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Deep learning for obstructive sleep apnea
diagnosis based on single channel oximetry

Jeremy Levy1,2, Daniel Álvarez 3,4,5, Félix Del Campo3,4,5 &
Joachim A. Behar 2

Obstructive sleep apnea (OSA) is a serious medical condition with a high
prevalence, although diagnosis remains a challenge. Existing home sleep tests
may provide acceptable diagnosis performance but have shown several lim-
itations. In this retrospective study, we used 12,923 polysomnography
recordings from six independent databases to develop and evaluate a deep
learningmodel, calledOxiNet, for the estimation of the apnea-hypopnea index
from the oximetry signal. We evaluated OxiNet performance across ethnicity,
age, sex, and comorbidity. OxiNet missed 0.2% of all test set moderate-to-
severe OSA patients against 21% for the best benchmark.

Obstructive sleep apnea (OSA) is a highly prevalent condition. Benja-
field et al.1 estimated moderate-to-severe OSA affects 425 million (95%
CI 399–450) adults aged 30–69 years in a review including 17 studies.
OSA is characterized by recurrent episodes of upper airway partial or
complete upper airway obstruction associated with recurrent oxyhe-
moglobin desaturations (intermittent hypoxia) and arousals (sleep
fragmentation). It is caused by upper airway collapse during sleep and
is characterized by frequent awakenings caused by apnea and/or
hypopnea. Several studies have shown that if untreated, OSA increases
the risk of cardiovascular diseases, stroke, death, cancer, and other
diseases2, which all bear high clinical and economical costs. The most
commonpresenting symptomofOSA is excessive daytime sleepiness2,
leading to accidents and less effective work. Currently, full-night
polysomnography (PSG), is considered the gold standard for con-
firming the clinical suspicion ofOSA, assessing its severity, and guiding
therapeutic choices. It is a multi-channel monitoring technique that
analyzes the electrophysiological and cardio-respiratory patterns
of sleep.

In the past year, home sleep apnea tests (HSAT) have emerged as
an alternative to in-lab PSG. Although HSAT became standard practice
in some countries, a recent meta-analysis of 20 papers revealed a
misdiagnosis rate of 39%3 in HSAT thus highlighting a gap in the per-
formance of these alternative cost-efficient solutions and the more
expensive gold standard in-labPSG. Several factors havemotivated the
development of portable diagnostic technology such as those based

on single channel oximetry analysis4–8: the growing awareness of the
high prevalence of OSA, the high proportion of undiagnosed
individuals9 but also low time, cost-effectiveness and low availability of
PSG and the limited performance of existing HSAT. However, most
previous studies4,5 focused on developing OSA screening tests with a
binary classification task (OSA, non-OSA). In some cases6,8,10, a multi-
class classification taskwas considered to take into account all degrees
of severity of OSA, but failed to estimate the apnea–hypopnea
index (AHI).

In this work, we develop and evaluate the robustness of a single-
channel oximetry-based OSA diagnosis algorithm based on deep
learning (DL), called OxiNet, in multiple distribution shifts. OxiNet is
benchmarked against two state-of-the-art classical machine learning
(ML) approaches in the field of oximetry analysis for OSA diagnosis.
OxiNet, significantly outperformed benchmark algorithms on all
external test datasets while missing 0.2% of all test sets moderate-to-
severe patients against 21% for the best benchmark. Themain drops in
performance on external test sets were due to a distribution shift in
ethnicity for Black participants and African American participants, and
comorbidity for individuals with concomitant chronic obstructive
pulmonary disease.

Results
We used 12,923 PSG recordings, totaling 115,866 h of continuous data,
from 6 independent databases to develop and evaluate OxiNet for the
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regression task of AHI estimation from the oximetry signal. The AHI
was defined as the average number of all apneas and hypopneas,
according to the recommended rule, per hour of sleep following the
American Academy of Sleep Medicine (AASM) 2012 rules11, and ICSD-3
guidelines12. Recordingswith technical faults, with dTST<4 (i.e. less than
4 h of sleep) and patients under 18 years old were excluded. We assess
OxiNet performance across ethnicity, age, sex, and comorbidity. We
benchmarkOxiNet against anMLmodel using theoxygendesaturation
index (ODI) as input and an ML model using digital oximetry bio-
markers (OBM) as input.

Table 1 presents the size of each dataset before and after applying
the exclusion criteria. SHHS1 and SHHS2 consist of the same cohort
(longitudinal study) and thus in order to avoid information leakage,
the recordings of the SHHS1 training set were discarded in SHHS2
yielding 621 recordings listed under the “original number of record-
ings” in SHHS2.

The model with the lowest loss in the validation set was saved for
inference on the test sets. Table S1 presents the results of OxiNet
trained on 90% of SHHS1. OxiNet achieved ICC =0.96, F1,M = 0.84 for
the SHHS1 test set and ICC =0.95, F1,M = 0.83 for SHHS2. Performance
was impaired but acceptable for UHV (ICC =0.95, F1,M =0.77), CFS
(ICC =0.92, F1,M = 0.78), MROS (ICC =0.94, F1,M =0.80) and MESA
(ICC =0.94, F1,M = 0.75). In all external databases, OxiNet performance
was consistently and significantly better than the ODI and OBM
benchmark models (Table S2). P-values of Wilcoxon rank-sum tests
betweenOxiNet andOBMwerebelow0.05 for all databases. Therewas
no statistical difference in performance between men and women.
Table 2 presents the ICC and F1,M for all the databases and the different
trainedmodels. Figure 1 compares the estimatedAHI against the actual
AHI, for all the external databases.

Discussion
Efforts focused on the analysis of respiratory pathologies based on
oximetry time series have received considerable attention in the last
few years13. Numerous studies have proposed oximetry biomarkers
that describe patterns present in the oximetry signal, such as approx-
imate entropy14, detrended fluctuation analysis15 or desaturations-
based biomarkers16. Hang et al.4 proposed a support vector machine
model which takes handcrafted features as input. They trained their
model on a total of 699 patients with suspected OSA and reported a
sensitivity of0.89 for severeOSAand0.87 formoderate-to-severeOSA.
Behar et al.5 developed OxyDOSA, which is a linear regression model
trained on oximetry biomarkers and three clinical features. They
trained the model on a clinical PSG database of 887 individuals from a
representative São Paulo (Brazil) population sample. They performed a
binary classification of non-OSA versusOSA andobtained anAUROCof
0.94 ±0.02, the sensitivity of 0.87 ± 0.04, 0.99, and 1.00 for the test
set, moderate, and severe OSA respectively. Using the SHHS database,
Deviaene et al.6 trained a random forest model based on 139 SpO2

features and 4 clinical features, with the aim of classifying 1-min seg-
ments as having or not a desaturation within them or not. They
obtained an average sensitivity of 0.64 on the SHHS1 test set for the
binary classification task and 67.0% for the multi-class classification
task. When training an ensemble learning model based on features
extracted from the oximetry signal, Gutierrez et al.8 achieved a kappa
score between 0.45 and 0.66 when considering the four OSA severity
categories, working on a database composed of 8,762 recordings.
Previous studies mostly feature engineering-based models involving
oximetry biomarkers and some clinical variables5,6,8,13. Mostafa et al.17

proposed a DL approach for the detection of sleep apnea using oxi-
metry, but built theirmodel ondata from33patients only, achieving an
accuracy of 0.97 and a sensitivity of 0.78. Despite the large number of
studies focused on OSA diagnosis from oximetry data, they suffer cri-
tical limitations that have led to inconclusive beliefs regarding the
viability of applying oximetry for OSA diagnosis. These limitations
included the limited performance of the ML models developed, the
experimental setting defining the challenge as a multi-class classifica-
tion task thus preventing the assessment of suchmodels for diagnostic
purposes. In our contributions, we used a total of 12,923 PSG record-
ings, totaling 115,866h of continuous data, from five independent
databases to develop a robust DL model, denoted OxiNet, for the
estimation of the AHI and to address research gaps in assessing the
robustness of such an algorithm across ethnicity, age, sex, comorbid-
ity, and medical guidelines. This research makes two main contribu-
tions. The first is the creation of OxiNet, a robust DL model for
the estimation of the AHI from oximetry time series. The second is

Table 1 | Size of each database before and after applying the
exclusion criteria

Database Original
number of
recordings

Technical
fault

dTST<4 Age < 18
years

Recordings
after exclu-
sion criteria

SHHS1 5778 59 (1%) 99 (2%) 0 (0%) 5620 (97%)

SHHS2 621 0 (0%) 16 (3%) 0 (0%) 605 (97%)

UHV 369 0 (0%) 12 (3%) 0 (0%) 357 (97%)

CFS 728 13 (2%) 71 (10%) 58 (8%) 586 (80%)

MROS 3937 51 (1%) 133 (3%) 0 (0%) 3753 (95%)

MESA 2056 0 (0%) 54 (3%) 0 (0%) 2002 (97%)

74% of SHHS2 were removed, because the patients from SHHS1-train were excluded to avoid
any leakage information.

Table 2 | Results on the test set of the external databases

ODI OBM OxiNet

ICC F1,M ICC F1,M ICC F1,M
SHHS1 0.89 0.69 0.93 0.74 0.96 0.84

(0.89–0.93) (0.68–0.72) (0.90–0.95) (0.70–0.78) (0.95–0.97) (0.82–0.86)

SHHS2 0.89 0.69 0.93 0.74 0.95 0.83

(0.87–0.91) (0.65–0.72) (0.92–0.93) (0.74–0.75) (0.94–0.98) (0.83–0.85)

UHV 0.75 0.61 0.86 0.67 0.92 0.77

(0.74–0.78) (0.58–0.62) (0.88–0.92) (0.60–0.74) (0.91–0.96) (0.77–0.79)

CFS 0.70 0.56 0.75 0.60 0.92 0.78

(0.66–0.78) (0.50–0.70) (0.68–0.80) (0.51–0.69) (0.90–0.96) (0.74–0.82)

MROS 0.70 0.52 0.81 0.65 0.94 0.80

(0.68–0.72) (0.50–0.58) (0.79–0.83) (0.62–0.68) (0.95–0.99) (0.78–0.84)

MESA 0.75 0.60 0.75 0.65 0.94 0.75

(0.71–0.77) (0.54–0.64) (0.70–0.80) (0.62–0.68) (0.92–0.94) (0.72–0.76)

ODI, OBM, and OxiNet are trained on 90% of SHHS1. Confidence intervals are computed via bootstrapping on each test set separately.
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the performance assessment of OxiNet across different databases and
distribution shifts.

The first main contribution of the research is the creation of
OxiNet, a robust DL algorithm for the estimation of the AHI. OxiNet is
shown to significantly outperform benchmark feature engineering
based algorithms (ODI and OBM) on all test databases (Fig. 2 and
Table 2). The baseline performance was determined by training a
model taking the ODI as the sole oximetry feature. Indeed, ODI has
been historically the most studied and used single oximetry based
feature for OSA screening. The performance of the ODI based model
on the SHHS1 test set was poor (ICC = 0.89, F1 = 0.69, Fig. 2) and would
have led to 55 missed moderate to severe OSA diagnosis (21% of all
moderate and severe). This demonstrates thatusing theODI as the sole
oximetry feature, i.e., only considering the average number of desa-
turations per hour, is not sufficient to enable robust AHI estimation

and thus OSA diagnosis.When combining the set of 178 OBMswithin a
CatBoostmodel the performance increased significantly on the SHSH1
test set (ICC = 0.93, F1 = 0.74). Yet some important miss-classification
errors remained with 971 missed moderate to severe OSA patients
across all the databases (21% of all moderate and severe, Table 2). Our
algorithmOxiNet performed significantly better on SHHS1 (ICC =0.96,
F1 = 0.84) and led to 11missedmoderate-to-severe OSA patients across
all databases (0.2% of all moderate and severe). The learning curve
(Fig. S1) of OxiNet performance on the SHHS1 test set demonstrated a
monotonous increase as a function of the number of examples in the
training set. This illustrates the importance of using a large training set
(totaling thousandsof recordings) inorder to create a robustDLmodel
for our task. Taken together, the results demonstrate the value of
OxiNet in reaching performance that may be viable for medical diag-
nostic use.

The secondmain contribution of the research was the assessment
of the robustness of OxiNet performance by age, sex, ethnicity, and
comorbidity. Our experimental results showed that the performance
of OxiNet was robust in repetitive measurements (SHHS2, Table 2 and
Figs. 1 and 2). Performance dropped when using the external test sets:
the drop in performancewas significant for a distribution shift relative
to ethnicity (CFS) with F1 = 0.66 for the Black and African American
participant subgroup against F1 = 0.80 for the white participant sub-
group. An overall F1 score of 0.75 was obtained for the MESA database
but there was a high variance across the different ethnicities with 0.72
for Hispanic participants, 0.71 for Black and African American partici-
pants, 0.78 for white participants and 0.77 for Chinese American par-
ticipants (Table S3). Thus, while OxiNet performed well on white and
Chinese American participants, it performed poorer on Hispanic,
Black, and African American participants. These results are consistent
with the melanin and typology angle levels used to characterize skin
pigmentation in different ethnic groups18. It emphasizes the lack of
inclusion or low prevalence of such minority groups in datasets tra-
ditionally used to train DL algorithms which inevitably leads to
embedded biases and poorer diagnostic performance for these
groups. Recent research19,20 has shown that pulse oximeter perfor-
mance discrepancies have been shown to be affected by patients of
different races and ethnicities, leading to poorer clinical management.
This may explain the poorer performance of the model on Black and
African American participants. The drop in performance in UHV was

Fig. 1 | Correlation and Bland–Altman plots. Top (a–f): scatter plot of the com-
puted and annotated AHI for all external databases. The dotted line represents the
equation y = x. Bottom (g–l): Bland–Altman plot between the estimated and the

annotatedAHI. The error lines are positioned at ± 1.96 the standarddeviation. From
left to right: SHHS1, SHHS2, UHV, CFS, MROS, and MESA. R2 statistics are sum-
marized in Table 2.

Fig. 2 | Models’ performance. F1 score for each model as a function of the test set.
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due to the presence of COPD comorbidity, which can lead to nocturnal
desaturations13 and then mislead the model. Indeed, 58% of the mis-
classified patients in UHV had COPD whereas COPD had a prevalence
of 20% in this database. Only two severe OSA were classified as non-
OSA, in theMESA andUHV databases (0.1% of all 2017 severe cases), as
shown in Fig. 3. Only 13 severe OSA cases were classified asmildOSA in
the MESA and UHV databases (0.6% of all 2017 severe cases). The two
misclassified severe-OSA from UHV had COPD with a global initiative
for chronic obstructive lung diseases (GOLD) level three. None of the
non-OSA was classified as severe, but an overall of two non OSA from
MESA were classified as moderate. These two patients were Black and
African American. A total of 15 patients were severe OSA and were
classified as non OSA or mild OSA. For these recordings, the TST was
<4 h (3.4 ± 0.4). These individuals probably had insomnia, which will
affect our approximation dTST of the TST. Overall, the results illustrate
that performance is impaired due to important distribution shifts. In
particular, we found that distribution shifts due to ethnicity (CFS,
MESA) and the presence of significant respiratory comorbidity with
COPD (UHV) had an important impact on model performance.

Formodel explainability, Lregion was set to 120 s, which is the order
of magnitude of the duration of one to a few apnea events (severe
desaturations typically last 30–45 s, ref. 16). The importance score is
calculated as the difference between the predicted AHI on the original
signal and the predicted AHI on the signal with the corresponding
window replaced by a baseline SpO2 value. In this study, the baseline
SpO2 value was set to the mean value of the entire recording. Figure 4
presents examples of three different recordings. Figure 4a displays an
overnight signal, where OxiNet identifies clusters of desaturations.
OxiNet leverages the temporal context of desaturation events within
the overnight time series. This is in opposition to a rule-based ODI
detector that searches for desaturations as isolated events, i.e. inde-
pendent of their temporal context. Figure 4b shows a signal segment

with several apnea events. Although OxiNet assigned relatively high
scores, there was no desaturation detected by the rule-based desa-
turation detector. This reflects that the desaturation detector is too
constrained while OxiNet may learn a variety of SpO2 patterns asso-
ciated with apnea and hypopnea events. Figure 4c shows a segment
with no apnea or hypopnea respiratory event and, in agreement,
relatively low OxiNet scores. The rule-based ODI detector, however,
detected a desaturation that is not associated with a respiratory event.
Overall, the explainability figures suggest that OxiNet provides added
value over a simpler rule-based desaturation detector. This is because
the data-driven approach enables to better learn the representation of
SpO2 events during apnea and hypopnea across the high physiological
variability of thousands of individuals used to trainOxiNet. OxiNet also
takes into account the temporal context of events while classical rule
based ODI detectors look at an event in an isolated manner.

This study proposed a DL algorithm for estimating the AHI from
the oximetry time series and diagnose OSA. The DL OxiNet model
outperformed the baseline models in all test databases (Fig. 2).
Overall, this large retrospective multicenter study strongly supports
the feasibility of single channel oximetry analysis for robust OSA
diagnosis. The availability of a robust data driven model using input
from a single pulse oximetry sensor may enable large scale diagnosis
of OSA while reducing costs and waiting time. It may also enable
multiple night testing and thereby even improve OSA diagnosis.
Since 2017, the AASM guidelines recommend diagnosing OSA in
uncomplicated patients with a single night sleep study21, which
demands high test accuracy. In addition, the test must be low cost,
almost fully (if not fully) automated, and, due to the shortage of
hospital beds,must enable support testing in the home environment.
Within this context, the high performance of OxiNet provide an
exciting perspective in enabling remote diagnosis and monitoring
of OSA.

Fig. 3 | Confusion matrices for OxiNet, for the test set of each external database. The figure shows the results of OxiNet trained on SHHS1-train: a SHHS1; b SHHS2;
c UHV; d CFS; e MROS; f MESA.
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Themain limitation of this study is the absence of data frommany
underrepresented groups, ethnicity, or from developing countries.
This is mainly due to the fact that despite the unprecedented initiative
of sleepdata.org in open sourcing large databases of sleep data, the
majority of the databases hosted on the platform are from the US. To
drive health innovation that meets the needs of all and to democratize
healthcare, there is a need for more databases from historically
underrepresented populations. Beyond the practical and economical
aspect of using home oximetry for the diagnosis of OSA, the test could
also be repeated for a couple of nights. Indeed, there is evidence that
there exists night to night variability of respiratory events in OSA
patients22,23 and that thismay lead tomisdiagnosis if only a single night
test is performed. Thus multiple night testing may be enabled by a
home test powered by OxiNet. Some of the databases used in this
study were collected at home. This includes the SHHS database. UHV,
CFS, MROS andMESAwere collected at the hospital. The performance
was high for all databases with no particular trend observed between
the oximetry data collected at home or at the hospital (see Fig. 2). For
this reason, we do not expect much difference in performance given

the usage of a similar clinical grade oximetry device. The same man-
ufacturing company, Nonin, was used for the SHHS, UHV, CFS, MROS,
and MESA databases, which were used to assess the performance of
OxiNet according to input distribution shifts. Although Nonin has
different oximeter products and versions, we believe that since most
of the databases were recorded from oximeters from a single manu-
facturing company then this did not affect significantly the classifica-
tion outcomes across our test sets. Previous research24,25 has reported
variability in SpO2 measurements across different oximetry devices.
Consequently, it will be valuable in future work to report on the per-
formance of OxiNet for different oximeter manufacturers. We
approximated the total sleep time (dTST) as being the time interval
between sleep onset and sleep offset. In practice, this can be easily
estimated using the photoplethysmography (PPG) signal recorded by
the pulse oximeter. In previous research, we have demonstrated the
feasibility of sleep staging from PPG, with a kappa score of 0.74 for
4-class classification (wake, light, deep, REMsleep) and anR squared of
0.92 in estimating TST26. Because the raw PPG signal was not available
for most databases used in this research, we used the sleep stages

Fig. 4 | OxiNet explainability. The three panels display the importance score for
sections of three overnight recordings. The panels highlight the particular impor-
tance given a to desaturations clusters, b to apnea events where no desaturation

was detected by the rule based desaturation detector, and c the low importance
given to a section where no apnea or hypopnea event was annotated but where a
desaturation was detected by the rule based desaturation detector.
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provided instead in order to segment the onset and offset of the oxi-
metry signal, as illustrated in Fig. S2. Another limitation of this work is
that the datasets used for the analysis are relatively old. SHHS for
instance was recorded between 1995 and 1998. Improvements have
beenmade tooximetry technology since then.Wedoexpect that some
incremental improvement can be reached providedwe had access to a
dataset making use of state of the art oximeters and having a similar
size to the SHHS. Indeed, although a relatively old dataset, the large
size of SHHS was necessary to reach high model performance with
OxiNet (Fig. S3). However, we do not expect a change in the relative
performance of OxiNet versus the benchmarked models (ODI, OBM)
and thus our main conclusions. In this work, we used Gaussian dis-
tributed noise for data augmentation. One avenue for further
improvement of our approach would be to consider developing a
simulator for the purpose of generating more biologically feasible
sources of noise that are typical in oximetry measurement.

To conclude, this large, retrospective multicenter analysis pro-
vides strong support for the feasibility of single channel oximetry
analysis for OSA diagnosis using OxiNet. In addition, it presented an
approach to analyzing the performance of a machine learning model
to specific population samples. Finally, this researchprovided a unique
example of how large open access databases can enable the assess-
ment of the robustness performance of ML algorithms across ethni-
city, age, sex, and comorbidity to ensure the creation of robust and fair
ML models.

Methods
Databases
The challenge of robustness is often raised in ML, especially for med-
ical applications27. Indeed, there are many sources for distribution
shifts, here defined as changes in themodel input distribution, such as
the difference across ethnicity groups. Themodel could learn a certain
“bias”of the training set and generalize poorly on external test sets.We
performed a large retrospective multicenter analysis including a total
of 12,923 PSG recordings, totaling 115,866 hours of continuous data,
from six independent databases. The databases include distribution
shifts in age, sex, ethnicity, and comorbidity. The institutional review
board from the Technion-IIT Rapport Faculty of Medicine was
obtained under number 62-2019 to use the retrospective databases
obtained from the open access sleepdata.org resource for this
research. Table S4 provides summary statistics on demographics to
describe the population samples for each of these databases.

Sleep Heart Health Study (SHHS). SHHS28 is a multicenter cohort
study conducted by the National Heart Lung & Blood Institute (Clin-
icalTrials.gov Identifier: NCT0000527) to determine the cardiovas-
cular and other consequences of sleep-disordered breathing.
Individuals were recruited to undergo a type II home PSG. The Nonin
XPOD 3011 pulse oximeter (Nonin Medical, Inc., Plymouth, MI, USA) is
used for recording. The signal is sampled at 1 Hz. In the first visit,
denoted SHHS1, 6441 men and women, aged more than 40 years, are
included in the database between November 1, 1995 and January 31,
1998. Recordings from5793 subjects undergoing unattended full night
PSG at baseline are available. A second visit has been performed from
January 2001 to June 2003 and will be denoted as SHHS2. This second
visit includes 3295 participants.

Río Hortega University Hospital of Valladolid (UHV). UHV29 is com-
posed of 369 oximetry recordings. The original database composed of
350 in lab PSG recordings is further described in Andres Blanco et al.
and Levy et al.13,29. A total of 19 recordings were added to this research.
The Nonin WristOx2 3150 was used to perform portable oximetry
(simultaneously to PSG) and sampled at 1 Hz for the first 350 record-
ings, and 16Hz for the additional 19. The UHV was the only database
thatwasnotpart of theNational SleepResearch Resource (available on

sleepdata.org). However, the protocol for annotating the UHV PSG
recordings also followed the AASM 2012 recommendations11, and
scoring was formed by certified sleep technicians. The UHV database
contains patients with suspected sleep disordered breathing and 78
patients with chronic obstructive pulmonary disease (COPD), which is
a bias from the other databases. COPD is a lung pathology character-
ized by persistent airflow limitation that is usually progressive and an
enhanced chronic inflammatory response to noxious particles or gases
in the airways and the lungs30.

Cleveland Family Study (CFS). The CFS database31 is made up of 2284
individuals from 361 families, one recording per patient. A subset of
the original database, composed of 728 recordings, was available on
NSRR and was used for this study. CFS is a large familial sleep apnea
study designed to quantify the familial aggregation of sleep apnea. The
oximetry was recorded using a Nonin 8000 sensor and sampled at
1 Hz. The database was acquired in the hospital when the patient
underwent a type I PSG. Among the 728 recordings available, there are
427 (59%) Black and African American participants.

Osteoporotic Fractures in Men Study (MROS). MROS32 is an ancillary
study of the parent Osteoporotic Fractures in Men Study. Between
2000 and 2002, 5994 community dwellingmen 65 years or older were
enrolled in 6 clinical centers in a baseline examination. Between
December 2003 and March 2005, 3135 of these participants were
recruited to the sleep study when they underwent a type II home PSG
and 3–5-day actigraphy studies. The objectives of the sleep study are to
understand the relationship between sleep disorders and falls, frac-
tures, mortality, and vascular disease. The oximetry signal was recor-
ded with a Nonin 8000 sensor and sampled at of 1 Hz.

Multi Ethnic Study of Atherosclerosis (MESA). MESA33 is a six-center
collaborative longitudinal investigation of factors associated with the
development of sub clinical cardiovascular disease. The study includes
PSGs of 2056 individuals divided into four ethnic groups: Black and
African American participants (n = 572), white participants (n = 743),
Hispanic participants (n = 491), and Chinese American participants
(n = 250) men and women ages 45–84 years, recorded between 2000
and 2002with a type II home PSG. The oximetry signalswere recorded
using a Nonin 8000 sensor, with a sampling rate of 1 Hz.

Scoring rules
Figure 5 presents the distribution of actual AHI for each database.
Table 3 summarizes the base demographic data and the AHI of each
database. We ensured that the definitions of apnea and hypopnea
events and thus the computation of the reference AHI were homo-
geneous across databases.

The databases SHHS, CFS,MROS andMESA provided by theNSSR
were scored following the procedure described in Redline et al.28.
Briefly, physiological recordings were originally scored in Compume-
dics Profusion where apnea and hypopnea respiratory events were
scored according to drops in airflow that lastedmore than 10 swithout
criteria of arousal or desaturation for hypopneas. After apneas and
hypopneas were identified, the Compumedics Profusion software
linked each event to data from the oxygen saturation and EEG chan-
nels. This allowed each event to be characterized according to various
degrees of associated desaturation and associated arousals and/or
combinations of these parameters. This top-down approach enabled
the NSSR to generate AHI variables following different recommenda-
tions and rules (recommended/alternative). These AHI variables are
available on the NSRRwebsite. We used the ahi_a0h3a variable, which
is consistent with AASM12 recommended rule as specified on theNSSR
website and re-confirmed through private correspondence by the
NSSR administrators. Data from the UHVwere recorded after 2012 and
followed the AASM 2012 guidelines. Annotations for all the NSRR
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databases (SHHS, CFS, MROS and MESA) as well as the UHV database
were made by certified technicians.

Following the American Academy of SleepMedicine (AASM) 2012
and ICSD-3 guidelines, the AHI was defined as the average number of
apneas and hypopneas per hour of sleep. Apneas were scored if (i)
there is a drop in the peak signal excursion by ≥90% of pre-event
baseline using an oronasal thermal sensor (diagnostic study), positive
airway pressure device flow (titration study), or an alternative apnea
sensor; and (ii) the duration of the ≥90% drop in sensor signal is ≥10 s.
In the same regard, following the recommended rule, hypopneas were
defined as a ≥30% fall in an appropriate hypopnea sensor for ≥10 s and
with a ≥3% desaturation or associated arousal.

Preprocessing and exclusion criteria
Recordings with technical faults (missing oximetry channel, or cor-
ruptedfile) andpatients under 18 years old, wereexcluded. Recordings
from the UHV database were re-sampled at 1 Hz so that all databases
had the same sampling rate. The Delta Filter34,35 was applied to the
oximetry time series, to remove non physiological values due to the
motion of the oximeter, or lack of proper contact between the finger
and the probe. If there were fewer than three consecutive non-
physiological values in the signal, a linear interpolationwas performed,
to fill in the missing values.

Initiating sleep may take some time and individuals with severe
OSAmay have numerous overnight awakenings. When computing the
AHI in regular PSG examinations, the wake periods are excluded from
the computation of the AHI, i.e., the cumulative number of apnea and
hypopnea events is dividedby the total sleep time. Topartially account
for this in our experiments, we have defined the sleep onset as the
beginning of the first consecutive 5min segments labeled and sleep

offset as the end of the last consecutive 5min segments labeled as
sleep on the hypnogram provided for each recording. We approxi-
mated the total sleep time (dTST) as being the time interval between
sleep onset and sleep offset. In practice, this can be easily estimated
using the photoplethysmography (PPG) signal recorded by the pulse
oximeter as we have demonstrated in our research work26.

Signals with dTST<4 (i.e., less than 4 h of sleep) were excluded28. All
remaining signalswere padded to 7 h. This enables us to handle signals
of different lengths, from 4 to 7 h. Patients younger than 18 years were
not considered in this study and were removed from the databases.

Baseline model
Two baseline classical ML models were implemented to benchmark
against the DL approach. The first model included a single oximetry
feature, which is the ODI with a threshold at 3%13. For the second
model, SpO2 features were computed from the oximetry time series
using the open source POBM toolbox35. These biomarkers are divided
into five categories: (1) General Statistics: time based statistics
describing the oxygen saturation data distribution. For example, Zero-
Crossing36 and delta index37. (2) Complexity: quantifies the presence
of long range correlations in non stationary time series. For example,
Approximate Entropy38, or Detrended Fluctuation Analysis (DFA)39. (3)
Periodicity: quantifies consecutive events to identify periodicity in the
oxygen saturation time series. For example, Phase rectified signal
averaging (PRSA)40 and power spectral density (PSD). (4) Desatura-
tions: time based descriptive measures of the desaturation patterns
occurring throughout the time series. For example, area, slope, length
and depth of the desaturations. (5) Hypoxic Burden: time-based
measures quantifying the overall degree of hypoxemia imposed on the
heart and other organs during the recording period. For example,

Table 3 | Summary table for all databases used

Database Number AHI Age Male Timeframe Main type of shifts

SHHS1 5778 9.5 ± 15.6 63.0 ± 17.0 52% 1995–1998 –

SHHS2 621 11.3 ± 15.6 68.0 ± 16.0 54% 2001–2003 –

UHV 369 33.9 ± 43.8 57.0 ± 18.0 76% 2013–2015 Suspected SDB, COPD

CFS 728 4.0 ± 14.9 43.0 ± 33.0 53% 2001–2006 Ethnicity, age

MROS 3937 17.0 ± 21.0 76.0 ± 5.5 100% 2003–2005 Men, age

MESA 2056 14.3 ± 22.0 68.0 ± 14.0 46% 2000–2002 Ethnicity

Forcontinuous features, themean ± standarddeviation ispresented. Thenumber of recordings is specifiedafter excluding recordings shorter than4h. Themain typeof shifts is providedwith respect
to the baseline SHHS1 database.
SDB sleep-disordered breathing, COPD chronic obstructive pulmonary disease.

Fig. 5 | Violin plot. Violin plot for a Apnea Hypopnea Index (AHI), b age, and c BMI for the study databases. BMI was not available for the MESA database.
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cumulative time under the baseline (CT)41. We havemade open source
on physiozoo.com the code for computing the digital oximetry fea-
tures. In addition, the features are more extensively described,
including their mathematical definition, in our previous work35.

ACatBoost regressor42was trained, using a total of 178 engineered
features. Further description of the features is available in the sup-
plementary note 1. We used the maximum relevance minimum
redundancy (mRMR) algorithm for feature selection. The model was
optimized with fivefold cross-validation using Bayesian hyper para-
meter search. For both the ODI and OBM models, sex and age were
added as two additional demographic features (Table S4).

OxiNet
Architecture. In contrast to classical ML approaches, DL techniques
provide the ability to automatically learn and extract relevant features
from the time series. The model takes as input the preprocessed
overnight signal. Recordings with a dTST duration of over 4 h were
included. Those with a dTST duration of 4–7 h were padded to 7 h. For
thosewith a dTSTdurationofmore than 7 h (less than 3%over all test set
examples) only the first 7 h were included. The oximetry signal is
independently processed by two branches as inspired by the archi-
tecture proposed by Interdonatoa et al.43. The first branch is based on
convolutions, extracting useful patterns in the time series, and is called
Convolutional Neural Network (CNN). The second branch, called
Convolutional Recurrent Neural Network (CRNN), exploits the long
range temporal correlation present in the time series.

For the CNN branch, the signals were split into overlapping
windows of length Lwindow. Thewindows are fed to the first part of the
branch, which extracts local features. This first part is composed of
nB sequential blocks, which extract features from each window. One
block is composed of nL 1D convolutional layers with kernel size 3,
batch normalization, and Leaky ReLU activation followed by a max-
pool layer of stride 2. There are skipped connections between each
block. The local features of each window are then concatenated, and
the second part of the model extracts long range temporal features,
using dilated convolution. A total of nDB dilated blocks are sequen-
tially used. A dilated block is made of nC 1D convolutional filters
with kernel size Kdilated, followed by a Leaky ReLU activation.
The dilation rate is progressively increased in order to increase the
network’s field of view, beginning at ratedilation and being multiplied
by 2 between each block. The CNN branch produces the feature
vector VCNN 2 RNCNN .

For the CRNN branch, a representation of the data is first cre-
ated, to reduce the temporal resolution. This is done by using 2 CNN
blocks when one block is composed of a convolutional layer with
kernel size kCRNN, batch normalization, and Leaky ReLu activation
followed by a maxpool layer of stride 2. Then, a total of two stacked
layers of bidirectional Long Short Term Memory (LSTM) with nLSTM
units is then applied. The CRNN branch produces the feature vec-
tor VCRNN 2 RNCRNN .

The clinical metadata (META) is processed thanks to a fully con-
nected layer, producing the feature vector VMETA 2 RNMETA . The
aggregated feature vector Vfinal = [VCNN,VCRNN,VMETA] is processed by
nclassifier classifier blocks to give the final prediction. A classifier block is
composed of a fully connected layer, batch normalization, Leaky Relu
activation, and then dropout (with dropout rate dclassifier). Each clas-
sifier block reduces the dimensionality of the input by 2. A last fully
connected layer is then applied, to output the predicted AHI.

This approach allows the model to learn complementary features
andbetter exploit the information hidden in the timeseries. In order to
enforce the discriminating power of the different subsets of features,
we adopt the approach proposed by Hou et al.44. Two auxiliary
regressors were created, working respectively on the VCNN and VCRNN
vectors. These regressors were not involved in the final prediction of
the model, but helped in the training process, by ensuring that each

subset of the features was trained to be independently discriminative.
Figure 6 presents the architecture of the resulting OxiNet model.

The experiments were performed on a PowerEdge R740, 1 GPU
NVIDIAAmpereA100, 40GB, 512GBRAM.Forourdiagnostic objective,
evenly distributed errors with low variance are preferable, as they
might not change the final diagnosis of the model. For the above
reason, the model was optimized using the Mean Squared Error (MSE)
loss combinedwith L2 regularization. A total of twodata augmentation
techniques are used: moving window and jitter augmentation. More
details about the loss and the data augmentation are available in the
supplements.

Loss. For our diagnostic objective, evenly distributed errors with low
variance are preferable, as theymight not change the final diagnosis of
the model. For the above reason, the model was optimized using the
Mean Squared Error (MSE) loss combined with L2 regularization. This
loss was computed three times: for the two auxiliary regressors, and
for the final prediction. The final loss function used was:

L=Laggregated + λCNN � LCNN + λCRNN � LCRNN ð1Þ

When λCNN, λCRNN are two hyper parameters controlling the impact of
LCNN,LCRNN, respectively. At the beginning of the training process,
λCRNN = λCNN = 1. Then every four epochs the two hyper parameters are
multiplied by 80%, so the weight of the auxiliary classifiers in the final
loss decreases. The intuition is that these regressors help the final
model to converge, but are not part of it. That is why as long as the
training process continues, their weight is decaying.

Data augmentation. The OxiNet model is composed of approxi-
mately 870,000 parameters, which is a few orders of magnitude
larger than the number of examples contained in our training
set. Data augmentation was used to increase the training set size,
especially Jitter augmentation, adding white noise to the signal. The
generated signal is:

Xnew =X +N, N ∼N ð0, σnoiseÞ ð2Þ

where Xnew is the signal generated, X is the original signal and N is the
noise added. σnoise is a hyperparameter of the model. Figure S4 pre-
sents the original and generated signals, with σnoise = 0.5. Although the
generated signal may not be biologically feasible, this augmentation
technique adds variance to the samples that are fed to the model and
prevent overfitting the training set.

Training strategy
The SHHS1 databasewas split into a 90% training set and a 10% test set.
All the hyperparameters of the model were optimized using Bayesian
search, over 100 iterations. To this end, the SHHS1 training setwas split
into 70% training and 30% validation. In the first step, the model was
trained on the SHHS1 train for 100 epochs. The Adam optimization
algorithm was used, with a learning rate of 0.005. The set of hyper-
parameters leading to the smallest validation loss was retained. Then
the performance measures were reported for the test set for each
database, independently.

Explainability
Explainability is a critical aspect to ensure that the model is trust-
worthy and can be integrated into clinical practice. It enables the
identification of the contributing factors andprovides explanations for
the predictions made by the model. Indeed, DL models are known for
their black box nature, making it difficult to understand how they
arrive at their predictions. To that end, we adapted the algorithm
proposed by Zeiler et al.45, named Feature Occlusion (FO) and origin-
ally proposed for image recognition. The algorithm has already been
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used in the context of time series prediction several times46,47.
The algorithm computes the importance score as the difference in
output after replacing each contiguous region with a given baseline.
We defined a region as a window of Lregion seconds in the oximetry

signal and performed the occlusion with a sliding window of size
Lregion/2, in order to have an importance score for each batch of Lregion/
2 seconds. The baseline to replace with was set to be the overall mean
of the signal.

Fig. 6 | OxiNet architecture. a Shows a high-level overview of the overall archi-
tecture. The raw data is independently processed by a CNN branch and a CRNN
branch. The concatenation of CNN, CRNN, and clinical features is processed by a

regressor that estimates the AHI. b Shows more in detail the CNN branch, while
c presents the CRNN branch. BLSTM bidirectional long short term memory, CNN
convolutional neural network, CRNN convolutional recurrent neural network.
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Performance measures
The Kruskal–Wallis test was applied (p value cut-off of 0.05) to eval-
uate whether individual demographic features were discriminating
between the four groups of OSA severity: non OSA (AHI < 5), mild
(5 ≤AHI < 15), moderate (15 ≤AHI < 30) or severe (AHI ≥ 30) OSA.
Table S4 presents the summary statistics for these variables and across
the databases. Bland-Altman and correlation plots were generated to
analyze the agreement and association between the estimated and
reference AHI. The agreement was displayed as the median difference
between dAHI and AHI and the 5th and 95th percentiles of their differ-
ence. For the regression task, the Intraclass Correlation Coefficient
(ICC) was reported and is defined as follows:

ICC=
MSI �MSE

MSI + ðO� 1ÞMSE +O � MSO�MSE
n

ð3Þ

where O is the number of observers (two, in this case, the real and
predicted AHI), MSI is the instances mean square, MSE is the mean
square error and MSO is the observers mean square.

After converting the AHI into the four levels of severity (i.e., non-
OSA, mild, moderate, and severe OSA), the macro averaged F1 score
was reported as the measure of diagnostic accuracy. The F1 score was
computed as follows:

SeM =
1
4

X4
k = 1

TPk
TPk + FNk

ð4Þ

PPVM =
1
4

X4
k = 1

TPk

TPk +FPk
ð5Þ

F1,M = 2
PPVM � SeM
PPVM +SeM

ð6Þ

where, for a given class k, TPk is the number of true positives, TNk the
number of true negatives, FPk the number of false positives, and FNk

the number of false negatives. Additional performance measures are
defined in the Supplementary Note.

We estimated the confidence interval for the F1 and ICC scores of
the different models using bootstrapping, similar to the work of Biton
et al.48. That is, the F1 and ICC scores were repeatedly computed on
randomly sampled 80% of the test set (with replacement). The pro-
cedure was repeated 1000 times and used to obtain the intervals,
which are defined as follows:

Cn = �x ± z0:95 � seboot

with �x as the bootstrapmean, z0.95 is the critical value found from the
distribution table of normal CDF, and seboot is the bootstrap estimate
of the standard error. Bootstrap was performed on each database
separately. To determine if there was a statistical difference, the
Wilcoxon rank-sum test was applied and a p value cut-off at 0.05
was used. The statistical test was also used to determine if there
is a significant difference in performance measures for male vs
female.

Data availability
The databases SHHS, CFS, MROS, and MESA are been achieved by the
National Sleep Research Resource with appropriate deidentification.
Permission and access for accessing these datasets were obtained via
the online portal: https://www.sleepdata.org. In addition, the UHV
database was contributed by co-author Prof. Felix Del Campo
(fsas@telefonica.net) and access may be obtained on request.

Code availability
Our code and experiments can be reproduced by utilizing the details
provided in the “Methods” section. For OxiNet, this includes themodel
architecture (section “Architecture” and Fig. 6), loss function (section
“Loss”), data augmentation (section “Data augmentation”). Our trained
model is also available at https://github.com/jeremy-levy/OxiNet/tree/
main and is provided for academic research purpose and under a GNU
GPL license. The source code used to engineer the oximetry bio-
markers and train theODI andOBMmodels has beenmade available at
(https://oximetry-toolbox.readthedocs.io/en/latest/). Adam initializa-
tion was used https://www.tensorflow.org/api_docs/python/tf/keras/
optimizers/Adam). For the data augmentation, we used the Gaussian-
Layer (https://www.tensorflow.org/api_docs/python/tf/keras/layers/
GaussianNoise). The code for explainability is adapted from the work
of Zeiler et al.45 and is available at https://github.com/saketd403/
Visualizing-and-Understanding-Convolutional-neural-networks.
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