted, which can

then lead to the adaptive behavior of the organism. Importantly,
predictive relationships between events must eventually lead to
plasticity formation at the level of a single neuron, which receives a
limited set of inputs. However, it remains unclear how synaptic
plasticity formation in individual neurons relates to predictive
processing. Experimental evidence suggests numerous and
complex synaptic plasticity mechanisms for single neurons, e.g.
heterosynaptic plasticity15–17, spike-timing-dependent plasticity
(STDP)18–20 and homeostatic plasticity21,22. These experimental stu-
dies have shown that synaptic adjustment is sensitive to the relative
firing times of pre-synaptic inputs, the temporal relation between
pre- and post-synaptic firing, and that neurons can simultaneously
orchestrate plasticity at multiple synapses. These plasticity
mechanisms greatly enrich the computational capabilities of
neurons23 and may underlie the biological substrate for the asso-
ciation between events across long temporal sequences. They may
further account for the observation that repeated sequential
activity is associated with subsequent recall or replay of sequences
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at compressed time scales. Yet, a computational understanding of
how these plasticity processes may contribute to the prediction of
the future has to be reached.

We hypothesized that predictive plasticity may account for the
existence of learning processes inside individual neurons, allowing
neurons to learn temporal sequences and anticipate future events. We
recapitulate this predictive mechanism as a spiking neuron model,
where the cell anticipates future inputs by learning a low-dimensional
model of its high-dimensional synaptic inputs. Based on this principle,
we derive a predictive learning rule. We show how single neurons can
learn to anticipate and recall sequences over long timescales, and that
the described learning rule gives rise to several experimentally
observed STDP mechanisms.

Results
Model of prediction at the single neuron level
We formalized the proposed predictive process in the following
single-neuron model: In this model, at each moment in time t, the
neuron integrates the present pre-synaptic inputs in the current
state of the membrane potential and extracts from its dynamics a
prediction of the future input states (see the Methods section for a
detailed account of the model and analytical derivations). We first
defined the membrane potential vt as a linear filter, such that the
neuron updates itsmembrane potential recursively by encoding the
actual input at time t and the previous value of the membrane
potential at time t−1 (Equation (1)). The membrane potential at a
given time is the result of the temporal summation of previous
synaptic inputs, and the membrane potential thereby encodes a
compression of the high-dimensional input dynamics in time. This is
described by the system of equations

vt =αvt�1 +w
>
t xt � vthst�1

st =Hðvt � vthÞ :

�
ð1Þ

Here, the temporal integration of the inputs xt is weighted by a
synaptic weight vector wt, which gives different credit to different
synapses. Together with the recurrent dynamics of the membrane
voltage, we set a spiking threshold in Equation (1). Accordingly, if the
membrane potential reaches the threshold vth at time step t−1, the cell
fires a post-synaptic spike st and the voltage is decreased by vth at the
next timestep.

The objective of the neuron is to recursively compute a local
prediction of its own inputs by using the temporal relations in the
input spike trains. Theprediction of the incomingpre-synaptic input at
time step t is given by the weight of the associated synapse and the
previous state of the membrane potential, i.e.

L �
XT
t =0

Lt =
XT
t =0

1
2
jjxt � vt�1wt�1jj22 : ð2Þ

We then derived a predictive learning rule analytically by minimizing
the mismatch between the actual input and the prediction. This mis-
match can be interpreted as a prediction error, which can be com-
puted with information available within the neuron and in real-time
based on the dynamics of the inputs (see Methods). By letting the
synaptic weightswt evolve in real-time with the dynamics of the input,
we obtained our predictive plasticity rule

wt =wt�1 +η ϵt vt�1 + Et pt�1

� �
: ð3Þ

Here, η defines the timescale of plasticity, pt−1 is an input-specific
eligibility trace (see Methods), ϵt is the prediction error

ϵt � xt � vt�1wt�1 , ð4Þ

that defines the sign and amplitude of plasticity, and Et is a global
signal

Et = ϵ>t wt�1

� �
, ð5Þ

given by the weighted sum of the prediction errors at each synapse.
Consequently, synaptic weights undergo potentiation or depotentia-
tion depending on the predictability of the inputs. Thus, a synapsegets
respectively potentiated or suppressed if the associated input antici-
pates or is anticipated by other pre-synaptic inputs.

The computational steps of the predictive neuron model are as
follows: (1) At each time step t, the objective functionLt is evaluated as
the neuron learns to predict the current input (Fig. 1a, top); (2) the
prediction error ϵt is used to drive plasticity and update the synaptic
weights via Equation (3), and the current input xt is encoded by
updating the state variables of the neuron (Fig. 1a, bottom). The rule is
composed of three terms: (1) A first-order correlation term xtvt−1; (2) a
heterosynaptic term �v2t�1wt�1

16,17, which stabilizes learning24–26 as has
been observed experimentally27–30; (3) a global signal Et that depends
on synaptic variables and on the post-synaptic voltage. Accordingly,
theprediction of future inputs can be computed at the synaptic level in
the point-neuron approximation based only on information available
within the single neuron. On a long timescale, the neuron learns a
specific set of synaptic strengths by adjusting the synaptic weight
continuously as it collects evidence in its membrane potential.

To illustrate the development of anticipatory firing for a simple
example, we exposed the neuron to a sequence of two input spikes
coming from two different pre-synaptic neurons that fire with a rela-
tive delay of 4ms (Fig. 1b). In this simple scenario, the first pre-synaptic
input is predictive of the following pre-synaptic input and should thus
be potentiated, driving the neuron to fire ahead of the EPSP (excitatory
post-synaptic potential) caused by the second input spike. We trained
the model by repeating the input pattern for 300 epochs of duration
T = 500ms. During the training period, the neuron learns to adjust its
output spike time and to eventuallyfire aheadof thepre-synaptic input
2, which arrives at 6ms (Fig. 1b). The neuron converges onto an
anticipatory “solution” by a selective adjustment of the synaptic
weights (Fig. 1c, top). Inparticular, the neuron assigns credit to the pre-
synaptic input 1, which arrives at 2ms, and de-potentiates the strength
of the input arriving at 6ms. Accordingly, this leads to the anticipation
of the predictable input (Fig. 1c, bottom).We further observed that the
parameter space given by (w1, w2) is partitioned in different regions
depending on the number of spikes fired by the post-synaptic neuron
(Fig. 1d). The symmetry of the weight dynamics is broken when the
membrane potential reaches the threshold and an output spike is fired
(Fig. 1d). The learning dynamics are qualitatively the same when the
initial conditions lie in regions of multiple output spikes (Fig. S1).

Prediction of temporal structures in the input spike trains
The simple case of two pre-synaptic inputs in a fixed sequence shown
in Fig. 1b–d suggests that in the predictive plasticitymodel, the neuron
can predict future inputs and generate anticipatory signals. However,
in the brain, neurons receive many hundreds of synaptic inputs,
yielding high-dimensional sequences that may be embedded in
background, stochastic firing31. To investigate a relatively complex
scenario, we considered a temporal sequence determined by N pre-
synaptic neurons that fire sequentially with fixed delays (Fig. 2a). To
produce stochastic firing patterns, we used two types of noise sources,
namely jitter of spike times in the sequence and random firing of the
pre-synaptic neurons. The sequences were also embedded into a
higher-dimensional input pattern, where N additional pre-synaptic
neurons fired randomly according to a homogeneous Poisson process.
For each epoch, the population firing rate of the pre-synaptic inputs
was constant across time, indicating that the sequence could not be
detectedbasedon thepopulationfiring rate alone (Fig. 2a). In addition,
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the onset of the input sequence was random during each training
epoch (Fig. 2a). Because of these sources of noise and jitter, the post-
synaptic neuron received different realizations of the input pattern for
each training epoch.We numerically solved the learning dynamics and
studied the output spike pattern during learning.

Weobserved that during the first presentation of the stimulus, the
neuron fired randomly for the entire duration of the epoch. Subse-
quently, the predictive learning mechanism led to structured output
spike trains, and the neuron started to group its activity earlier in time,
such that it eventually learned tofire for thefirst inputs in the sequence
(Fig. 2b). During learning, the neuron kept a low output firing rate that
reflects its selectivity (Fig. 2b, bottom plot). The anticipation of the
pre-synaptic pattern is driven by the update of the synaptic weights
(Fig. 2c). Initially, the neuron assigns uniform credit to all the pre-
synaptic inputs, while firing randomly across the entire sequence.
Subsequently, the neuron potentiates the inputs that anticipate the
ones that are driving post-synaptic spikes, eventually assigning the
most credit to the first inputs in the sequence. Because the learning
dynamics follow the direction of reducing the overall prediction error,
the objective function Lnorm decreased across epochs (Fig. 2d, left).
Furthermore, during learning, the total amount of depolarization
across one stimulus presentation is reduced (Fig. 2d, right).

Further analyses demonstrate that the neuron model was able to
predict and anticipate input sequences for a substantial range of
model parameters (Fig. S2a, b). First, we found that themain results do
not depend on the initial weight vector (Fig. S3a). Second, we show

that anticipatory firing emerges even for longer sequences (Fig. S3b)
and increased noise amplitude and number of distractors (Fig. S3c).
Third, the noise source does not qualitatively affect the behavior of the
model across training epochs (Fig. S4a–d). Finally, we considered the
case where the input pattern is composed of different sub-sequences
which were spaced in time and belonged to independent subsets of
pre-synaptic neurons. We show that the neuron exhibits anticipatory
firing also in case of multiple sub-sequences (Fig. S5).

Together, these results show that an Integrate-and-Fire-like neu-
ron with a predictive learning rule can learn to anticipate high-
dimensional input sequences over short and long timescales. The
neuron effectively uses the timing of each input spike and its temporal
context across the spike pattern in a self-supervisedmanner. A synapse
gets potentiated if, on average, the corresponding pre-synaptic input
anticipates successive inputs that initially trigger post-synaptic spikes.
The predictive plasticity mechanism relies solely on the temporal
relation between inputs, it does not dependon initial conditions, and it
is robust to several pattern disruptions. The learned solution of
anticipating the input sequence thus decreases the number of fired
spikes and the energy consumed by the neuron, which can be under-
stood as a form of efficient coding32,33.

Sequence anticipation and recall in a network with recurrent
connectivity
In the previous section, we studied the emergence of anticipatory fir-
ing in a single neuron receiving many pre-synaptic inputs. However, in
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Fig. 1 | Description of the predictive plasticity rule. a Illustration of the model
and the computational graph corresponding to the learning algorithm. Top: at time
step t, the neuron computes a prediction of the new input xt from the previous
membrane potential vt−1 and synaptic weight vector wt−1 (see Equation (2)). The
prediction error is used to drive synaptic plasticity and update the synaptic weight
vectorwt−1 (see Equation (3)). Bottom: the neuron updates its membrane potential
by encoding the actual input xt via the learned weight vector wt and its previous
internal state vt−1 (see Equation (1)). If the voltage exceeds the threshold, an output
spike is emitted (shown in yellow) and this spiking event reduces the membrane
potential by a constant value at the next time step. Otherwise, the value of the
membrane potential vt is kept and passed to the next time step. b In the simulation
illustrated here, we considered a pattern of two pre-synaptic spikes from two dif-
ferent pre-synaptic neurons with a relative delay of 4ms. Shown are the dynamics
of the membrane potential at the first training epoch and after 100 iterations. The

neuron learns to fire ahead of the input that arrives at 6ms (i.e. pre-syn neuron 2).
c Top: Dynamics of the weights for different initial conditions (i.e. the weights at
epoch 0). The unbroken and dashed lines correspond, respectively, to the pre-
synaptic inputs arriving at 2ms (w1, pre-synaptic neuron 1) and 6ms (w2, pre-
synaptic neuron 2). Bottom: evolution of the output spike times across epochs. The
bottom and top plot have the same color code. d The flow field in the parameter
space was obtained by computing the difference between the weight vector
(w1,w2) in the first epoch and after 10 epochs. The blue lines represent the partition
given by the number of spikes that are fired. Note that when the synaptic weights
are larger, the neuronfiresmore spikes. The black arrow shows the trajectory of the
weights obtained by training the model for 500 epochs with initial conditions
w0=(0.005,0.005). The shaded region shows the section of the parameter space
where the neuron fires ahead of the input at 6ms from neuron 2.
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cortical networks, each neuron may receive a large set of pre-synaptic
inputs fromother areas, aswell as recurrent inputs fromneurons in the
same local network. We, therefore, investigated a more complex sce-
nario of a network of recurrently coupled neurons that were endowed
with a predictive learning rule. Our simulations were inspired by
experimental observations of recall and spontaneous replay after
learning. For example, a previous study in rat V1 has shown that the
repeated presentation of a sequenceof flashes (at different retinotopic
locations) gradually leads to a reorganization of spiking activity in the
order of the presented sequence7. The same study also showed that
the presentation of only the first stimulus in the sequence leads to a
compressed recall of the entire sequence7. Likewise, the sequential
activation of neurons in the prefrontal cortex and hippocampus is
known to lead to subsequent replay at a compressed timescale34–38.
Thesefindings have been interpreted in terms of a local reorganization
of synaptic weight distributions as a result of repeated activation with
an input sequence7,34,35,37,38.

We wondered if a network of recurrently connected neurons with
the predictive learning rule described above can develop sequence
anticipation as well as (stimulus-evoked) sequence recall and sponta-
neous replay. We explored the dynamics of a networkmodel where 10
neurons received an input sequence distributed across 80 external
units. We defined the timing of external inputs to each neuron in the
network, and the recurrent connections between neurons following a
simplified retinotopic structure with recurrent excitation between
nearby receptive fields. In particular, each neuron in the network
received a unique set of inputs from 8 pre-synaptic neurons, which
fired sequentially and exhibited stochastic background firing (purple
and black in Fig. 3a, respectively). The neurons in the network were
activated sequentially, such that the inputs into thefirst neuron arrived
earliest, the inputs into the second neuron arrived slightly later, etc.
(Fig. 3a). The network had a recurrent, nearest-neighbor connectivity
scheme, such that each n-th neuron was connected to the neighboring
n − 1-th and n + 1-th neuron (Fig. 3a). Thus, each neuron received a set
of “afferent” pre-synaptic inputs together with the inputs from the
neighboring neurons (Fig. 3a). Both the synaptic connections from the

afferent inputs and the recurrent inputs were adjusted by plasticity
according to the predictive learning rule described above. The recur-
rent connections between neurons in the network have a dis-
continuous effect in time - at the moment of the output spikes - and
thus their contribution to the gradient canbeneglected (seeMethods).
We show the activity of the network for three cases in Fig. 3b: (1) The
“before” case, where only the pre-synaptic neurons corresponding to
the first neuron in the network exhibited sequential firing. In this case,
the background stochastic firing was still present in all 80 pre-synaptic
neurons. (2) The “learning” or conditioning case, where we presented
the entire sequence (which is repeated 2000 times). (3) The “after” or
“recall” condition, which was the same as the before condition, but
after learning. We observed that in the before condition, the network
activity was relatively unstructured, with firing occurring in the period
after the sequence due to the background stochastic firing. During
learning, the neurons were active during a relatively long part of the
sequence and showed a sequential activation pattern. After learning,
the network showed sequential firing upon the presentation of the
inputs to the first neuron in the network in the order of the sequence.
This sequential firing took place at a compressed timescale. We found
that the recall effect was due to the potentiation of the inputs from the
n − 1-th neuron to the n-th neuron, as well as potentiation of the first
pre-synaptic inputs to the first neurons (Fig. 3c). Finally, we observed
that sequential firing could also be triggered spontaneously due to the
background stochastic activity of the pre-synaptic neurons (Fig. 3b;
after-spontaneous). Thus, the network exhibited a form of activity that
resembles the spontaneous replay of sequences.

We further characterized the evolution of the network’s output
during learning and the reconfiguration of synaptic weights.We found
that after several hundreds of epochs, the network converged onto
a stable, sequential output that was time-compressed (Fig. 3d).
We furthermore quantified the number of neurons that needed to be
activated in order for the network to recall the full sequence.We found
that this required number of neurons decreased gradually across
epochs, indicating a gradual reorganization of the synaptic weight
distribution during learning (Fig. S6).

ca
epoch j epoch j+1

b d

mean = 0.075 Hz

spike times 
(relative to sequence onset)

Fig. 2 | Anticipation of spiking sequences. a Top: Example spike sequence during
different training epochs. A spiking sequence is definedby the correlated activity of
a subset (N = 100) of pre-synaptic neurons. These N pre-synaptic neurons fire
sequentially with relative delays of 2ms, resulting in a total sequence length of
200ms (pink spike pattern). In each epoch, there are three different sources of
noise: (1) jitter of the spike times (random jitter between -2 and 2ms); (2) random
background firing following a homogeneous Poisson process with rate λ dis-
tributed between0and 10Hz (seeMethods); (3) another subset of 100pre-synaptic
neurons that fired randomly according to a homogeneous Poisson process with
randomlydistributed ratesbetween0 and 10Hz. For each training epoch, the onset
of the spike sequences is drawn from a uniform distribution with values between 0
and 200ms. The bottom plot shows the population firing rate over 10ms time bins
(neuronmembrane time constant).bDynamicsof thepost-synaptic spiking activity
during learning. The spike times are defined relative to the actual onset of the
sequence in each respective epoch. The bottom plot shows the neuron’s output

firing rate within each training epoch. This firing rate was computed across 100
independent simulations (shown are mean and standard deviation). c Top:
Dynamics of the normalized synaptic weights w/w0 as a function of the training
epochs. Here w0 is the weight vector in epoch 0. Above the dashed white line are
the 100 background pre-synaptic neurons that do not participate in the sequence.
The synaptic weights are ordered along the y-axis from 1 to 100 following the
temporal order of the sequence. Bottom: normalized weights of the first 20 inputs
at epoch 1000, showing only the first input has been assigned credit. d Left: Nor-
malized objective function Lnorm (left plot) as a function of the training epochs.
Different colors correspond to a different number of neurons participating in the
sequence. Right: normalized cumulative membrane potential 〈v〉. The cumulative
membrane potential was computed as the sum of the vt at each time step in the
simulations. The panels show themean and standard deviation computed over 100
different simulations.
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To generalize these findings, we studied a network with all-to-all
connectivity, i.e. each neuron was recurrently connected to all the
other neurons in the network. In this case, the network also learned to
recall the full sequence on a relatively fast timescale (Fig. S7). The
output of the network with all-to-all connectivity however differed
from the example with recurrent connectivity between neighbors:
After prolonged learning, the other neurons in the all-to-all network all
fired shortly after the first neuron was activated (Fig. S7). We also
studied a network scheme where each neuron received a random
subset of the pre-synaptic inputs, that is, we did not enforce a
sequential activation of the neurons consistent with the sequential
order of the pre-synaptic firing. Furthermore, the network had a ran-
dom, all-to-all connectivity scheme (Fig. S8). Similarly to the results of
Fig. 3, the network exhibited a reorganization of the synaptic weight
which led to the recall of the full sequence with a compressed time-
scale. These results were dependent on the total number of input
subsets to each neuron in the network (Fig. S8e).

Together, these results show that a recurrently connected net-
work of neurons each endowed with a predictive learning rule can
spontaneously organize to fire preferentially at the beginning of a
sequence, and recall (or replay) sequences at a compressed timescale.

Emergence of spike-timing-dependent plasticity rules
The results shown above clearly demonstrate that the potentiation of
synaptic weights depends on the timing relationships between inputs.
This suggests that there may be a connection between the predictive
learning rule described here and the experimentally observed spike-
time-dependent-plasticity (STDP) rules19.

To systematically investigate the dependence of potentiation and
depotentiation on the timing relationships between pre-synaptic
inputs, we considered the simplified case of two inputs (as in Fig. 1).
In Fig. 1, we had shown that the predictive learning scheme leads to

asymmetric synaptic weights when two pre-synaptic inputs have dif-
ferent arrival times. To quantify how the asymmetry between the
synaptic weights of the first and second input evolved with learning,
we defined an asymmetry index (Fig. 4a). The asymmetry index was
defined as dj − d0, where dj was the difference in weights at the j-th
epoch dj =w1,j −w2,j, and d0 the initial difference in weights. Thus,
positive values of the asymmetry index indicated that the synaptic
weight for the first input became relatively large compared to the
synaptic weight for the second input. To illustrate the behavior of the
asymmetry index, we trained the model by repeating a sequence of
two input spikes coming from two different pre-synaptic neurons
having a relative delay of 4ms for several epochs of duration
T = 500ms (as in Fig. 1). The parameter space in this case was defined
by the initialweights (w1,0,w2,0). After 100epochs, a small regionof the
parameter spacestill showedasymmetry indices aroundzero,while for
most of the parameter space, there were positive asymmetry indices,
indicating a convergence towards anticipatory activity. After 300
epochs, every initial condition led to the asymmetric solution and thus
to a positive value of the asymmetry index. Thus, the observation that
the first input was potentiated was generally observed for different
initial states of the synaptic weights (Fig. 4a).

To directly investigate the relation between STDP and the pre-
dictive learning rule described here, we investigated the dependence
of plasticity on the relative timing between inputs. To this end, we
performed a simulation that resembled the standard STDP protocol
(see Methods). We trained the predictive plasticity model with a
sequence of two input spikes from two different pre-synaptic inputs x1
and x2 arriving at a relative delay Δt. To approximate the STDP pro-
tocol with a current injection that triggers a post-synaptic spike, the
initial conditions were chosen such that x2 triggered a post-synaptic
spike, and x1 was a sub-threshold input. A negative and positive delay
Δt indicated that x1 arrived before or after x2, respectively. We found

c da b
before learning

after - recall after - spontaneous

n-1

n+1

n-1
n+1

Fig. 3 | Sequence anticipation and recall in a network with recurrent con-
nectivity. a In this example, we simulated a network of 10 neurons with nearest-
neighbor recurrent connectivity, that is, each neuron n in the network received
inputs from the n − 1-th and n + 1-th adjacent neurons. The first and the last neuron
only received inputs from the second and second last neurons in the network,
respectively. Shown are the connections to the second neuron. Each neuron in the
network received inputs from 8 pre-synaptic neurons that fire sequentially with
relative delays of 2ms, resulting in a total sequence length of 16ms (pink spike
pattern). The sequence onset of pre-synaptic inputs for the n + 1-th neuron started
4ms after the sequence onset for the n-th neuron in the network, etc. Each epoch
contained two different sources of noise: (1) random jitter of the spikes in the
sequence (between −2 and 2ms); random background firing of the pre-synaptic
neurons according to a homogeneous Poisson process with rate λ = 10Hz. Both the
connections from the pre-synaptic neurons to the neurons in the network and the
connections between the neurons in the network were plastic and modified
according to the predictive learning rule described in themain text.bRaster plot of
the network’s activity during different epochs of training: (1) The “before” case,
where only the pre-synaptic neurons corresponding to the first neuron in the

network exhibited sequential firing. In this case, the background stochastic firing
was still present in all the 8 × 10 = 80 pre-synaptic neurons. (2) The “learning” or
conditioning case, where we presented the entire sequence (which was repeated
2000 times). (3) The “after” or “recall” condition, which was the same as the before
condition (now after learning). (4) Same as (3), but an example where spontaneous
recall occurs due to the background stochastic firing. The neurons are ordered as in
panela. cThe synapticweightsmatrix obtained at the endof training (epoch 1000).
Top: The i-th column corresponds to the synaptic weights learned by the i-th
neuron in the network, where the 8 entries correspond to the synaptic weights for
the pre-synaptic inputs. Bottom: the nearest-neighbor connections in the network
towards the i-th neurons. Note that the first and last neurons do not receive inputs
from the n − 1-th and n + 1-th neurons, respectively. d Evolution of the duration of
network activity across epochs.We computed the temporal difference between the
last spike of the last neuron and the first spike of the first neuron to estimate the
total duration of the network’s activity. We computed the average duration and the
standard deviation from 100 simulations with different stochastic background
firing and random jitter of the spike times.
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that the potentiation of the first input was determined by the relative
delay Δt (Fig. 4b). Specifically, we observed an antisymmetric learning
window with a similar time dependence as has been experimentally
observed for STDP18,19 (Fig. 4b). This windowexpanded as a function of
themembrane time constant τm (Fig. 4b). Themodel exhibited such an
antisymmetric learning window even though we did not explicitly
implement any spike-timing-dependent LTP and LTD rule with a spe-
cific learning kernel.

In addition to the classical dependence on the relative delay
between inputs, many other pre- and post-synaptic factors can influ-
ence the sign and amplitude of synaptic plasticity39–41. The nonlinear
and history-dependent interactions associated with STDP are espe-
cially relevant when neurons receive complex input spiking patterns.
We considered someof those complex STDPprotocols to test ifwe can
reproduce the nonlinear effects by means of the predictive
learning rule:

(1) Experimental evidence indicates that the frequency of post-
synaptic bursts after a pre-synaptic input can boost LTP while LTD
remains unchanged42. To emulate this, we simulated a case where the
inputs frompre-synaptic neuron 2 arrived in a burst, with each spike in
the burst triggering a post-synaptic spike. We quantified the total
weight change after training the model on this protocol. The effect of
the intra-burst frequency on the synaptic weight change, as experi-
mentally observed42, was reproduced by our model (Fig. 4c). (2)
Froemke et al. showed that adding more post-synaptic spikes after a
post-pre pairing can convert LTD into LTP (see Fig. 6 in ref. 43). We
tested the model on such multi-spike protocol and observed that our
model can reproduce the transitionmeasured in the experimental data
(Fig. 4d). (3) The frequency of pre-and post-synaptic spike pairings can
influence plasticity and convert LTD to LTP for high-frequency
bursts39,43,44. The predictive plasticity model reproduced the depen-
dence on the frequency pairing as observed in ref. 43 (Fig. 4e).
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Fig. 4 | Predictive learning rule gives rise to spike-timing-dependent plasticity
mechanisms. a Left: Illustration of the protocol, where a neuron receives inputs
from two pre-synaptic neurons (associated with weightsw1 and w2) with a delay of
Δt = 4ms. These inputs were repeated across epochs. Middle and right: Asymmetry
index, computed as the difference between the initial weight vector (w1,0,w2,0) and
the final vector after j epochs: (w1,j−w1,0)−(w2,j−w2,0). Positive values of the asym-
metry index thus indicate thatw1 increases relative tow2. Shown are the asymmetry
index after 100 and 300 epochs, as a function of the initial weights. The white lines
divide three regions: (1) No spike; (2) A single spike; (3) A single spike before the
second input (i.e. anticipation). The right panel shows, that for all initial weight
conditions, the weight of the first input showed a relative increase as compared to
the second input.b In order tomodel classic STDPprotocols with current injection,
one of the two inputs (pre-synaptic neuron 2) had a strong initial weight (i.e. did
evoke a spike), and the other input (pre-synaptic neuron 1) was sub-threshold (i.e.
did not evoke a spike). In this simulation, the weights for both inputs could be
adjusted via the predictive learning rule (see Fig. S11 when the second input has a
fixed weight). The y-axis shows the weight change (in percentage relative to the
initial weight) of the sub-threshold input (i.e. pre-synaptic neuron 1) as a functionof
the delay Δt between the two input spikes (see Methods). Negative and positive
values of Δt indicate that input 1 preceded or lagged input 2, respectively. Shown
are theweight changes for differentmembrane time constants after 60 epochs. c In
this simulation, the second input contained a burst of 3 spikes, which arrived after

the first input, and each triggered a spike in the post-synaptic neuron. The input
from pre-synaptic neuron 1 only had a sub-threshold effect. Shown is the weights
change (as in b) versus the firing frequency, i.e. 1/Δt, within the burst (total of
3 spikes per burst). The blue and purple lines refer to the case that input 1 preceded
input 2 or lagged input 2, respectively. Data used with permission of Society for
Neuroscience, from “Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity'',
Nevian and Sakmann, Journal of Neuroscience 26(43), 2006; permission conveyed
through Copyright Clearance Center, Inc. (we refer to42 for information about the
sample size), RMS error: 0.868 for pre-post pairing and 0.206 for post-pre pairing.
dWeights change (as inb) as a functionof thenumberof spikes in the second input.
The inputs from pre-synaptic neuron 2 each triggered a spike in the post-synaptic
neuron. The input frompre-synaptic neuron 1 only had a sub-threshold effect. RMS
error: 0.089. e Weights change (as in b) induced by increasing the frequency
pairing. Here, the inputs from pre-synaptic neuron 2 always triggered a spike in the
post-synaptic neuron,whereas the input frompre-synaptic neuron 1 only hada sub-
threshold effect. The inputs from neuron 2 arrived 6ms before the inputs from
neuron 1. RMS error: 0.057. Data in panel d and e used with permission of The
American Physiological Society, from `Contribution of Individual Spikes in Burst-
Induced Long-Term Synaptic Modification'', Froemke et al., Journal of neurophy-
siology 95(3), 2006; permission conveyed through Copyright Clearance Center,
Inc. (we refer to43 for information about the sample size).
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Interestingly, Fig. 4a shows that in early training (i.e. repetition)
epochs, certain regions of the parameter space can lead to an asym-
metric index close to zero. This suggests that the STDP windowmight
have different forms depending on the parameter space and the
training epoch, even though the neuron eventually converges onto
anticipatory firing. Consistent with this observation, experimental
studies have also observed symmetric STDP windows that are either
LTP-dominated45 or LTD-dominated46. In Fig. S9 we indeed show that
the predictive learning rule can, for certain parameter settings, yield a
symmetric STDP window that is either LTP- or LTD-dominated. Sym-
metric STDP windows can emerge even though the neuron eventually
does converge onto an anticipatory solution. A key factor that deter-
mines the specific shape of the STDP window may be the initial
strength of the synapse. In agreement, experimental work has shown
that the amount of plasticity in a standard STDP protocol depends on
the initial strength of the pre-synaptic weight44. To investigate this, we
examined the potentiation of the first input depending on its initial
synapticweight.We found that therewas a switch frompotentiation to
depotentiation as the initial synaptic strength increased (Fig. S10),
consistent with the experimental observations44.

To further relate our findings to experimental observations in
which a current injection protocol was used, we performed simula-
tions in which we fixed the synaptic weight of the supra-threshold
input (i.e., in this case, it was not adjusted by plasticity). Also in this
case, the model displayed an antisymmetric STDP kernel (Fig. S11).

Altogether, we showed that the predictive learning model can
reproduce several linear and nonlinear STDP features.

Discussion
The anticipation of future events is a core feature of intelligence and
critical for the survival of the organism. Here, we studied how indivi-
dual neurons can learn to predict and fire ahead of sensory inputs. We
propose a plasticity rule based on predictive processing, where an
individual neuron learns a low-rank model of the synaptic input
dynamics in its membrane potential. Accordingly, the sign and mag-
nitude of synaptic plasticity are determined by the timing of the pre-
synaptic inputs. That is, synapses are potentiated to the degree that
they are predictive of future input states, which provides a solution to
an optimization problem that can be implemented using only infor-
mation available at the single-neuron level. We show that neurons
endowed with such plasticity rule can learn sequences over long
timescales and shift their spikes towards the first inputs in a sequence
(i.e. anticipation). Furthermore, neurons represent their inputs in a
more efficient manner (i.e. with reduced overall membrane potential).
This anticipatory mechanism was able to explain the development of
anticipatory signaling and recall in response to sequence stimuli.
Finally, we demonstrated that the learning rule described here gives
rise to several experimentally observed STDP mechanisms, including:
asymmetric STDP kernels18,19, as well as symmetric ones45,46 given the
initial conditions; the frequency-dependence of STDP43; the number of
post-synaptic spikes in a burst or post-pre pairing39; the dependenceof
de-potentiation on the initial synaptic strength44. Together, our results
indicate that prediction may be a guiding principle that orchestrates
learning and synaptic plasticity in single neurons, providing a different
interpretation of STDP phenomena.

We first discuss how our results relate to previous theories of
coding in cortical networks that emphasize the importance of pre-
dictions. An influential theory of cortical function is hierarchical
predictive coding (HPC). The basic understanding of HPC is that the
brain maintains a model or representation of current and future
states in the outside world, and updates this model as new infor-
mation comes in. HPC posits that the inference process is imple-
mented by the feedforward routing of surprising or unpredicted
signals (i.e. prediction errors), and the routing of sensory predictions
down the hierarchy via feedback (FB) projections10,11,47. The

predictive plasticity mechanism that we described here differs from
HPC models in several aspects, for example: (1) In HPC, prediction is
the result of network interactions, in particular the cancellation of
the feedforward drive by inhibitory feedback. In our model, predic-
tion results from plasticity at a single neuron level. (2) Different from
HPC, in our model the neuron does not explicitly transmit (encode)
prediction and error signals. (3) Both in HPC and ourmodel, neurons
may exhibit reduced firing for predicted as compared to unpredicted
sensory inputs. Yet, in our model, this is due to depotentiation of
predictable inputs, whereas in HPC it is due to inhibitory feedback
mediated by top-downprojections.We note that our plasticitymodel
is fully compatible with another flavor of predictive processing,
namely “coding for prediction”. According to this theory, neurons
primarily transmit information about sensory inputs that carry pre-
dictive information about the future, as observed in the retinal neural
circuits48. The findings here may also be relevant to understand the
development of anticipatory firing in sensory systems4,7,8, temporal
difference learning49,50, as well as the compression of sequences
during resting state based on prior experience34,51. Finally, recent
work showed that neural activity in the auditory cortex can be pre-
dicted roughly 10–20ms in advance and that these predictions can
be exploited at the single neuron level to achieve high performance
in classification tasks52. However, prediction in the model of52 does
not happen in an unsupervisedmanner in time as their method relies
on the combination of the single neuron predictionwith a supervised
teaching signal, a novel implementation of Contrastive Hebbian
Learning53.

Next, we discuss how our findings relate to STDP experiments
and models. STDP is an established experimental phenomenon that
has been widely observed in-vitro18,19. There is evidence for a variety
of STDP kernels40, which dependent on several post-synaptic vari-
ables like backpropagating action potentials (bAP)54, post-synaptic
bursts42 and the dendritic location of inputs30. These experimental
findings are all obtained in in-vitro preparations. Thus, it is unclear
what the nature of STDP in-vivo is. The standard protocol for testing
STDP has two major limitations that deviate from the normal phy-
siological setting: (1) The protocol involves a current injection in the
post-synaptic neuron. The current injection itself is not subject to
(physiological) plasticity and might therefore not be a good “proxy”
for post-synaptic depolarization induced by natural pre-synaptic
inputs in-vivo. (2) Several studies have pointed out that different
post-synaptic signals (e.g. spike times, depolarization level, dendritic
spikes) are relevant for STDP44,54,55. It is still a manner of debate what
is the crucial post-synaptic variable for plasticity56. In principle, STDP
models might apply both to cases with artificial currents and phy-
siological pre-synaptic inputs. An artificial depolarization caused by
current injections can lead to plasticity in both our model and STDP
models. Yet it is an open experimental question what is the nature of
learning rules when it comes to physiological synaptic inputs and
their timing relationships. For example, it is known that to induce LTP
(Long TermPotentiation), it is not necessary to evoke a post-synaptic
spike55,57. The learning rule proposed here predicts that, in-vivo, pre-
synaptic inputs causing a post-synaptic spike will eventually become
depotentiated if they are anticipated (i.e. predicted) by other pre-
synaptic inputs in a sequence.

Comparing the present results to previous work, we emphasize
that we did not construct a learning rule to reproduce experimentally
observed STDP phenomena. Indeed, several phenomenological (i.e.
descriptive) STDP models have previously been proposed to fit
experimental data58–61 providing mathematical tools to describe,
model, and predict the behavior of neurons. However, these phe-
nomenological models might not fully explain the computational sig-
nificance of STDP mechanisms, nor the algorithms from which these
biological implementations can emerge. Our approach differs from
these models in that we took an optimization problem based on the
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prediction of future inputs as a starting point. From this optimization
problem, we derived a learning rule which gave rise to experimentally
observed STDP mechanisms. Our results, together with previous
studies62–64, suggest that STDP is a consequence of a general learning
rule given the particular state of the system, the stimulation protocol,
and the specific properties of the input. As a consequence, several
STDP learning windows which are described by other phenomen-
ological rules are predicted by our model, as well as the dependence
on synaptic strength and depolarization level.

An exampleof an establishedphenomenologicalmodel of STDP is
the one developed by Clopath et al.65. The authors, guided by experi-
mental evidence30,44,66, modeled the role of the membrane voltage as
the relevant post-synaptic variable for synaptic plasticity. The plasti-
city model described in65 can accurately reproduce a wide range of
experimental findings which, to our knowledge, is not possible with
STDP learning rules that are only based on spike timing61. The Clopath
rule is based on the two-threshold dynamics observed by Artola et al.66

and the authors assume an Adaptive-Exponential I&F (AeI&F) model
for the voltage dynamics67, together with additional variables for the
spike after-potential and an adaptive threshold. In agreement with the
results of ref. 65, we were able to account for a wide range of phe-
nomenawith a simplermodel of voltagedynamics, supporting the idea
that the history-dependent effect of themembrane potential is pivotal
to plasticity. Our model also predicts the experimental observation
that the amount of LTP has an inverse dependence on the initial
strength of the synaptic input44. To our knowledge, this finding is not
described or predicted by the model of ref. 65, because it does not
include a dependence on the initial strength of the synapse. Another
unique feature of the learning ruledescribedhere is that it canproduce
different several STDP kernels (e.g. asymmetrical, symmetrical)
depending on the initial conditions.

The learning rule in Equation (3) depends on synaptic mechan-
isms that are biologically plausible, as they rely on information that is
locally available at the level of single neurons. In this model, synaptic
plasticity depends on the interaction between synaptic variables and
global signals, that in turn depend on the pre-and post-synaptic
activity (the prediction errors ϵt) and the strength of the synapseswt−1.
These processes can be implemented with local mechanisms such as
NMDA receptors, voltage-gated calcium channels (VGCCs)68,69, and
synaptic interactions via intracellular signals or membrane
depolarization16,28,55,56,70,71. In particular, the second term in Equation (3)
defines the interaction of a local trace of pre-synaptic inputs with a
global, post-synaptic term Et . This global term entails that transient,
unpredicted increases in the voltage contribute to LTP, whereas more
sustained depolarization contributes to LTD. In fact, experimental
evidence shows that different molecular pathways depending on glo-
bal, post-synaptic variables - e.g. membrane depolarization66,72, intra-
cellular [Ca2+] transients73 - are key in determining the sign and
amplitude of synaptic plasticity.

The learning rule described here and phenomenological STDP
models might also lead to similar behavior in terms of spiking
output in response to sequences. In agreement with the present
work, previous studies have shown that phase precession can lead
to the learning of temporal sequences through an asymmetric
learning window, as in spike-timing-dependent plasticity
(STDP)5,74,75. Modeling studies have shown that a post-synaptic
neuron endowed with an LTD-dominated STDP model can exhibit
potentiation of the first synaptic inputs in a temporal sequence,
leading to a decrease in the latency of the post-synaptic
response76,77. A key difference with our work, however, is that the
predictive plasticity rule described here does not produce asym-
metric STDP under all conditions. In fact, the degree of potentiation
and depotentiation in our model depends on the initial state. That
is, there is no fixed STDP kernel in our model. Another difference is

that our model can anticipate sequences independent of the initial
conditions of synaptic weights (in contrast to ref. 77), for a wide
range of sequence lengths, and pre-synaptic population size. In the
model described here, we show that the anticipation of sequences is
a convergence point during learning and thereby it is a general
solution for a wide set of model parameters.

Thus, we propose that a single neuron perspective on prediction
and anticipatory mechanisms is important as the implementation of
any plasticity rule is ultimately achieved at the neuronal level,
thereby guiding behavior at the system level. Yet, it is obvious that
single neurons are embedded into networks and different means of
communication can lead to more complex learning rules, in which
the single-neuron learning rule described here might be one com-
ponent. Indeed, it is possible that certain empirical phenomena like
sequence recall additionally depend on network dynamics instead of
single-neuron learning rules. For example, the faster recall of
sequences in the visual system observed in7 was reproduced in a
recent work78. The authors developed a biologically realistic
network model which differs from our implementation in several
ways: (a) a network of both excitatory and inhibitory neurons, (b) a
random Gaussian connection probability, (c) a leaky I&F model with
conductance-based AMPA, GABA and NMDA synaptic currents, (d)
several network hyperparameters such as synaptic delays, (e) a short-
term depression model and a specific multiplicative, NN-STDP
model. While the model in ref. 78 gives a biological explanation
based on the conductive properties of the ion channels, the network
implementation of our plasticity rule provides a principle approach
to understanding fast sequence recall as it is observed also in other
brain areas, e.g. different primary sensory areas4,6 or the
hippocampus51. We qualitatively reproduced the faster recall of
sequences with a much simpler model, supporting the pivotal role of
spike times and excitability for the phenomenon.

Our work is further related to recent approximation algorithms
for learning in neural networks such as e-prop79 or surrogate-gradients
techniques80 as our model provides an online approximation for
training spiking neural networks (SNN). In ref. 79 the authors showed
that learning in spiking recurrent neural networks can be decomposed
into two terms, a global loss, and an eligibility trace which depends on
the local state of neurons and results in synaptic weight changes
according to local Hebbian plasticity rules. In our model, the optimi-
zation problem is defined directly at the level of single neurons. Thus,
all learning is local in space, i.e. there is no global loss at the network
level. An interesting question for future research is combining these
two approaches by obtaining a completely local learning rule for
optimization at the single and network level simultaneously. Indeed,
experimental evidence41,81 shows that local learning rules implemented
by neurons provide a substrate onwhich global feedback signals act82,
which may provide a biological mechanism for error
backpropagation83. As our loss function depends only on the mem-
brane potential of the cell, our model avoids the problem of propa-
gating the gradient through discrete spikes. It follows that we did not
implement a surrogate-gradient approximation80.

Looking forward, further investigation on single neurons antici-
pating local inputs and their interplay through network interactions is
key to understanding how complex prediction strategies can emerge.
Moreover, synapses can be located far from the soma along the den-
dritic arbor and might not be able to access the somatic membrane
potential directly, with strong consequences on plasticity30. Other
post-synaptic events such as NMDA spikes or plateau potentials can
have an effect on plasticity rules based on membrane voltage, see e.g.
in ref. 84. Thereby, spatially segregated dendrites and spatiotemporal
integration of events along the neuronal compartments could drasti-
cally increase the complexity of prediction obtainable at the single
neuron level.
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Methods
Neuron model
We used a leaky Integrate-and-Fire-like (LIF) model of the form

τm
dvðtÞ
dt

= � vðtÞ+w>xðtÞ � vðthÞ
X
j

δðt � tjÞ : ð6Þ

Here, v 2 R is the membrane potential, τm is the membrane time
constant, xðtÞ 2 RN is the pre-synaptic input, w 2 RN is the weight
vector and v(th) is the spiking threshold (the subscript (th): “thresh-
old”). The sum in the last term runs over all the post-synaptic spike
times tj and δ(⋅) is the Dirac delta function.Without loss of generality,
we set the resting state of themembrane potential to zero.We used a
discrete time-step h to discretize equation (6), yielding a recurrence
model of the form

vt =α vt�1 � vðthÞst�1 +w
>xt

st =Hðvt � vðthÞÞ :

(
ð7Þ

Here,α ≡ 1 − h/τm andH(⋅) is theHeaviside function. The variable st∈ {0,
1} takes binary values and indicates the presence or absence of an
output spike at timestep t. If the voltage exceeds the threshold, an
output spike is emitted, and this event reduces the membrane poten-
tial by a constant value v(th) at the next time step. This implementation
of the membrane potential reset relates our model to the spike
response model85. We set h =0.05ms in all numerical simulations.

Derivation of the learning rule
The predictive plasticity model entails that neurons predict future
inputs by extracting information from the current state of the mem-
brane potential. We formalized this as an optimization problem in
time, and we defined the objective function L as the cumulative error
in a given time window T

L �
XT
t =0

Lt �
XT
t =0

1
2
jjxt � vt�1wjj22 , ð8Þ

where ∣∣ ⋅ ∣∣2 is the l2-norm. The objective is to obtain the minimal dif-
ferencebetween the inputxt and its predictionviavt−1 andw.Weassume
that themismatch is evaluatedat each timestep t. ThegradientofLw.r.t.
to w can be computed in a recursive manner by unrolling the compu-
tation via backpropagation-through-time (BPTT)86. At each timestep, t,
the exact gradient of L can be written as the contribution of two terms,

∇wL=
XT
t =0

1
2

∇w Lt +
∂Lt

∂vt�1
∇w vt�1

� �
: ð9Þ

The first term accounts for the direct effect of a weight change on Lt ,
while the second accounts for its indirect effect via the membrane
potential vt−1.

The first term of the gradient is given by,

∇wLt = � 2 xt � vt�1wt

� �
vt�1 , ð10Þ

which propagates the prediction error selectively to each input and
scales it by the feedback signal determined by vt−1. This term can be
interpreted as a time-shifted version of Oja’s rule25, where vt−1 plays the
role of the linear output variable. In fact, Oja’s rule can be derived as an
approximated gradient descent method for dimensionality reduction
problems87. The second term of equation (9) has a contribution given
by the direct effect of vt−1 on the prediction,

∂Lt

∂vt�1
= � 2 xt � vt�1w

� �>w , ð11Þ

i.e., the sumof the prediction errorsweighted by their relative synaptic
strengths. To obtain real-time learning, we want to comprise the
remaining term of equation (9) via dynamical updates. We obtain this
by differentiating the dynamical rule of the membrane potential in (1)

∇wvt = α � vðthÞ
∂st�1

∂vt�1

� �
∇wvt�1 +xt : ð12Þ

The first term contains the Jacobian Jt of equation (1)

Jt =
∂vt
∂vt�1

=α � vðthÞ
∂st�1

∂vt�1
, ð13Þ

which holds the contribution of the linear recurrent term and of the
threshold nonlinearity for the spiking output st−1. Similarly to the
adjoint method88, we define an influence vector pt ≡∇wvt such that it
obeys the recursive equation

pt = Jt pt�1 +xt , ð14Þ

which follows straightforward from equation (12) and gives a forward-
pass dynamical update of the gradient89. Finally, we define the
prediction error ϵt at timestep t as

ϵt � xt � vt�1w , ð15Þ

that defines the sign and amplitude of plasticity, and the global signal

Et � ϵ>t w : ð16Þ

All together, the exact gradient of Equation (9) can be written as

∇wL= �
XT
t =0

ϵt vt�1 + Et pt�1

� �
: ð17Þ

After the end of the period [0, T] the exact gradient can be used to
update the weight vector via gradient descent

wk =wk�1 � η∇wL

=wk�1 + η
XT
t =0

ϵt vt�1 + Et pt�1

� �
:

ð18Þ

Here, η is the learning rate parameter and the index k represents the k-
th iteration during the training period. We are interested in an online
learning rule where the weight update forms part of the dynamics of
the model, and takes place in real-time with the prediction of the pre-
synaptic inputs. This is a typical method in stochastic optimization
theory for recursive objective functions90 and online signal
processing87. We approximate the learning equation (18) with the
current estimate of the gradient,

wt =wt�1 � η∇wL ’ wt�1 � η∇wLt jw =wt�1

=wt�1 +η ϵt vt�1 + Et pt�1

� �
:

ð19Þ

Our approximated learning rule is completely online as it only requires
information available at time step t.

Theoretical studies suggest that such stochastic approximation
works when η is sufficiently small87,89. In our case, the passive memory
capacity of the membrane potential is given by its time constant τm. In
the limit of ητm≪ 1, the changes in the weights are slow compared to
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voltage changes and the following relation holds:

wt0 ’ wt 8 t0 : jt � t0j<τm : ð20Þ

Thus the weight change is negligible, and the learning rule is approxi-
mately exact in the timewindowdefinedby themembrane timeconstant
τm. The timescale separation discussed above should apply to biological
neurons as themembrane time constant is in the order of 1 − 10mswhile
synaptic plasticity happens at a timescale in the order of 102 − 103ms,
requiring several repetitions of the same stimulation protocol.

Jacobian and surrogate-gradient method
The first term in equation (13) allows the gradient to flow at every time
step t via the dynamics of themembrane potential vt. The second term
has a discontinuous effect in time (at themoment of the output spikes)
and depends on the specific nonlinear function. This latter term canbe
approximated following the surrogate-gradient method80

�vðthÞ
∂st�1

∂vt�1
’ γf ðvt�1, vðthÞÞ , ð21Þ

where f is a continuous function of vt and γ is a scaling factor. In
general, the backpropagation of the gradient through the reset
mechanisms is neglected79,80,91. Here we defined the membrane
potential vt as the output variable of the system and the loss function
and st as a hidden variable for the objective function. Therefore, our
implementation directly avoids the problem of backpropagating
through discrete output variables. Given these two arguments, we
considered γ =0 throughout the paper. In the network implementa-
tions of Fig. 3, Fig. S7 and Fig. S8, each neuron in the network receives
inputs from other neurons, and the associated recurrent connections
are defined by the specific connectivity scheme. The contributions to
the gradient of the recurrent connections from a neuron j to a neuron i
in the network are proportional to

/ ∂st,j
∂st,i

∂st,i
∂vt,i

, ð22Þ

and have a discontinuous effect in time (at the moment of the output
spikes). Thus, we neglected these contributions to the gradient.

Optimization and initialization scheme
Equation (19) defines a completely online optimization scheme that
can be implemented locally by single neurons. In Fig. 3, Fig. S5, Fig. S6,
Fig. S7, Fig. S8, and Fig. S10 we updated the synaptic weights following
the online approximation of the gradient in Equation (19). For the
results of Fig. 1, Fig. S1, Fig. 2b, c, Fig. 4, Fig. S3, Fig. S4, Fig. S9 and
Fig. S11 we added a scaling term to the predictive plasticity rule as,

wt =wt�1 +ηwt�1 � ϵt vt�1 + Et pt�1

� �
: ð23Þ

That is, wemultiplied the learning rate withwt−1 to ensure non-negative
values of the weights. Consequently, the weight update at time step t
wasproportional to the synapticweight valueat timestep t − 1. In Fig. 2d
andFig. S2wedidnot use theonline approximationof the gradient, and
weoptimized the fullmodel (Equation (18)) using theAdamoptimizer92.

For the example in Fig. 1, for Fig. 2b, c, Fig. 3 and for the spike-
timing-dependent plasticity protocols in Fig. 4, the initial weights were
assigned to fixed values for the different cases considered. In Fig. 2d,
the initial weights were randomly drawn from a truncated normal
distribution. We bonded the truncated normal distribution to obtain
positive values of the initial weights. The variance of the normal dis-
tribution was scaled by the squared root of the total input size N.

Simulations
The spiking sequencesweredefined by a set of ordered spike times at
which the pre-synaptic neurons were active. For all simulations, the
inputs were convolved with an exponential kernel with τx = 2ms to
replicate the fast dynamics of post-synaptic currents. We added two
sources of noise to the simulations in Fig. 2-3 and corresponding
Supplementary Figs. 1) In each epoch, the spikes that were part of the
sequence were randomly shifted by an amount Δt uniformly dis-
tributed between [-2, 2] (in ms). 2) Each pre-synaptic also exhibited
stochastic background firing following a homogeneous Poisson
process with constant rate λ uniformly distributed between 0 and
10Hz. In addition, in Fig. 2, the onset of the sequence relative to the
time windowwas randomly chosen between 0 and 200ms, and there
were an additional 100 neurons that fired randomly. We trained the
model by numerically solving the dynamics during each epoch. The
model was fully determined by 5 hyperparameters: the timestep h,
the membrane time constant τm, the spiking threshold vth, the
learning rate η and the input time constant τx. To quantify the per-
formance (in terms of sequence anticipation) in Fig. S3, we fixed the
number of training epochs, we performed 100 numerical simulations
for each condition, and we labeled successful simulations based on
two criteria: 1) The synaptic weight associated with the first spike in
the sequence is bigger than all the other synaptic weights (input
selectivity). 2) The output latency is smaller than 20ms after the
onset of the input sequence (fast anticipation). We computed the
error as 1 minus the percentage of successful trials in the set of
100 simulations.

Spike-timing-dependent plasticity protocols
For the STDP simulations, we used a 2-dimensional input x = (x1, x2)
and we simulated classical pre-before-post and post-before-pre pair-
ing, as typically performed in STDP experiments18,19. To approximate
the STDPprotocol with a current injection that triggers a post-synaptic
spike, the initial conditions were chosen such that x2 triggered a post-
synaptic spike, and x1 was a sub-threshold input. For the results in
Fig. 4b–e, we changed the number and the timing of the pre-synaptic
neuron spikes according to each experimental protocol. We numeri-
cally solved thedynamicsof themodel by repeating the input pattern a
number of times as in the experimental protocols. We computed the
weight change of the sub-threshold input as the ratio of the synaptic
weight before and after each simulation protocol.

We reproduced the same burst-dependent pairing protocol as in
ref. 42 by decreasing the delay Δt between post-synaptic spikes
(Fig. 4c). Theburstswere triggeredby three input spikes.We simulated
the 1-n protocol as in ref. 43 by pairing post-pre-post inputs with a
100Hz burst frequency. The number of input spikes from the supra-
threshold input was increased systematically as in the experimental
protocol (Fig. 4d).We reproduced the frequency pairing protocol as in
ref. 43 by pairing 5 post-pre inputs with different intra-pairing fre-
quencies as in the experimental protocol (Fig. 4e).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings are generated by a custom code
provided in the following code repository. The experimental data in
Figure 4c-d-e were used with permission of Society for Neuroscience,
from “Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity”,
Nevian and Sakmann, Journal ofNeuroscience 26(43), 200642, andwith
permission of The American Physiological Society, from “Contribution
of Individual Spikes in Burst-Induced Long-Term Synaptic Modifica-
tion”, Froemke et al., Journal of neurophysiology 95(3), 200643; per-
mission conveyed through Copyright Clearance Center, Inc.
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Code availability
The code to reproduce the figures in the main text and in the Supple-
mentary Information is freely available at: https://github.com/
matteosaponati/predictive_neuron. The scripts contained in the repo-
sitory require Python 3.8, NumPy93, SciPy94, Matplotlib95, PyTorch96.
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