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Recent increases in tropical cyclone rapid
intensification events in global offshore
regions

Yi Li 1,2, Youmin Tang 1,3 , Shuai Wang 4, Ralf Toumi 5,
Xiangzhou Song1,2 & Qiang Wang1,2

Rapid intensification (RI) is an essential process in the development of strong
tropical cyclones and a major challenge in prediction. RI in offshore regions is
more threatening to coastal populations and economies. Although much
effort has been devoted to studying basin-wide temporal-spatial fluctuations,
variations of global RI events in offshore regions remain uncertain. Here, we
show that compared with open oceans, where the annual RI counts do not
show significant changes, offshore areas within 400 km of the coastline have
experienced a significant increase in RI events, with the count tripling from
1980 to 2020. Furthermore, thermodynamic environments present more
favorable conditions for this trend, and climatemodels show that global ocean
warming has enhanced such changes. This work yields an important finding
that an increasing threat of RI in coastal regions has occurred in the preceding
decades, which may continue under a future warming climate.

Fluctuations in tropical cyclone (TC) activity are a major concern in
densely populated coastal regions1,2. Although the frequency of TCs
has been declining based on observational data and numerical
projections3–5, the threat of intense TCs has continuously increased6–10.
Hence, accurate predictions are required to improve preparedness
and reduce TC-related damage to life and property. Unfortunately,
despite improvements in TC track forecasting, errors in intensity
forecasting have not substantially decreased in recent decades11,12.
Rapid intensification (RI) occurs when a TC intensifies dramatically
over a short period, thus rendering its forecasting particularly chal-
lenging owing to the uncertainty in onset time and duration13–16. RI also
affects the development of most of the intense TCs17, as recently
demonstrated by Typhoon Hato (2017)18 and Hurricane Harvey
(2017)19, which caused catastrophic damage. Therefore, detailed
examinations of RI are paramount, especially in vulnerable offshore
regions.

Previous studies have indicated that the intensification rate of
major TCs is increasing in different oceanbasins20,21 and the number of
TCs undergoing RI is also rising22,23. Shifting of RI locations during

recent decades has also been reported in the western North Pacific21,24

and North Indian Ocean25. In recent work, Balaguru et al.26 showed that
the intensification rate increased in coastal areas (defined as within
200 nautical miles from the coast) of the United States, although they
did not explicitly analyze the trend of RI events. This warrants addi-
tional attentionbecause clear trends have not beendefineddespite the
direct threat posed by RI in offshore regions. Additionally, global
surface temperatures have increased at a rate of ~0.18 °C per decade
since 1981, which is more than twice that since 1880 (0.08 °C)27. In a
warming climate, changes in vertical wind shear, mid-level humidity,
and ocean temperature are all likely to affect RI and other TC
properties3,28. At regional scales, the oceanic and atmospheric condi-
tions changes are non-uniform. The faster warming in the western
boundary currents29, for example, might favor TC intensification in
these regions30.

In addition to the ambient environmental vertical wind shear
(VWS)31 and relative humidity (RH)32 that govern TC intensification, the
upper ocean also plays an important role in fueling the overlying
atmosphere and TC intensification, as high ocean temperatures favor
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TC development by increasing the thermodynamic potential intensity
(PI)33,34. PI is the stationary maximum intensity after a TC reaches
equilibrium, and the changes in its seasonal mean value represent a
useful proxy in the analysis of RI long-term variations35–37. Instanta-
neous PI is also an important predictor in statistical prediction
systems13. Wang et al.38 developed the concept of potential intensifi-
cation rate (PIR) and demonstrated that the intensification rate
depends on the square of PI and that PIRmust be large for RI to occur.
Thus, a higher PI in a warming climate favors an increase in both the
lifetime maximum intensity (LMI) and global potential TC intensifica-
tion rate39. However, the potential effects of such environmental fac-
tors on the variation of RI in offshore regions remain unclear.

In this study, the trends in RI and environmental conditions are
analyzed based on the International Best Track Archive for Climate
Stewardship (IBTrACS) dataset40, the fifth generation of the European
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis
(ERA5)41. We analyze the trends in the counts of RI events across global
oceans during 1980–2020, as the TC measurements obtained in this
period are reliable becauseof thewideuseof satellite observations and
post-season analysis42,43. RI represents an increase in the maximum
sustained surface wind speed by at least a certain threshold within
24 h. The 45 kt/24h threshold was used according to recent deriva-
tions via objective joint clustering44. The results are compared with
those obtained using other thresholds, including themorewidely used
30 kt/24 h13. Similar to Wang and Toumi’s study45, we considered the
offshore area to be within 400 km from the nearest landmass larger
than 1400 km2 (approximately the size of Kauai, Hawaii). Given that the
mean translation speed is ~4–5m/s (350–430 km/day)46, a TC entering
regions within 400 km of a coast would likely make landfall within one

day; hence, these regions represent an urgent concern for operational
forecast owing to the relatively short amount of time for predictions
and preparedness. Additionally, “near miss” or “indirect-hit” TC tracks
can cause significant damage. From a statistical perspective, we show
that RI events have exhibited an increasing trend in vulnerable off-
shore regions on a global scale, and then we subsequently identify the
dominant environmental factors. To the best of our knowledge, this
study is the first to show such a trend.

Results
Trends in RI
The trends in the counts of RI events within 400 km from the coast
were first analyzed. The annual number of RI events in these offshore
regions during 1980–2020 increased by 3.0 ±0.8 per decade
(mean± standard deviation, Fig. 1a). Over these offshore waters, less
than five RI events occurred per year in the 1980s, whereas the annual
count increased to ~15 by 2020. Recently, Wang and Toumi45 reported
a significant increase in tropical storm activity in coastal regions. The
time fraction of RI periods within the lifespan of a TC has also con-
stantly increased, with a 0.61 ± 0.14% increase per decade recorded
during this 41-year period (Fig. 1b). Therefore, the increase of RI events
is likely based on the combination of more TC activity and greater RI
probability. Similar trends were observed using the conventional
threshold of 30 kt/24 h (Fig. 1c, d), and the annual number of RI events
within 400 km to coast increased by 5.1 ± 1.8 per decade (p < 0.01),
with the time fraction also increasing by 0.97 ± 0.28% per decade. The
ratio of RI events over offshore regions relative to the global count has
increased, although the trend is not statistically significant (p =0.09,
Supplementary Fig. 1).

Fig. 1 | Timeseries of global rapid intensification (RI) activity in offshore
regions. a, c show the annual mean count of RI events within 400km from the
coast. b, d show the annual mean time fraction of RI for tropical cyclones within

400 km from the coast. RI is defined as an intensification of at least 45 kt/24 h for
a,b and 30kt/24h for c, d. The blue lines and dots showhistorical data. The orange
lines show linear trends, with shading denoting a 95% confidence interval.
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RI is generally considered a rare event in the sense that its exis-
tence depends on intense TC development. Thus, extreme value ana-
lysis is often applied in analyzing trends of such rare events6,47. We
calculated quantile regressions of the 24-h intensity changes for 90%,
95%, and every 1% quantile between 96% and 99%. Faster increases in
24-h intensity changes were observed over time among the regions
within 200–400 km and 400–600 km from the coast, especially for
the 97% and higher percentiles (Supplementary Fig. 2). Therefore, the
ratio of RI events increased. Given that offshore regions are experi-
encing more TC activity45, additional RI events can be expected. An
even larger increasing trend was found for ADT-HURSAT (the
Advanced Dvorak Technique–HURricane SATellite record) data48

(Supplementary Fig. 2).
The variability in the annual count of RI events as a function of the

distance to land was then calculated (Fig. 2). With an RI threshold of

45 kt/24 h, the most rapid increase occurred at 200–400 km from the
coast, where the annual number of RI increased by 1.9 ± 0.6 per decade
(p < 0.01). This temporal trend reduced almost linearly with proximity
to land by 0.4 ± 0.2 RI event/decade/1000 km (p =0.04, Fig. 2a), and
the annual number of RI events slightly increased by 0.3 ± 0.2/decade
(p = 0.18) when the range extended to 2000–2200 km. As the average
annual RI count was 1.6 for each 200-km bin, this distance-dependent
variation could reach up to 15%/decade/1000 km or higher. Based on
the commonly used RI threshold (at least 30 kt/24 h), a higher and
significant temporal trend was detected (1.1 ± 0.3/decade/1000 km,
p <0.01, Fig. 2b). Consistent results were obtained using different
thresholds of minimum landmass sizes such as 2000, 5000, and
10,000 km2, and different RI threshold including 35 and 40 kt/24 h
(Supplementary Fig. 3). The results obtained from the ADT-HURSAT
data also showed similar patterns (Supplementary Fig. 4), indicating a
valid global-scale landward variation of RI. The climatological dis-
tribution shows that on the global scale, RI mainly occurs within
500 km of the coast (Supplementary Fig. 5). The peak shifted from
300 km during 1980–2000 to 400 km during 2000–2020. Never-
theless, the most significant change was within 400 km.

To examine the robustness of the observed landward variation
or notable increase in RI events landward, we investigated the data
from the pre-satellite period (1951–1979). Although fewer RI events
(85.9/year) occurred during this period than during the satellite
period (139.6/year), the same landward variation was apparent, with
magnitudes of 0.26 to 1.31/decade/1,000 km, depending on the
selection of RI threshold (Supplementary Fig. 6).

TC-related damage is dependent on the population and economy
exposed. The western North Pacific, Bay of Bengal, Madagascar,
Mozambique, Caribbean, and the Gulf of Mexico are usually con-
sidered themost vulnerable regions1. Significant increases in RI counts
were observed in most of these regions (Fig. 3), especially around
Madagascar, the South China Sea, and Central America. Specifically, RI
events that are higher than 45 kt/24 h in these areas can increase by up
to 0.05 (2.5%)/decade for each 2° × 2° latitude–longitude grid, as
detected in the Caribbean Sea and along the west coast of Mexico
(Fig. 3a and Supplementary Fig. 7). However, RI being a rare event,
significant changes vary regionally. The trend in offshore areas dis-
cussed above is an overall global effect. Significant increases were
observed in the Philippine Sea (130°E–150°E, 10°N–20°N), as reported
previously21,23,24, which is beyond the offshore regions. We thus calcu-
lated the landward trend of RI in other regions of the western North
Pacific and found that it still shows a significant landward trend

Fig. 2 | Linear temporal trend of annual rapid intensification (RI) counts for
different distance-to-land values. RI is defined as an increase of at least a 45 kt/
24 h and b 30 kt/24 h. The blue line and dots show linear temporal trends of the
annual RI count for each 200-km bin, whereas the blue shading shows the 95%
confidence level of the trends. The units are count/decade for the blue line and
dots. The orange lines show linear fits of the temporal trends as a function of
distance-to-land, and the units are count/decade/1000 km. The slopes and p-values
of the orange lines are shown on top of each subplot. The slope is negative, which
indicates a landward trend, and the absolute value is shown. The slopes in the
following figures are all negative, and their absolute values are shown unless stated
otherwise. The x axis is thedistance to land from0–200 kmto2000–2200km,with
a 200-km interval. The y-axis is the temporal trend of the annual count of RI events
within each 200-km bin.

Fig. 3 | Spatial distribution of the linear trend of annual rapid intensification
(RI) counts. RI is defined as an intensification of at least a 45 kt/24 h and
b 30 kt/24 h. The 41-year linear trend is calculated for each 2° × 2°
latitude–longitude grid, and the unit is count/decade. The black dots show

areas where 95% confidence for the linear fit is satisfied. The blue lines
encompass the regions within 400 km of the coast. Data smoothing using a
three-point smoother was performed for better display clarity.
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(p = 0.05, Supplementary Fig. 8). We further show that more RI TC
tracks with a 6-h interval occurred within 400 km of the coast, indi-
cating increasing RI processes in offshore regions of this basin (Sup-
plementary Fig. 9). Meanwhile, significant declines were observed in
the Central Atlantic and Pacific. When the threshold of 30 kt/24 h was
used, similar spatial distributions were observed, except for a patch of
decrease located in the Eastern Pacific (Fig. 3b and Supplementary S7).
The distance-trend diagrams of individual basins verify the significant
increases in RI in coastal regions, except in the Eastern Pacific where
increases also occurred over the open ocean, and the North Indian
Ocean where themost rapid increasewas observed 600–800 km from
the coast (Supplementary Fig. 10).

Influences of climate variability and global warming
As long-term variations in RI are potentially influenced by large-scale
circulation and global ocean conditions, the effects of internal climate
variability and global ocean warming were investigated. The internal
climate variability was assessed using climate indices such as El
Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation
(PDO), while the effects of global warming were estimated using the
trend of globalmean sea surface temperature (SST) between 60 °S and
75 °N49. The impacts of these metrics were eliminated by linearly
regressing the time series of the RI onto the climate indices42. Marginal
differences were found when the Niño3 index was removed, and the
amplitude of RI landward variation (Fig. 4a) maintained at 0.4 ± 0.2/
decade/1000 km. This indicates that the impacts of ENSO on these
long-term landward variations are negligible, although it may have a
substantial role in inter-annual variability50; hence, further exploration
is required. Meanwhile, the PDO or global mean SST alonemoderately
influenced RI. With the removal of their impacts, the landward varia-
tion rates decreased slightly to 0.3/decade/000 km for PDO and 0.2/

decade/1000 km for SST (Fig. 4b, c). However, it should bementioned
that with the impacts of global SST removed, the increasing rate of RI
events declined to ~0/decade per decade, particularly in regions that
were beyond 600 km from the coast. This suggests that global
warming is a key driver of increases in RI events; however, the impacts
are spatially non-uniform and limited within the open ocean. In con-
trast, when both the PDO and global SST trend were removed, the
landward variation of RI decreased dramatically to 0.05 ± 0.05/dec-
ade/1000 km (p = 0.3, Fig. 4d). These results indicate that the landward
trendwas insignificant without the effects of PDO and global increases
in SST. Therefore, the landwardRI variation is likely dominatedbyboth
these factors. Other metrics, including the ENSO-Modoki index51 and
North Atlantic oscillation, did not have a substantial influence on RI
(Supplementary Fig. 11).

Climate regime shifts have been reported during this 40-year
period52. An objective detection algorithm52 was therefore imple-
mented to identify the potential regime shift in RI counts over the
offshore regions (Supplementary Fig. 12). Two shifts were found in
1992 and 2002. The annual count of RI events increased in all three
regimes, especially from 1992 to 2001. For the RI events over 45 kt/24 h,
the increasing rate during 1992–2002 reached 10.7/dec and the aver-
age number of RI events increased from 3.4 to 12.4.When the threshold
of 30 kt/24 h was used, similar results were also obtained (Supple-
mentary Fig. 12).

Influences of large-scale environmental factors
High intensification rates and RI formation typically involve large-scale
environmental conditions including weak deep VWS, high mid-level
RH, and high maximum potential intensity (MPI). Here we show that,
RH and VWS became more favorable in offshore areas than in open
oceans (Fig. 5), while MPI increased uniformly across most of the
globe. The global mean RH value increased by approximately 0.3%/
decade/1000 km from theopenocean tooffshore region. For VWS, the
value decreased in the offshore regions but increased in the open
ocean, with a linear trend of −0.2m/s/decade/1000 km (p <0.01). A
higher VWS is unfavorable for RI occurrence and thus, the increase in
VWShindered the increase inRI over theopenocean. In addition,more
TC activity has been detected in coastal regions45. Both landward
migration and favorable environments contribute to the increase in RI
in offshore regions.

Spatially, both MPI and RH increased in most offshore regions
where more RI events occurred (Supplementary Fig. 13), which was
also indicated by the correlation between RI and these variables
(Supplementary Fig. 14). The rapid increase in MPI over the western
South Indian Ocean, South China Sea, western Philippine Sea, and
Caribbean Sea coincided with the increase in RI. However, a significant
rise in MPI was found in the eastern Philippine Sea (near the Mariana
Islands), where a decline in RI events was detected (Fig. 3). Therefore,
the correlation between the annual RI count and MPI was negative in
this region. In addition, RH showed significant increases and a high
correlation with RI in the Arabian Sea, western North Pacific, and
Caribbean Sea. As for VWS, ERA5 showed significant changes in the
IndianOcean, South China Sea, and eastern North Pacific, where a high
correlation between VWS and RI was observed. The local environ-
mental factors, which were calculated 200–800 km (for VWS and RH)
and 200 km (for MPI) from the TC center using 6-h data, were also
analyzed. The spatial distribution was strongly affected by the TC
activity in each 2° × 2° grid box, resulting in misleading findings.
Therefore, the local MPI, VWS, and RH were analyzed for the offshore
area; an increasing trend in MPI (5.37 kt/decade, p <0.01) and RH
(0.77%/decade, p =0.02) and insignificant trend in VWS (0.14m/s/
decade, p =0.12) were observed. These results suggest that MPI and
RH are the dominant environmental conditions in most of the basins,
whereas VWS plays an insignificant role in some regions.

Fig. 4 | Linear trend of rapid intensification (RI) events with climate indices
and/or global sea surface temperature (SST) trend reduced. Effects of a Niño3
index,bPacificDecadalOscillation (PDO) index, cglobal SST trend, anddbothPDO
and global SST are linearly reduced from the trend of the annual count of RI events.
RI is defined as an intensification of at least 45 kt/24 h. The x-axis is the distance to
land from 0–200 km to 2000–2200 km, with a 200-km interval. The blue lines and
shadings show linear temporal trends and a 95% confidence level of the trends,
respectively. The orange lines show linear fits of the temporal trends as a function
of distance to land.
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The potential intensification rate38 metric, MPIR, were further
analyzed by computing the difference between the current intensity
and MPI. MPIR generally follow the distribution of MPI, and the
increase can reach up to 10 kt/24 h/decade (Supplementary Fig. 16).
However, MPIR significantly decreased in the eastern Philippine Sea,
where decreases in RI were also found (Fig. 3). Globally, it increased
more rapidly over offshore waters compared with that over open
ocean, and the landward slopewas 3.7 kt/24 h/decade/1000 km. As the
averageMPIR was 108 kt/24 h, the increases were ~10%/decade and the
landward variation was ~3–4%/decade/1000 km.

Although current climatemodels cannot directly resolve TC or RI,
they provide information on large-scale circulation and therefore can
be used to analyze environmental factors. The RH, VWS, and MPI
provided by the Coupled Model Intercomparison Project Phase 6
(CMIP6) model were examined to assess the influence of anthro-
pogenic forcing (including aerosols and greenhouse gasses) because
both variables showed similar trends as RI. Following Bhatia et al.37, we
used simulations forced with all forcing (HIST), anthropogenic forcing
(greenhouse gas, GHG), and natural forcing (NAT) over the period of
1980–2014. For RH, landward trends were detected in most simula-
tions, which are in the same direction as the ERA5 reanalysis, and the
slopes were also similar to those in ERA5 (Fig. 5d). In addition, most of
the simulated VWS values by the GHG and HIST runs increased from
the offshore towards the open ocean, which was consistent with the
ERA5 data. In contrast, the NAT runs produced a notably weaker
oceanward trend. As for MPI, most of the simulations with all forcings
and anthropogenic forcings produced landward MPI trends, while the
majority of the NAT simulations showed higher negative trends.

Although a zero-trend was detected in the ERA5 data, the CMIP6
results seemed to indicate that greenhouse gas forcing contributes
more to the increase in RI in offshore regions. Discrepancies between
the NAT and GHG simulations mainly occurred over the open ocean
(Supplementary Fig. 17). For instance, the MPI increased over the
eastern Philippian Sea among theNAT runs but decreased significantly
in theGHG simulations.MPI is closely linked to SST,which also showed
an increasing trend over the eastern Philippines Sea in the NAT runs.
However, a higher increase was detected in the offshore regions of the
western Pacific in the GHG runs. In addition, the abovementioned
analysis was also applied to a longer period from 1950 to 2014 to
examine the robustness and steadiness of the aforementioned results
over the period from 1980 to 2014. As shown in Supplementary Fig. 18,
the results drawn from the longer period are basically consistent with
those from the shorter period. MPI, RH, and VWS values derived from
theGHG runs showed amore favorable trend than those from theHIST
andNAT simulations. Comparedwith theNAT simulations, GHG shows
amore significant landward trend on average inMPI and VWS, with a p
value of 0.02 and 0.09, respectively, while the different simulations
did not produce a significant difference in RH. These results indicate
that the trend estimated from the 35-year period is robust and the
landward trend of environmental conditions can be potentially
attributed more to anthropogenic warming than to internal climate
variability.

Discussion
Forecasting RI is of utmost importance for the prediction of and pre-
paredness for TCs and remains a major challenge in coastal regions.

Fig. 5 | Linear temporal trend of annual mean environment variables for dif-
ferent distance-to-land values. a–c show the trends of relative humidity (RH),
vertical wind shear (VWS), and maximum potential intensity (MPI). The blue line
and dots show linear temporal trends of annual mean values for each 200-km bin
estimated from ERA5 reanalysis, and the blue shading shows the 95% confidence
level of the trends. The orange lines indicate linear fits of the temporal trends as a
function of distance-to-land and the slopes and p values of the landward trend are
shown on top of each subplot. The slopes are reversed, and a positive slope indi-
cates more favorable RH and MPI in the offshore regions, while a negative slope
indicates a more favorable VWS in the offshore. The x axis shows the distance to

land from 0–200 km to 2000–2200km, with a 200 km interval. The y axis is the
temporal trend of annual mean values. Only the environmental data during the
tropical cyclone season (July to November for the North Hemisphere and Decem-
ber to April for the Southern Hemisphere) were used. d–f show the distribution of
trends of the MPI, RH, and VWS (i.e., the slopes of the straight lines in a–c) simu-
lated in the CMIP6models. The models were forced with all forcing (HIST), natural
variability (NAT), and anthropogenic forcing (greenhouse gas, GHG). The blue
horizontal lines show the trend in ERA5 data. The lower and upper ends of the box
show the 25th and 75th quartiles, the middle line shows the median, and the hor-
izontal bars below and above the box show the 5th and 95th quartiles, respectively.
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We analyzed TC observations from 1980 to 2020 and found that RI
counts increased significantly more rapidly in offshore regions than in
open oceans, in which the combination of the PDO and global ocean
warming plays a significant role in this landward variation. These
increases can be attributed to the mid-level RH and PI driven by the
ocean subsurface temperature in most of the globe, while the VWS
initiated significant changes (p <0.05) mainly in the Indian Ocean.

The linear trend analyses in this study are prone to uncertainties,
particularly regarding the data and the selected period. Although the
best-track data have been used extensively in analyzing TC intensity
and variations, themore rapid increase in RI over offshore regionsmay
be an artifact of better observation networks in these regions. To
address this, we analyzed ADT-HURSAT data, in which the TC intensity
was estimated by processing globally homogenized satellite images
using the Advance Dvorak Technique (ADT). Similar landward trends
were detected among this dataset (Supplementary Fig. 4). Moreover,
an improved least-squares algorithm was applied53, and it also detec-
ted high increases toward the coast (Supplementary Fig. 19). The trend
was consistent regardless of the use of the RI threshold (30, 35, 40, or
45 kt/24 h) and the minimum landmass size (1400, 2000, 5000, and
10,000 km2; Supplementary Fig. 3), indicating the robustness of the
results.We consideredRI events close to either islands or continents in
this work because islands are among the most vulnerable regions1.
However, it would be interesting to separate these two types of land-
mass because they are distinct in economic development and popu-
lation density; thus, further explorations are required. Additionally, we
only consider the location of RI events, and TCs in the offshore region
may not make landfall. Given that a typical TC outer size (radius of
gale-force wind) is ~150–200 km, the heat and moisture fluxes con-
tinue when the TC center is 400 km away from the coast.

In a recent study, a landward migration of tropical storm activ-
ities, such as the LMI and time fraction, was observed due to the
enhancement of the westerly steering flow45. This landward migration
of TC activity indicates a potential increase in RI events. In addition,
more favorable environmental conditions, namely higher PI and RH
and lower VWS, were found over these regions. CMIP simulations
further indicated that anthropogenic forcing has enhanced this land-
ward variation of environmental conditions. However, the spread
between CMIP simulations is also considerable and the responses of
climate models to difference forcing are also worthy of further inves-
tigation. For example, it has been argued that the southwestern Indian
Ocean tends to warm more while the western Pacific cools with
anthropogenic forcing54, which probably produces a landward MPI
trend in the GHG simulations. However, the underlying mechanism is
still ambiguous.

We focused on the RI trends during the past four decades, and
the analyses were limited to this period due to the lack of quality of
earlier best-track data. Arguably, a 41-year-long period can be
insufficient to demonstrate long-term trends or provide evidence of
global warming3. Regime shifts have been reported during these 41
years52. Three regimes were detected for the annual RI count during
this period, and the annual mean offshore RI count was significantly
higher during the last regime (2002–2020) than during the first
(1980–1991). Both global warming slowdown55 and PDO phase
transition56 potentially affect such regime shifts. For instance, Song
et al.21 reported that the rapid decrease in the PDO index during the
early 1990s to early 2000s caused an increase in RI events over the
western North Pacific.

Although we only focused on the influence of large-scale envir-
onmental factors, both internal and environmental factors contribute
to the development of RI57,58. By objectively clustering the internal
vortex size and intensity, Li et al.44 developed a threshold of 45 kt/24 h,
which was used in this study. However, the observations of inner-core
structure and size (usually measured by the radius of maximum wind
speed) have not beenbest-trackeduntil very recently59, and analyses of

the long-term trends are not yet feasible. Therefore, conducting fur-
ther analyses using reliable numerical simulations is necessary. TC
activities, including their genesis and tracks, have been examined
using climate models and reanalyses3,5,8. Although existing models
provide evidence of the environmental variations37, they are still
unable to directly resolve RI locations and magnitudes28; therefore,
models with higher resolution or advanced downscaling techniques
are needed60,61.

Considering the relatively slow progress on improving TC inten-
sity forecasts, the increasing trend of RI in coastal regions poses
greater challenges and concerns for operational forecasting. Although
the RI trend in climate projections was not explicitly explored, we
demonstrated the fundamental role of PI and RH in increased occur-
rences of RI events and anthropogenic warming drives the landward
trend of PI. The projected warming of coastal waters presents an
environment with an even more favorable environment and, in turn,
more RI events and more challenges in TC prediction. The con-
tinuously increasing population and economy in coastal regions also
indicate that these areas will potentially have higher exposure and
vulnerability to TC threats. Therefore, predictions of and preparation
for TCs would be more challenging, and further efforts to improve RI
predictions are required.

Methods
TC data
TC best-track observations were obtained from the International
Best Track Archive for Climate Stewardship (IBTrACS, v4r00)40,
which is supplied with data by US agencies: National Hurricane
Center and Joint Typhoon Warning Center. The ADT-HURSAT data-
set was developed by processing the globally homogenizedHURSAT
satellite imagery using the AdvancedDvorak Technique (ADT)48, and
it has been used in several trend analyses42,46. Here, we also exam-
ined ADT-HURSAT for the period 1980–2017 and compared the
results from the two datasets.

We only considered TCs (LMI≥ 64 kt), over the period
1980–2020. The whole lifecycle of TCs was used. Additionally, to
eliminate the influence of topographic effects and extra-tropical
transition, we selected only TC tracks over the ocean and within the
range of 40°S and 40°N. We only took the records at the standard
observational times: 00, 06, 12, and 18 Coordinated Universal Time
(UTC). This pre-processing was similar to that performed in the study
of RI13.

In IBTrACS, the default distance to the nearest land, including all
continents and islands larger than 1400 km2 (equivalent to the area of
Kauai,Hawaii),wasprovided for each best-track geographical location.
We also examined other thresholds of minimum landmass, including
2,000, 5,000, and 10,000 km2, using the coastline data obtained from
Global Self-consistent, Hierarchical, High-resolution Geography
(GSHHG) database62.

Environmental data
The monthly mean atmospheric data, including RH, wind, and atmo-
spheric temperature, were obtained from the fifth generation of
ECMWF reanalysis (ERA5)41. ERA5 is hosted by the Climate Data Store
of the Copernicus Climate Change Service, which regridded the reso-
lution of the ERA5 data to 0.25°. Only the environmental data during
TC season (July to November for the North Hemisphere andDecember
to April for the Southern Hemisphere) were used.

CMIP6 data
Following Bhatia et al.37, we examined linear trends of the environ-
mental fields from CMIP6 simulations over the period 1950–2014,
which was selected because the historical runs spanned until 2014.
These fields are defined in an identical way to the observed
fields in ERA5. The models include ACCESS-CM2, ACCESS-ESM1,
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BCC-CSM2-MR, CanESM5, CESM2, FGOALS-g3, GISS-E2-1-G, HadGEM3-
GC31-LL, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0, and NorESM2-LM. All
models provide simulations with HIST, NAT, and GHG forcing. The
HIST simulations are forced with both GHG and NAT, including vol-
canoes and solar variability, while the GHG and NAT runs are forced
with subsets of the HIST simulations.

Definitions of RI
The intensification rate was calculated as the change in the maximum
surface wind speed (Vmax) in 24 h. RI is commonly defined as an
increase in the surface maximum wind speed (Vmax) of at least a
threshold within 24 h. The threshold of 30 kt (15.4m/s), as recom-
mended by Kaplan and DeMaria13, is widely used. However, other
thresholds exist17, and a physically robust value of 45 kt/24 h was
recently derived via objective joint clustering44. We used 45 kt/24h as
the major threshold and compared the results using different
thresholds.

Statistical information
The robustness of linear regression usually depends on the choice of
period. We, therefore, implemented an improved Ordinary Least-
Square (OLS) algorithm53 and compared the results with those of least-
square linear regression. Thedetailsof thisOLS algorithmareprovided
in Supplementary Note 1.

Removal of the global SST trend and climate indices
Following Dai et al.49 and Kossin et al.63, the influence of a certain index
on the long-term trend could be removed via linear regression from
the time series T. Let T(n, i) be the number of RI events for yearn at the
ith 200-km bin from the coast and X(n) be the climate index X for year
n, where n = 1, 2,…, 41 for 1980–2020. The climate indices considered
in this study were the global annual mean SST, Niño 3, PDO, ENSO-
Modoki, and North Atlantic oscillation. Using a linear regression
method, we estimated the trend caused by individual or combination
of factors X, Tx(n) = bxX(n), where bx is the slope in T(n) = bxX(n) +
ε(residual). The residual ε was then analyzed.

Environmental variables
The VWS was calculated as the amplitude of wind vector difference
between 200- and 850-hPa pressure levels. The mid-level RH was
obtained at 600hPa.

MPI33,64 was calculated as a function of SST, as follows:

MPI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SST� To

To

CK

CD
ðk* � kÞ

s

, ð1Þ

where To is TC outflow temperature determined by the atmospheric
vertical profile, CD the drag coefficient, CK enthalpy exchange coeffi-
cient, k∗ the saturation enthalpy of the sea surface, and k the surface
enthalpy.

The potential intensification rate (PIR)38, was calculated fromMPI.

PIR =
CD

H
EV 2

PI � V2
� �

, ð2Þ

whereVPI is theMPIV the current TC intensity,H the height parameter,
and E the dynamical efficiency, obtained using the following equation:

E =
f + 2V

r

f + 2VPI
r

 !n

, ð3Þ

where n is a sensitivity constant, r is the radius of maximum wind
speed, and f is the Coriolis parameter. As suggested by Wang et al.38,
the parameters used were CD = 2.4 × 10−3, CK = 1.2 × 10−3,H = 3 km, n = 1,
and r = 15 km.

Data availability
The TC best-track data used in this study were IBTrACS (v4r00) data,
retrieved from the NOAA National Centers for Environmental Infor-
mation (https://www.ncei.noaa.gov/products/international-best-track-
archive), and ADT-HURSAT data, obtained from Kossin et al.48 ERA5
was downloaded from Copernicus Climate Data Store (https://cds.
climate.copernicus.eu/#!/home). GSHHG version 2.3.7 was obtained
from Paul Wessel62 (https://www.soest.hawaii.edu/pwessel/gshhg/).
Monthly NAO, PDO, and Niño 3.4 indices were downloaded from
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.
nao.monthly.b5001.current.ascii.table, https://www.ncei.noaa.gov/
pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat, and https://psl.noaa.
gov/gcos_wgsp/Timeseries/Data/nino34.long.anom.data, respec-
tively. Global SST data were downloaded from https://www.metoffice.
gov.uk/hadobs/hadisst/data/HadISST_sst.nc.gz. CMIP simulations
were downloaded from https://aims2.llnl.gov/search. The processed
data can also be obtained from https://zenodo.org/record/
8115386. Source data are provided with this paper.

Code availability
The main scripts for data processing and plotting are available at
zenodo (https://zenodo.org/record/8115386). Other source codes are
available from Yi Li (yli.ouc@gmail.com) upon request.
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