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Characterization of the pig lower respiratory
tract antibiotic resistome

Yunyan Zhou1,2,3, Jingquan Li1,3, Fei Huang1,3, Huashui Ai 1, Jun Gao1,
Congying Chen 1 & Lusheng Huang 1

Respiratory diseases and its treatments are highly concerned in both the pig
industry and human health. However, the composition and distribution of
antibiotic resistance genes (ARGs) in swine lower respiratory tractmicrobiome
remain unknown. The relationships of ARGs with mobile genetic elements
(MGEs) and lung health are unclear. Here, we characterize antibiotic resis-
tomes of the swine lower respiratory tract microbiome containing 1228 open
reading frames belonging to 372 ARGs using 745 metagenomes from 675
experimental pigs. Twelve ARGs conferring resistance to tetracycline are
related to an MGE Tn916 family, and multiple types of ARGs are related to a
transposase gene tnpA. Most of the linkage complexes between ARGs and
MGEs (the Tn916 family and tnpA) are also observed in pig gut microbiomes
and human lung microbiomes, suggesting the high risk of these MGEs med-
iating ARG transfer to both human and pig health. Gammaproteobacteria are
the major ARG carriers, within which Escherichia coli harbored >50 ARGs and
>10MGEs. Although themicrobial compositions structure the compositions of
ARGs, we identify 73 ARGs whose relative abundances are significantly asso-
ciatedwith the severity of lung lesions.Our results provide thefirst overviewof
ARG profiles in the swine lower respiratory tract microbiome.

Antibiotic resistance genes (ARGs) have been considered as emerging
threats to global public health. Many studies have shown that anti-
biotics exposure leads to a decrease inmicrobial diversity1,2, andmany
pathogens that could have been effectively eliminated by antibiotics
are now no longer sensitive to these antibiotics, resulting in many
multidrug-resistant (MDR) bacteria. Most of the studies concerning
antibiotic resistance in humans and animals have focused on the gut
microbiota. With the increasing prevalence of respiratory diseases,
especially the global pandemic of Coronavirus disease 2019 (COVID-
19) in recent years, increasing amountsof antibioticshavebeenused to
treat respiratory diseases. Whether this will cause the accumulation of
ARGs in the respiratory tract microbiota is unknown. Although there
has been increased attention paid to the relationship between the lung
microbiome and respiratory diseases3, the association between the

lung antibiotic resistome and the composition of lung microbiota or
the role of the lung resistome in the progression of diseases has rarely
been reported.

Shuai et al. (2022) found that the composition of the human gut
antibiotic resistome was associated with the progression of diabetes4.
Another study suggested thatARGs could serve as potential predictors
of autism spectrum disorder5. Whether ARGs are also related to
respiratory diseases or can be used as the biomarkers for disease
diagnosis is largely unknown. Several studies have revealed that the
airways of humans with chronic respiratory diseases are important
ARG reservoirs6,7. Owing to the difficulty in collecting human lung
microbiota samples, most of the studies on respiratory diseases have
only used nasopharyngeal swabs, sputum, blood, or fecal samples.
However, these surrogate measurements are often insufficient to
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reflect the actual physiological states of lungs or the biological nature
of lung infections. Considering the similar compositions of some
bacterial species in the lung microbiome between humans and pigs8,
the ARG profiles of pig lower respiratory tract microbiome should
provide a reference for human lower respiratory tract microbiome.

Pigs as important domestic animals produceone-thirdof themeat
consumed globally. Swine respiratory diseases are one of the main
challenges to the pig industry because it can cause significant eco-
nomic losses. Several studies have identified significant differences in
the composition of lung microbial communities in pigs with different
degrees of lung lesions that were associatedwith growth performance,
meat quality, and other physiological and biochemical indicators9,10.
The extensive use of antibiotics in the pig industry promotes the
emergence and spread of ARGs. The long-term utilization of anti-
biotics for swine respiratory diseases could alter the composition of
the lung microbiome and resistome. Therefore, understanding the
composition of the antibiotic resistome in the pig lung microbiome
could guide the use of antibiotics in treating swine respiratory dis-
eases. However, to our knowledge, there are no systematic studies on
the diversity and composition of ARGs in the swine lung microbiome,
nor are there published reports on whether ARGs are related to lung
lesions.

ARGs can be horizontally transferred within or betweenmicrobial
communities through mobile genetic elements (MGEs) including
insertion sequences, transposons, gene cassettes/integrons, plasmids,
and integrative conjugative elements11. Currently, most of the studies
on the relationships between mobilome and resistome have focused
on the gut and environment microbiome. However, the diversity and
composition of MGEs in the swine lung microbiome and their roles in
shaping the lung resistome are unclear. Furthermore, antibiotic resis-
tance leads to the increased abundance of ARB and pathogens. Some
commensal bacteria have been transformed to pathogens under the
selective pressure of antibiotics12. Thus, understanding the host bac-
teria of ARGs is critical for treating diseases and controlling the
transmission of antibiotic resistance in pig farms and environments.
Mycoplasma hyopneumoniae has been regarded as one of the primary
pathogens associated with chronic respiratory illnesses in swine13.
Controlling the infection of Mycoplasma hyopneumoniae is a major
goal in swine production14. However, the pathogenic mechanism of
Mycoplasma hyopneumoniae is not well understood. Understanding
whether Mycoplasma hyopneumoniae harbors ARGs would be helpful
for the treatment ofMycoplasma hyopneumoniae infection.

In this study, we used 745 lower respiratory tract metagenomes
from 675 experimental pigs across five wild and domesticated pig
populations to characterize the composition and distribution of anti-
biotic resistome (Supplementary Data 1). We investigated the rela-
tionship between ARGs and MGEs, and identified the host bacteria of
ARGs in the swine lower respiratory tract microbiome. The antibiotic
resistome profiles between bronchoalveolar lavage (BAL) fluid and
tracheal lavage fluid samples were compared, and the relationship
between ARGs and lung lesions was also evaluated. We found that
Mycoplasma hyopneumoniae that had the highest abundance in the
lung microbiome of experimental pigs did not carry ARGs but rather
harbored virulence factors genes (VFGs) that showed an association
with MGEs.

Results
Composition and distribution of ARGs in the pig lower
respiratory tract microbiome
Using 745metagenomedata of the lower respiratory tractmicrobiome
from 675 experimental pigs across five populations, we constructed a
swine respiratory microbial gene catalog containing 10,337,194 non-
redundant genes. Of these, 1228 open reading frames (ORFs) were
identified as antibiotic resistance protein-coding genes by aligning
against the Comprehensive Antibiotic Resistance Database (CARD).

These ORFs belonged to 372 ARGs (e.g., tetQ, tet(39), APH(6)-Id,
ANT(6)-Ia) and 24 antibiotic resistance types (e.g., tetracycline resis-
tance, aminoglycoside resistance) according to the antibiotic classes
to which they conferred resistance (Supplementary Data 2). To inves-
tigate the possible contamination introduced during sample collec-
tion, DNA extraction and sequencing, we sequenced twelve control
samples and analyzed the composition of ARGs. Only three ARGs were
identified in twelve control samples, including adeF, TEM-181, and
TEM-237. Among them, only adeF was also identified in 745 experi-
mental samples. The adeF identified in control samples contained only
one ORF. In 745 experimental samples, a total of 57 ORFs were iden-
tified as adeF. We blasted the adeF ORF identified in control samples
with 57 adeF ORFs in experimental samples. The highest sequence
identity was only 72.3%, indicating different adeF ORFs between
control samples and experimental samples. These results suggested
that the contaminations are unlikely to have an influence on the ARGs
profiles of experimental samples.

Among 372 ARGs detected in this study, 205 (55%) conferred
resistance to only one drug class, and 167 (45%) conferred resistance to
at least two antibiotic classes, among which 4% ARGs showed resis-
tances tomacrolide, lincosamide, and streptogramin antibiotics (MLS)
(Fig. 1a). Tetracycline resistance (33%) was most enriched in the swine
lower respiratory tractmicrobiome, followed by aminoglycoside (22%)
(Fig. 1b). These two types of ARGs were also most abundant in the pig
gut microbiome15. In addition, phenicol (14%) and multidrug (13%)
resistance also had high abundances in the swine lower respiratory
tract microbiome (Fig. 1b). Twelve ARGs were found in more than 75%
of the samples. Theprevalence values ofadeF,floR, tet(W/N/W),APH(6)-
Id, and tetQ were the top five. However, more than half (57%) of the
ARGs were detected in less than 10% of the samples. The ARGs whose
abundance was ranked in the top five included floR, tet(39), tet(L), tetQ,
and tet(D) (Fig. 1c and Supplementary Data 3). Antibiotic efflux (39.8%)
and antibiotic inactivation (33.3%) were the major resistance
mechanisms of ARGs identified in the swine lower respiratory tract
microbiome (Supplementary Fig. 1a).

We then analyzed the distribution of 10 clinically important ARGs
in pig lower respiratory tract microbiome. These 10 ARGs included
mobile colistin resistance (mcr) gene, two tetracycline resistance genes
(tet(L) and tet(D)), one sulfonamide resistance genes (sul1), two MLS
resistance genes (ErmB and ErmT), and four aminoglycoside resistance
genes (APH(6)-Id, APH(3”)-Ib, ANT(6)-Ia, and aad(6)). Among them, sul1
and ErmB were highly variable in pig lower respiratory tract micro-
biome. Six and seven ORFs were identified for sul1 and ErmB, respec-
tively. The prevalence of these ORFs varied in 745 tested samples
(Supplementary Table 1). We found 13 subtypes of mcr that was first
identified in pigs, including mcr-1, mcr-1.2, mcr-3.4, and mcr-4. The
prevalence of thesemcr subtypes was different in 745 testedmicrobial
samples (Supplementary Table 1).

Mobile genetic elements related to antibiotic resistance genes
MGEs play a central role in the horizontal transfer of antibiotic resis-
tance genes between bacterial cells. It is important to understand the
distribution of MGEs in bacteria and their relationship with ARGs. A
total of 3016 ORFs belonging to MGEs were identified from 745
metagenomes by aligning protein sequences of gene catalog against
the MGE Database “MobileGeneticElementDatabase” created by Par-
nanen, et al.16 (Supplementary Data 4). These 3016 ORFs belonged to
83 MGEs and were classified into 23 MGE types including transposase,
IS91, Tn916, istB, istA, integrase, plasmid, and qacEdelta (Supplemen-
tary Fig. 1b). The richness of MGEs in tested samples was significantly
related to the α-diversity of ARG composition (Supplementary Fig. 1c,
d). Transposase genes containing 27MGEs had the highest abundance
in swine lower respiratory tractmicrobiome, accounting for 79% of the
total abundance of MGEs (Supplementary Fig. 1b and Supplementary
Data 4). A total of 105 ORFs covering 19 MGE types were identified as
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plasmid genes. However, these plasmid genes only accounted for 1.0%
of the total abundance of all MGEs (Supplementary Fig. 1b and Sup-
plementary Data 4).

At the contig level, only 16 ARG ORFs co-occurred with MGEs on
the same contigs. This low co-occurrence rate should be due to the
short contig length, since the average lengthof bacterial genes is about
1000 bp17, and the average length of contigs in the current study was
only 1136 bp due to the low sequencing depth. This meant that the
relationships between ARGs and MGEs only based on the co-
occurrence on the same contigs were massively underestimated.
Therefore, we explored the co-abundance relationships between ARGs
andMGEs, and found significant correlations between 59 ARGs and 25
MGEs in their abundances (r ≥0.5, FDR < 0.05, Spearman correlation)
(Fig. 2). Twelve ARGs showing resistance to tetracycline, such as tet(W/
N/W), tetQ, and tetMwere significantly associatedwith theTn916 family
(Tn916-orf13, Tn916-orf14, Tn916-orf15, Tn916-orf16, Tn916-orf18, and
Tn916-orf7) that is one of the types of conjugative elements transfer-
ring ARGs between bacterial cells18. Previous report suggested that the
close proximity of MGEs and ARGs ( < 5.0 kb) is more likely to induce
horizonal gene transfers (HGTs)19. Interestingly, the close linkages (or
linkage complexes) between the Tn916 family and tetM were located
within <5 kb of region on the same contigs and observed in two
metagenome assembled genomes (MAGs). These two MAGs were
classified as Moraxellaceae and Jeotgalicoccus schoeneichii, and
detected in 33 and 161 out of 745 tested samples, respectively (Fig. 3a).
The floR gene that had the highest abundance in the swine lung
microbiome (Fig. 1c)was also associatedwithmultipleMGEsbelonging
to the Tn916 family. The ARGs conferring resistance to aminoglyco-
sides, including aadA27, APH(6)-Id, APH(3”)-Ib, ANT(3”)-IIc and ANT(3”)-
IIa, were significantly associated with multiple MGEs. The adeF was
significantly associated with 13MGEs, including five transposase genes
(tnpA, tnpA1, tnpA3, tnpA5, and tnpAcp2) (Fig. 2). Thismeans that these
ARGs may be transferred horizontally by different types of MGEs,
explaining why these ARGs had high prevalence and abundance in
tested samples. TnpA, a transposase gene, was associated with 20
resistance genes conferring resistance to multiple antibiotic types
including seven aminoglycoside resistance genes (ANT(3”)-IIa, ANT(3”)-
IIc, APH(3’)-Ia, APH(3”)-Ib, APH(6)-Id, aadA27 and aadA5), four tetra-
cycline resistance (tet(39), tet(D), tet(W/N/W) and tetQ), and two sulfo-
namide resistance genes (sul1 and sul2) (Fig. 2). According to previous
study, the ability of HGTs of ARGs across bacterial genomes can be

measured by the number of the related MGEs, and HGTs more likely
occur in those ARGs that are closely linkedwithMGEs20.We found that
TnpA was indeed close proximity to various types of ARGs, especially
aminoglycoside resistance genes, based on the contigs of MAGs. For
example, the tnpAwas in close proximity to sul2 on a contig ofMAG_75
(Acinetobacter towneri) that were detected in 123 out of 745 tested
samples (Fig. 3b). This suggested that tnpA should contribute to the
HGT of multiple ARGs. repUS12, a MGE belonging to plasmid, was
significantly associated with 6 ARGs including ANT(4’)-Ib, ANT(6)-Ia,
APH(2”)-If, ErmT, tet(45) and tet(L) (Fig. 2). Among them, tet(L) coexisted
with repUS12 on the same contig (Supplementary Fig. 2).

To further confirm the abundance changes of ARGs, MGEs and
MAGs in tested samples and the close relationships between ARGs and
MGEs, and between ARGs, MGEs and MAGs carrying these genes, we
performed the qPCR for ARGs tetM, APH(6)-Id and ANT(3”)-IIa, MGEs
Tn916-orf13 and Int-Tn916, and MAGs MAG_21 (Moraxellaceae),
MAG_26 (Jeotgalicoccus_A schoeneichii) andMAG_340 (Escherichia coli)
in 23 samples that were detected and undetected the abundances of
these ARGs, MGEs and MAGs. The results found the significant corre-
lations between the abundance values from qPCR (ΔCt) and the
abundances from metagenomic sequencing for near all ARGs and
MGEs, except tetMwhich showed the tendency of correlations but not
achieve significance level (R =0.35, P =0.099) (Supplementary Fig. 3a).
For three MAGs, the abundance changes were well repeated between
qPCR andmetagenomic sequencing analysis in 23 samples forMAG_26
andMAG_340 although theMAG_21 didnot fit well. Furthermore, aswe
expected, the close relationships between ARGs and MGEs, and
between ARGs, MGEs and MAGs carrying these genes were well con-
firmed in the qPCR (Supplementary Fig. 3b).

Potential horizontal transfers of ARGs cross pig lung and gut
microbiome, and human lung microbiome
To investigate potential horizontal transfers of ARGs mediating by
MGEs cross microbiomes in different body sites (lung and gut) and
between pigs and humans, we analyzed the linkage relationships
betweenARGs andMGEsusing 6339MAGs recovered from500pig gut
metagenomes from our previous study21. The tnpA and Tn916 family
were the dominant MGEs in the pig gut microbiome. The Tn916 family
(Tn916-orf8 and Tn916-orf9) was closely linked to the tetM that confers
resistance to tetracycline on the same contig (Fig. 3a). In addition, the
tnpAwas also detected to be in closeproximity to various ARG types in
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the pig gut microbiome, especially, to aminoglycoside resistance
genes with high frequency (Fig. 3b).

To evaluate potential horizontal transfers of ARGs between pigs
and humans, which should bring high risk to human health, we further
investigated the close linkages between ARGs and MGEs in the human
lung microbiome. We used 46 metagenomic sequencing data of BAL
fluid samples from children with pneumonia and 118 metagenomic
sequencing data of BAL fluid samples from adult COVID-19 patients.
Similar to that in pig lung andgutmicrobiomes, theadeF and tnpAwere
the most prevalent and dominant ARG and MGE, respectively, in the
human lung microbiome. Moreover, in human lung microbiome,
the tnpA was found to closely link to different ARG types including
aminoglycoside resistance genes (APH(3’)-IIIa, ANT(4’)-Ib andAPH(6)-Id),
MLS resistance genes (ErmB) and phenicol resistance genes (QnrS1),
which also present in the gut microbiome of pigs (Fig. 3b). The close
linkages between the Tn916 family and tetM was also verified in the
human lung microbiome. For examples, Int-Tn916, Xis-Tn916,
Tn916-orf7, Tn916-orf8, Tn916-orf9 were tightly linked to tetM on the
same contig which was classified as Streptococcus from the lung
microbiome of children with pneumonia (Fig. 3a). tetM were also in
close proximity to the Tn916 family including Tn916-orf9, Xis-Tn916,
Tn916-orf13, Tn916-orf14, Tn916-orf15, Tn916-orf16, Tn916-orf17, Tn916-
orf18, Tn916-orf19, Tn916-orf120 in three contigs from the lung micro-
biome of adult COVID-19 patients.

The co-occurrence relationships between tetM and the Tn916
family, and between tnpA and various types of ARGs were only
detected in a few contigs in both human and pig lower respiratory

tract metagenome data used in this study. This should be due to the
short contig lengths thatwere caused by the low sequencing depth. To
confirm that these relationships extensively existed, but not an espe-
cial case, we downloaded 3878 sequenced genomes of isolated com-
mon antibiotics resistance bacterial species from humans and pigs in
the Refseq Database, including 1172 Escherichia coli, 529 Acinetobacter
baumannii, 642 Pseudomonas aeruginosa, 976 Staphylococcus aureus,
168 Enterococcus faecalis, 297 Enterococcus faecium, and 94 Strepto-
coccus suis (Supplementary Data 5). We observed that tetM widely
coexisted with the Tn916 family in various bacterial species, including
Enterococcus faecalis (existed in 105 out of 168 genomes, 105/168),
Enterococcus faecium (179/297), Streptococcus suis (14/94), Staphylo-
coccus aureus (124/976), and Escherichia coli (38/1,172) (Supplemen-
tary Table 2 and Supplementary Fig. 4a). Notably, not all strains of
these bacterial species carried tetM, but near all genomes having tetM
also carried the Tn916 family. This result further confirmed the sug-
gestion that the Tn916 family might play an important role in the
horizonal transfer of tetM. Besides tetM, another tetracycline ARG
tet(45)was also related to the Tn916 family and always adjacent to tetM
in Enterococcus faecalis and Enterococcus faecium. And tet(W/N/W) also
co-occurred with the Tn916 family in several strains of Enterococcus
faecalis and Enterococcus faecium (Supplementary Fig. 4a). A total of
78,514 MGE ORFs were identified in these 3878 genomes, 72.5% of
which were tnpA that belongs to transposase. This was consistent with
the result that transposase genes had the highest abundance (79.0%)
in swine lower respiratory tract microbiome (Supplementary Fig. 1b).
tnpA was in close proximity to various types of ARGs (Supplementary

Fig. 2 | Co-abundance network between antibiotic resistance genes (ARGs) and
mobile genetic elements (MGEs). The connections between ARGs and MGEs with
Spearman correlation coefficients ≥ 0.5 and P values < 0.05 are shown in the figure.
The names ofMGEs aremarked in blue and the names of ARGs aremarked in black.
The nodes with the larger text sizemeanmore connections of that gene with other

genes. Nodes are colored according to ARG or MGE types. Tn916 family, twelve
ARGs conferring resistance to tetracycline and related to Tn916 family, and adeF
and five ARGs conferring resistance to aminoglycosides, all of which were corre-
lated with multiple MGEs are highlighted with different colored shadows. Source
data are provided as a Source Data file.
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Fig. 4b), providing the evidence that tnpAmight contribute to theHGT
of multiple ARGs.

Taken together, the close linkages between Tn916 family and
tetM, and between tnpA and various ARGs were detected in different
bacterial species of all human and pig lung microbiomes, and pig
gut microbiome. These results suggested that the Tn916 family and
tnpA might mediate the HGTs of ARGs among different body sites,
and between humans and pigs through different bacterial species,
and pigs might be used as a model for studying the MGE-mediated
horizontal transfers of ARGs in humans fromwhich it was difficult to
obtain microbial samples of lower respiratory tract.

Host bacteria of ARGs
We analyzed the bacterial compositions of swine lower respiratory
tract microbiome in another our study8. In brief, a total of 81 phyla,
1018 genera, and 1611 species were identified in 745 tested samples.
Proteobacteria (44%), Tenericutes (31%), Firmicutes (10%), Bacter-
oidetes (6%), and Actinobacteria (4%) were the predominant phyla of
swine lower respiratory tract microbiome (Supplementary Fig. 5a).
Mycoplasma (40%) and Acinetobacter (17%) were the two most abun-
dant bacterial genera (Supplementary Fig. 5b). At the species level,
Mycoplasma hyopneumoniae had the highest abundance in the swine
lower respiratory tract microbiome, followed by Acinetobacter john-
sonii, and Escherichia coli. Most of the ESKAPE pathogens including
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
spp., which have been regarded as themost troublesomepathogens in
hospitals due to their high frequency of resistance to antibiotics, were
also identified in the swine lower respiratory tract microbiome (Sup-
plementary Fig. 5c).

ARGs endow their host bacteria with antibiotic resistance, and
they may even lead to the production of MDR bacteria. Here, the host
bacteria of ARGsweredetermined by the taxonomic assignment of the
contigs harboring the ORFs of ARGs. A total of 1228 non-redundant
ARG ORFs were distributed in 1209 contigs, of which 1183 were
annotated to bacteria (Supplementary Data 2). The bacteria from
Proteobacteria (mainly from Gammaproteobacteria) were the major
carriers of ARGs, harboring 53% of ARGs (Fig. 4a). These bacteria also
had the highest relative abundance in swine lower respiratory tract
microbiome (Supplementary Fig. 5c). However, no ARGs were detec-
ted in the Tenericutes that accounted for 31%of the total abundance of
lung microbiome (Fig. 4a and Supplementary Fig. 5c). Pseudomonas
aeruginosa harbored the largest number of ARGs (61 ARG ORFs), fol-
lowed by Escherichia coli (52 ARG ORFs). Fourteen species from Aci-
netobacter were found to harbor a total of 97 ARGs (Supplementary
Data 2). Nearly half of the bacterial species that were detected in nearly
all samples and whose abundances were listed in the top 20 in the
swine lower respiratory tractmicrobiome, belonged to Proteobacteria.
These species from Proteobacteria harbored a large number (4–52) of
ARGs (Supplementary Fig. 5c).

We further focused on the distributionof host bacteria for the five
ARGs with the highest abundances, including floR, tet(39), tet(L), tet(Q)
and tet(D). As expected, all of these ARGs had a wide range of host
bacteria even across different phyla (Fig. 4b). For example, the floR
gene conferring resistance to phenicol antibiotics was detected in
three bacterial species, Escherichia coli (Proteobacteria), Providencia
rettgeri (Proteobacteria), and Chryseobacterium sp. POL2 (Bacter-
oidetes) (Supplementary Fig. 5d). This suggested that these ARGs
might be involved in HGT across different bacterial species
across phyla.

To characterize the host bacteria of ARGs at the strain level, we
further grouped assembled contigs into metagenome-assembly gen-
omes (MAGs), resulting in 397 non-redundant MAGs from 745 meta-
genomes (GWHBPMO00000000 ~GWHBQBU00000000, https://
ngdc.cncb.ac.cn/bioproject/browse/PRJCA010893). A total of 416

ARG ORFs corresponding to 152 ARGs were detected in 115 MAGs
(Supplementary Data 6). Sixty-twoMAGs carriedmore than two ARGs.
Among these, 11 MAGs carried more than five ARGs (Supplementary
Fig. 6a). Three Escherichia coli MAGs (MAG_340, MAG_368, and
MAG_389) harbored more than 50 ARGs (Supplementary Fig. 6b). The
average of relative abundances of MAG_340, MAG_368, and MAG_389
in the samples detected these MAGs were 0.15% (0.01%-1.37%), 0.43%
(0.01%-2.79%), and 0.38% (0.002%-2.23%), showing a relatively high
abundance although their prevalence was low (only detected in 40,
eight and eight out of 745 experimental samples). In addition,multiple
homologous gene clusters encoding ARGs were identified in these
three Escherichia coli MAGs, including the clusters emr, mdt, and Acr
families (Supplementary Data 7). These results further explained the
super antibiotic resistance of Escherichia coli. There were 88 ARGs that
existed in more than two host bacteria (Supplementary Fig. 6c and
Supplementary Data 6). There were nine ARGs, including adeF, tet(39),
and floR, whose abundance or prevalence was ranked in the top five in
all detected ARGs (Fig. 1c) and that were identified in more than five
host bacteria (Supplementary Fig. 6d). The tet(39) and aadA27 genes
were mainly carried by Acinetobacter johnsonii, whereas adeF, rsmA,
and floR were harbored by various bacterial species (Supplemen-
tary Fig. 6d).

To evaluate the risk of horizontal transfer of ARGs at the strain
level, we further analyzed the distribution ofMGEs in three Escherichia
coliMAGs (MAG_340, MAG_368, andMAG_389) that carriedmore than
50ARGs. These threeMAGs harbored 35, 17 and 10MGEs, respectively.
The tnpA element, one of the transposase genes, found in multiple
locations in each of the three MAGs, co-occurred with different ARGs
on the same contigs. For example, a gene cluster was found within 22-
kb of a contig in theMAG_340, wherenineARGs and 12MGEs including
10 tnpA were distributed (Fig. 4c). Considering the relatively high
abundance of MAG_340, the result suggested the high risk of hor-
izontal transfer of these ARGs under the assistance of MGEs.

Comparison of antibiotic resistome and MGE profiles between
lung and trachea and among five pig populations
To compare the compositions of antibiotic resistomes between lung
and trachea microbiomes, we used 138 metagenomic sequencing data
of BAL fluid and tracheal lavage fluid samples from 69 pigs. The results
showed that the number of ARGs (richness), the abundance of total
ARGs, and the α-diversity (Shannon index) of resistome profile in the
trachea microbiome was significantly higher than that in the lung
microbiome (Fig. 5a–c), and 78% of ARGs (n = 292) had a higher pre-
valence in tracheal lavagefluid samples compared to BALfluid samples
(Supplementary Data 8). Principal co-ordinates analysis (PCoA) also
found the significant difference in the compositions of ARGs between
lung and trachea microbiomes (ANOSIM, R =0.045, P = 2.0 × 10−3)
(Supplementary Fig. 7a). We further identified 40 ARGs showing sig-
nificantly different abundances between lung and trachea micro-
biome. Most of these differential ARGs had significantly higher
abundance and prevalence in tracheal lavage fluid samples, andmainly
conferred the resistance to multiple drugs or aminoglycosides
(Fig. 5d). Nine OXA ARGs belonging to beta-lactamases showing
resistance to multiple drugs and that were transferred by plasmids22

were found in most of the tracheal lavage fluid samples but were
almost absent in BAL fluid samples (Fig. 5d). The similar results were
also identified in the MGE profiles. Significantly different MGE com-
positions were found between lung and trachea microbiomes (Sup-
plementary Fig. 7b). Trachea microbiome had the higher number of
MGEs (richness), total abundance of MGEs, and the α-diversity
(Fig. 5e–g).

We further compared ARG and MGE profiles in pig lower
respiratory tract microbiome among five pig populations. Overall, the
richness, the total abundance, and the α-diversity (Shannon index) of
ARGs were not significantly different among five pig populations
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(Supplementary Fig. 8a–c). However, different pigpopulations showed
distinct β-diversity in the ARG composition. Erhualian pigs had the
highest β-diversity (Supplementary Fig. 9a). PCoA also indicated the
distinct compositions of ARGs among five pig populations (Supple-
mentary Fig. 9b). Based on the relative abundances, the F7 population
had the highest abundance of floR. tet(L) was the dominant ARGs in
both Berkshire × Licha line and wild boars. tet(39) and tetQ were the
dominant ARGs in Erhualian and Tibetan pigs, respectively.

The similar results were obtained in the compositions of MGEs
among five pig populations. There were no significant differences in
the richness, the total abundance, and the α-diversity of MGE com-
positions among five pig populations although distinct compositions
of MGEs were observed through PCoA and β-diversity analysis
(Supplementary Fig. 8d–f and Supplementary Fig. 9c, d). Indis-
tinctively, tnpA had the highest abundance in all five populations,
followed by IS91.

Phylum Class Order FamilyKingdom SpeciesGenus

Phylum Class Order FamilyARG SpeciesGenus

a

b

dfrA12 cmlA1qacEdelta/qacL

sul3

tnpA tnpA tnpA tnpA tnpA

intI1 aadA2 aadA tnpA mef(B) TEM-1 tnpA QnrS1 tnpA

bp

c
MAG_340-Escherichia coli (n = 40)

Fig. 4 | Host bacteria of antibiotic resistance genes (ARGs) in swine lower
respiratory tract microbiome. a Distribution of host bacteria of 1209 contigs
carrying 1228 ARG open reading frames (ORFs) at different taxonomic levels. The
colors of the rectangles represent different taxonomy levels. The lengths of the
rectangles indicate the number of contigs carrying ARGs. Only those taxa with the
number of contigs carryingARGs greater thanfive are shown.bDistribution of host

bacteria of five ARGs with the relative abundance listed in the top five at different
taxonomic levels. c The distribution of ARGs and MGEs in Escherichia coliMAG
(MAG_340). The x-axis represents the location of genes in the contig. Thedirections
of arrows represent the strand on which genes are located. Right arrows indicate
the genes on the forward strand, and the left arrows indicate the genes on the
reverse strand. Source data are provided as a Source Data file.
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Relationship between ARGs in the lung microbiome and lung
lesions
We systematically analyzed the relationships of lung microbial taxa
and VFGs with pig lung lesions, and identified several lung bacterial
taxa and VFGs that were significantly associated with the lung lesion
levels8. Here, to evaluate the relationship of the diversity and com-
position of ARGs in the lung microbiome with lung lesions, we
compared the profiles of lung resistome under different lung lesion
levels using 613 BAL fluid samples from F7 pigs of the mosaic popu-
lation. Unexpectedly, the α-diversity of ARG composition was
decreasedwith the increased severity of lung lesions (Supplementary
Fig. 10a, b). Considering the decreased α-diversity of the lung
microbial composition with the increased severity of lung lesions
(Supplementary Fig. 10c, d), we examinedwhether the changes in the
α-diversity of ARGs (richness and the Shannon index in the ARG
composition) were related to the shifts in themicrobial composition.
The result showed that the α-diversity of ARG composition was
positively associated with the α-diversity of the microbial composi-
tion. Moreover, compared to the evenness (Shannon index)
(r = 0.27–0.3, P = 2.3 × 10−14–8 × 10−12, the richness of bacterial species
had a greater effect on the α-diversity (richness and the Shannon
index) of ARG composition (r = 0.69–0.86, P < 2.2 × 10−16) (Fig. 6a, b
and Supplementary Fig. 10e, f). Similar results were also observed
between the α-diversity of the lung antibiotic resistome composition

and microbial gene richness (MGR) (r = 0.38–0.43, P < 2.2 × 10−16)
(Supplementary Fig. 10g, h), confirming the effect of microbial
composition on the α-diversity of the ARG composition. The results
of a Procrustes analysis indicated that the β-diversity of ARG com-
position was weakly correlated with the β-diversity of microbial
composition (r = 0.15, P = 1.0 × 10−3) (Supplementary Fig. 11a). How-
ever, when Mycoplasma hyopneumoniae that had the highest abun-
dance in the lower respiratory tract microbiome but did not carry
ARGs was removed from the analysis, the samples with similar
microbiome profiles tended to have more similar ARG profiles
(r = 0.57, P = 1.0 × 10−3) (Supplementary Fig. 11b). These results sug-
gested that the composition of lower respiratory tract microbial
community, but not the degree of lung lesion severity structured the
composition of swine lower respiratory tract resistomes. However,
based on their relative abundances of ARGs, we indeed found that the
abundance of ARGs conferring resistance to phenicol was sig-
nificantly increased in pigs with severe lung lesions, while the abun-
dance of ARGs for aminoglycosides was decreased with the severity
of lung lesions (Fig. 6c). We further identified 73 ARGs showing sig-
nificantly different abundances among pigs with different severities
of lung lesions (FDR < 0.05). Only floR and Haemophilus influenzae
PBP3 conferring resistance to beta-lactam antibiotics (Hinf_PBP3_-
BLA) were significantly enriched in pigs with severe lung lesions.
There were 31, 32, and 8 ARGs that were enriched in pigs with healthy
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ARGs between lung (n = 69) and tracheamicrobiomes (n = 69). cComparison of the
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(n = 69) and trachea microbiomes (n = 69). The resistance mechanisms and resis-
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valence of ARGs in lung (red) and trachea (green) samples is also shown on the y-
axis. The x-axis indicates the log10-transformed relative abundances. e Comparison

of the richness (number) of MGEs between lung (n = 69) and trachea microbiomes
(n = 69). f Comparison of the abundance of total MGEs between lung (n = 69) and
trachea microbiomes (n = 69). g Comparison of the evenness (Shannon index) of
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plots represent the outliers. Source data are provided as a Source Data file.
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lungs, slight lung lesions, and moderate lung lesions, respectively,
based on the average abundance of ARGs in each group (Fig. 6d).

Putative horizontal transfer of VFGs mediated by MGEs in
Mycoplasma hyopneumoniae, a pathogen causing lung diseases
Mycoplasma hyopneumoniae is the main pathogen causing swine
chronic respiratory diseases. Our study also found a significant
increase in the abundance of Mycoplasma hyopneumoniae with the
severity of lung lesions (Supplementary Fig. 11c). However, Myco-
plasma hyopneumoniae has been reported to be sensitive to various
types of antibiotics such as tetracyclines, macrolides, and
aminoglycosides23. More importantly, no ARGs were detected in
Mycoplasma hyopneumoniae genomes, including seven MAGs recov-
ered in this study and 23 genomes downloaded from NCBI RefSeq
databases although Mycoplasma hyopneumoniae was detected in all
tested samples, and the average relative abundance of Mycoplasma
hyopneumoniae accounted for 46% of the total abundance of all bac-
terial species detected (Supplementary Fig. 5c).

We speculated as to whether Mycoplasma hyopneumoniae infec-
ted the host and survived from antibiotic selection pressure in the
respiratory tract through VFGs.We searched for VFGs present in seven
MycoplasmahyopneumoniaeMAGs.A total of nine VFGswere detected
from sevenMycoplasma hyopneumoniaeMAGs. Six of these nine VFGs,
namely, P159, EF-Tu, the P97/P102 paralog family, PDH-B, LppT, and

P146, had a functional capacity of cell adhesion. Except for MAG_366
that had a lower genome completeness (50%), the other six MAGs had
at least five gene copies belonging to the P97/P102 paralog
family (Fig. 7a).

We further explored whether the nine VFGs in Mycoplasma
hyopneumoniae MAGs could be horizontally transferred by MGEs. A
total of five MGEs, namely, pEC4115, IS91, ISBf10, tnpA, and prophage,
were detected in seven MAGs. Among these, at least one tnpA gene
existed in each MAG (Fig. 7b). Several VFGs were found to be located
within 10 kbupstreamordownstreamofMGEs in the same contigs. For
example, the P159 and P97/P102 paralog family co-occurred with the
IBSf10 in the MAG_6. However, in MAG_115, the P97/P102 paralog
family co-occurred with the MGEs tnpA and IS91 (Fig. 7c). More
importantly, tnpA and IS91 were significantly related with 20 and 10
ARGs, respectively (Fig. 2). This suggested that besides VFGs, Myco-
plasma hyopneumoniae may also have the potential to acquire ARGs
from other bacterial species. In addition, two prophages were identi-
fied in each of the four Mycoplasma hyopneumoniae MAGs for which
the completeness of genome achieved 99% (Fig. 7b). More impor-
tantly, one P146 and three P97/P102 paralog family genes were detec-
ted in the genome sequences of twoprophages in theMAG_16 (Fig. 7c).
These results suggested that VFGs could be horizontally transferred
between bacterial strains through different types of MGEs and they
promoted the infection of Mycoplasma hyopneumoniae.
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Fig. 6 | Relationship of ARGs with lung lesions. a Correlation between the rich-
ness (number) of bacterial species in the lower respiratory tract microbiome and
the richness (number) of ARGs. b Correlation between the richness (number) of
bacterial species in the lower respiratory tract microbiome and the evenness
(Shannon index) of ARGs. The correlation analyses were performed in bronch-
oalveolar lavage fluid samples from F7 pigs of a mosaic population (n = 613). The
two-sided Spearman rank correlation tests and FDR corrections were performed
using the psych R package. Data are presented as the actual value of the corre-
sponding variable obtained for each sample (each point). c Composition and
abundance of each ARG type in the lower respiratory microbiome with different
lung lesion levels. HL, healthy lung (blue, n = 51); SLL, slight lung-lesion (yellow,

n = 217); MLL, moderate lung-lesion (gray, n = 218); SVLL, severe lung-lesion (dark
red, n = 127). The abundances of ARG types shown in the Circos plot (the numbers
in circles) are equal to the relative abundance × 105. Different colored lines repre-
sent ARG types (antibiotics that ARGs show resistance to). d Seventy-three ARGs
with significantly differential abundances among four pig groups with different
lung lesions. The pairwise comparisons were performed using the two-sided Wil-
coxon test, and aP <0.05 corrected for false discovery rate (FDR)was treatedas the
significance threshold. The ARGs with prevalence <10% and average abundance
<0.1% in tested samples were filtered. Resistancemechanisms and resistance types
(drug) of these ARGs are shown with different color boxes on the horizon. Source
data are provided as a Source Data file.
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Discussion
In this study, we characterized the antibiotic resistome profile of the
lower respiratory tract microbiome, investigated the relationships
between ARGs and MGEs, and identified host bacteria of ARGs using
745 swine lower respiratory tract metagenomes. To our knowledge,
this is the largest catalog of ARGs in the swine lower respiratory tract
microbiome, in addition to being larger than corresponding biomes
for farm animals and humans. Moreover, this is the first investigation
of the relationship between the antibiotic resistome of the swine
respiratorymicrobiome and lung lesions in a genetically variedmosaic
population.

The ARG profiles in the swine lower respiratory tract microbiome
varied among different individuals. Our results showed that 57% of the
ARGs were only present in less than 10% of the samples. Meanwhile, 12
ARGs existed in more than 75% of the samples, including four ARGs to
aminoglycosides, three to tetracycline, two to sulfonamide, two to
multiple drugs and one to phenicol (Fig. 1c). This is very different from
the core resistomeof the human respiratory tractmicrobiome thatwas
dominated by ARGs to beta-lactam, fluoroquinolone, macrolide, and
tetracycline in a study based on sputum samples from 85 individuals

with and without chronic respiratory disease6. The distinct core ARGs
may have been caused by the differences in host sample sources,
respiratory sites, utilization of antibiotics, and disease types.

ARGs conferring resistance to tetracycline and aminoglycoside
were most abundant in the swine lower respiratory tract microbiome.
These ARGs were also frequently detected and had high abundance in
fecal and environmental samples of pig farms around the world15,24.
This may be related to the long-term and widespread use of these two
classes of antibiotics in swine production25. Compared with the gut
antibiotic resistome in pigs, the lower respiratory tract antibiotic
resistome had a higher abundance of phenicol resistance genes
(Fig. 1b). In particular, the floR gene that was carried by various bac-
terial species accounted for 69% of the total abundance of phenicol
resistance genes and hadhigh prevalence (ranked second) in the swine
lower respiratory tract (Fig. 1c). This should be related to the use of
florfenicol, a fluorinated chloramphenicol derivative that has been
commonly used to control respiratory tract infections in pig produc-
tion. The floR gene also had high abundance in swine manure and
could be used as an indicator for estimating the total abundance of
ARGs26. floR showed potential human pathogenicity20 and has been
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in seven Mycoplasma hyopneumoniae MAGs. b Distribution of MGEs in seven
MycoplasmahyopneumoniaeMAGs. Red squares represent the presence of VFGs or
MGEs in the genomes, while blue squares represent the missing VFGs or MGEs in
the genomes. The numbers of VFGs and MGEs are labeled in the squares if greater
than one. The numbers at the top of the heatmap represent the completeness of
MAGs. The VFG category andMGE type are indicatedwith colored boxes in the left.

c Distribution of VFGs and MGEs in the contigs of Mycoplasma hyopneumoniae
MAGs. The x-axis represents the locations of genes in the contig. Green arrows
indicateMGEs, and yellowarrows indicate VFGs. The directions of arrows represent
the strand that onwhichare located.Right arrows indicate the geneson the forward
strand, and left arrows indicate the genes on the reverse strand. The numbers of
brackets in the y-axis shows the sample numbers detected the correspondingMAG.
Source data are provided as a Source Data file.
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found in many pathogens, such as Escherichia coli27, Klebsiella
pneumoniae28, and Vibrio cholerae29. This was consistent with the
highest abundance of floR in pigs with severe lung lesions (Fig. 6d),
suggesting that ARGsmight be used as a biomarkers for evaluating the
lung lesions, and pigs might be used as a model for investigating the
relationship between ARGs and lung diseases for humans.

Our data suggested that some MGEs might significantly promote
the horizontal transfer of ARGs across different bacterial species. The
tnpA gene, as a major MGE was widely distributed in various bacterial
species, and closely linked to different types of ARGs in all human and
pig lung microbiomes, and pig gut microbiome (Fig. 3b). The Tn916
familywas associatedwith the highest number of ARGs,many of which
confer resistance to tetracycline (Fig. 2). Conjugative transposons of
the Tn916 family transfer major antibiotic resistance determinants of
many Gram-positive pathogens and are responsible for the dis-
semination among these pathogens18. We did find that tetracycline
ARGs related to the Tn916 family, e.g., tetM, tet(45), and tet(W/N/W),
were carried by common Gram-positive pathogens including Enter-
ococcus faecalis, Enterococcus faecium and Staphylococcus aureu
(Supplementary Fig. 4 and Supplementary Table 2). Furthermore, the
extensive identification of the close linkage between Tn916 family and
tetM in all pig lung microbiome, pig gut microbiome, and human lung
microbiome implied that MGEs belonging to the Tn916 family might
facilitate to the spread of the tetM between animals and humans. The
adeF gene had the most various host bacteria and the highest pre-
valence in all swine lower respiratory tract microbiome, pig gut
microbiome15 and human lung microbiome. This might be due to the
transfer of adeF by various types of MGEs. We did find that adeF was
significantly associated with 13 MGEs (Fig. 2).

Our results suggested that the α-diversity of the lung antibiotic
resistome decreased with the severity of lung disease. This should be
explained by the decreased microbial diversity caused by the
increased abundance of Mycoplasma hyopneumoniae without har-
boringARGs. Gammaproteobacteria containingmany pathogens, such
as Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter bau-
mannii were the dominant ARB in the lower respiratory tract micro-
biome (Fig. 4a) as well as in the gut30,31 and the environmental
microbiomes32. This should be due to 1) the transmission of these ARB
across different environments; 2) the transfer ofARGs to thesebacteria
by MGEs in different environments. Therefore, inhibiting the abun-
dances of these ARB would be the key step to control the spread of
ARGs. Antibiotics that could cause antibiotic resistance in these ARB
should be used cautiously.

In another our study mentioned above, we identified that Myco-
plasma hyopneumoniae strains and the adhesion-related virulence
factors carried by these Mycoplasma hyopneumoniae strains were
significantly associated with pig lung lesions8. Mycoplasma hyopneu-
moniae must attach to the cilia of respiratory epithelium to infect the
host33. The P97 adhesinhasbeen shown toplayan important role in the
pathogenicity ofMycoplasma hyopneumoniae and has been treated as
a potential vaccine candidate34,35. However, another study only
observedweak responses against the adhesin P97 C-terminal fragment
in analyzing swine antigen-specific antibody responses toMycoplasma
hyopneumoniae infection, whereas the responses against themembers
of the P97/P102 gene familywere strong36. The P97/P102paralog family
members are multifunctional cilium adhesins that promote the
pathogenicity ofMycoplasma hyopneumoniae by utilizing host surface
glycoconjugates and extracellularmatrix components37. In our results,
P97was not detected in sevenMycoplasma hyopneumoniaeMAGs, but
multiple P97/P102 paralog family genes were detected in six out of
sevenMAGs (Fig. 7a). These results indicated the potential roles of the
P97/P102 paralog family carried by Mycoplasma hyopneumoniae in
lung lesions. Furthermore, the VFGs associated with adherence,
including the P97/P102 paralog family, P146, and P159, co-occurred

with different types ofMGEs, and the P97/P102paralog family and P146
could be transferred by prophages (Fig. 7c). These results suggested
that MGEs may play an important role in the horizontal transfer of
VFGs and thus enhance the pathogenicity of Mycoplasma hyopneu-
moniae in lung lesions. MGEs tnpA and IS91 that co-occurred with the
P97/P102 paralog family were significantly related with 20 and 10
ARGs, respectively (Fig. 2). Unexpectedly, no ARGs have been identi-
fied in Mycoplasma hyopneumoniae genomes. However, considering
the existence of tnpA and IS91, constant monitoring for ARGs in the
Mycoplasma hyopneumoniae would be necessary in the future.

In conclusion, we constructed the first comprehensive catalog of
ARGs in the swine lower respiratory tractmicrobiome and investigated
the potential horizontal transfer of ARGs through analyzing the dis-
tribution of MGEs. We also identified the host bacteria of ARGs and
evaluated the relationship between ARGs and lung lesions. The results
provide a reference for optimizing the use of antibiotics in swine
production and help us to better understand the role of the antibiotic
resistome of the swine lower respiratory tract microbiome as it affects
the lung health of pigs. However, the main limitation of this study was
the short length of assembled contigs due to the low rate of high-
quality clean sequence reads that was caused by the contamination of
host DNA in the sampling. In further studies combining the advantages
of the high accuracy of second-generation sequencing data with the
long sequence lengths of third-generation sequencing data, contigs
and MAGs with higher quality could be obtained. This would be ben-
eficial for obtaining insights into the relationship between antibiotic
resistome andmobilome and for the investigation of the host bacteria
of ARGs.

Methods
Ethical statement
All procedures involved in experimental pigs were conducted
according to the guidelines for the care and use of experimental ani-
mals established by the Ministry of Agriculture and Rural Affairs of
China. The project was also approved by Animal Care and Use Com-
mittee (ACUC) in Jiangxi Agricultural University (No. JXAU2011-006).

Experimental animals and sample collection
A total of 745 lower respiratory tractmicrobial samples including 670
BAL fluid samples, 74 tracheal lavage fluid samples, and one eso-
phageal lavage fluid sample from 675 experimental pigs were used in
this study (Supplementary Data 1). These experimental pigs were
from five populations: F7 pigs of a mosaic population (n = 618, 264 ♀

and 354 ♂)38, Erhualian pigs raised in the Changzhou farm (n = 9, 4 ♀

and 5 ♂), Berkshire × Licha line pigs from the Dingnan farm (n = 28,
22 ♀ and 6 ♂), wild boars (n = 9, 3 ♀ and 6 ♂), and Tibetan pigs from
the Linzhi farm (n = 11, all female). The detailed information about
experimental pigs including breed, age, gender, and health is pro-
vided in the Supplementary Data 1. All F7 pigs were housed in a uni-
formed farm of Jiangxi Agricultural University in Nanchang and
provided commercial formula feed containing 16% crude protein and
3100 kcal/kg digestible energy and 0.78% lysine. All Erhualian, Tibe-
tan, and Berkshire × Licha pigs were fed with commercial formula
feed satisfying the standard pig nutritional requirements. Water was
provided ad libitum from nipple drinkers. All lavage samples were
obtained by rinsing bronchoalveoli and trachea with sterile
phosphate-buffered saline (PBS) immediately after slaughter.
Seventy-four tracheal lavage fluid samples and one esophageal
lavage fluid sample were obtained from F7 pigs of the mosaic pig
population, among which 69 pigs were also collected BAL fluid
samples. All pigs did not receive antibiotic treatment for twomonths
prior to harvest for sample collection. Six samples of PBS solution
from the same batch and experienced the same process of sampling
but not used for lavage was sampled as blank control.
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Phenotyping of lung lesions
Both the anterior and posterior of lungs from each experimental pig
were photographed using a digital camera. Six professionally trained
panelists scored the level of lung lesions independently according to
the following scoring criteria39: (i) A total of 13 sections were scored,
including six sections from the anterior lung and seven sections from
the posterior lung. The sections of anterior lung included left and right
apical lobes, left and right cardiac lobes, and left and right diaphrag-
matic lobes. The sections of posterior lung included an intermediate
lobe and the same six sections for anterior lung. (ii) Each section was
assigned a score ranging from0 to 5, corresponding to the proportion
of lesion area: 0%, 0–20%, 20–50%, 50–75%, 75–90%, and >90%. (iii)
Due to the different area sizes of the apical lobe, cardiac lobe, dia-
phragmatic lobe and intermediate lobe, different weights of 20% (5%
per section × four sections), 20% (5% per section × four sections), 50%
(12.5% per section × four sections) and 10% (one section) were assigned
to the apical lobe, cardiac lobe, diaphragmatic lobe, and intermediate
lobe, respectively. (iv) The lesion score of each lung was equal to the
sum of the score for each section multiplied by the corresponding
weight. Then, pairwise correlation analyses were performed on the
scoring results from six panelists, and the scoring results from three
panelists whose correlation coefficients were greater than 0.9 were
used to calculate themean values of the lesion score for each lung that
were treated as the phenotypic values. Re-scoring had to be performed
if the scoring results that met the requirements were from fewer than
threepanelists. Basedon thefinalphenotypic values, pigswere divided
into four groups: healthy lung (HL, 0 <score ≤ 0.75), slight lung lesions
(SLLs, 0.75 <score ≤ 1.50), moderate lung lesions (MLLs, 1.50 <score ≤
3.00), and severe lung lesions (SVLLs, score > 3.00).

DNA extraction, metagenomic sequencing, and data analysis
Microbial DNA was extracted using the QIAamp Fast DNA Stool Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. The quality of DNA samples was evaluated with a
NanoDrop-1000 and electrophoresis using 0.8% agarose gels. All DNA
samples that passed quality control were used for constructing the
library. The sequencing libraries were constructed according to the
manufacturer’s procedures (BGI, China). The libraries were sequenced
on a DNBSEQ-T7 platform (BGI, China) adopting a 150-bp paired-end
sequencing strategy and generating an average of 70.30Gbases of raw
sequencing data. The low-quality reads, adapter sequences, and the
reads thatmatched to the pig referencegenome assembly (Sscrofa11.1)
were filtered from sequencing data. After the quality control, an
average of 1.52G bases of clean data (10.23 million clean sequence
reads), ranging from 0.69 to 23.89G bases was obtained for each
sample due to severe contamination by host genomic DNA sequences
(Supplementary Fig. 12a). Clean sequence reads were assembled to
contigs using MEGAHIT (v1.2.9)40 by combining single-sample assem-
bly and co-assembly. A total of 19,685,103 contigs with length ≥ 500 bp
were obtained from all 745 samples. The average length of contigs was
1136 bp, and the average N50 value was 1626 bp (Supplementary
Fig. 12b). Contigs were then used for ORF prediction by Prodigal
(v2.6.3)41. All predicted protein sequences of ORFs were clustered
usingCD-HIT (v4.8.1)42 at 90% identity. Afterfiltering incomplete genes
with length <100 bp, the final non-redundant gene catalog containing
10,337,194 genes was used for downstream analysis.

Gene abundance was calculated by aligning high-quality reads
from each sample against the gene catalog using BWA (v2.2.1)43. The
number of reads mapped to each gene was counted using Feature-
Counts (v2.0.1)44. The relative abundance of genes was calculated
using the methods described previously45. The effects of sequencing
depth and gene length on the abundance were taken into account.
Taxonomic annotation was performed by aligning protein sequences
of genes to the Uniprot TrEMBL database (https://www.uniprot.org/

help/downloads) by DIAMOND (v2.0.12.150)46 at the threshold of
e-value = 10−5. Search results were parsed by BASTA (v1.3.2.3)47. Taxo-
nomic classification of genes was determined under the criteria
e-value ≤ 10−5, the matched sequence length > 25 bp, identity >80%,
and the annotation shared by at least 60% of hits. Six PBS solution
samples that were treated as blank controls and six samples of mixed
regents that were used for library construction and sequencing as
sequencing background control samples were also performed meta-
genomic sequencing. The procedures of bioinformatics analysis for
these 12 control samples were as same as that for experimental
samples.

We further grouped the contigs intoMAGsusing the binning tools
MetaBAT2 (v2.15)48, Maxbin2 (v2.2.7)49, and CONCOCT (v1.0.0)50 for
single-sample binning. We also conducted a co-binning analysis based
on the contigs generated from co-assembly using the tools described
above, except CONCOCT that was replaced by VAMB (v3.0.2)51. After
metagenomic binning, refining, re-assembling, and dereplication, 397
non-redundant MAGs ( < 99% ANI) with ≥50% completeness and ≤10%
contamination were generated. Taxonomic annotation of MAGs was
classified by GTDB-Tk (v1.7.0)52. The genome annotations of MAGs
were performed using Prokka (v1.13)53 with default parameters. The
MAGs annotated to Mycoplasma and Ureaplasma by GTDB-Tk were
annotated with the parameter “--gcode 4” because of the different
initiation codon. The relative abundance of MAGs was calculated by
CoverM (v 0.6.1) (https://github.com/wwood/CoverM).

Identification and annotation of ARGs, MGEs, and VFGs, and the
calculation of their abundances
ARGswere identified by aligning protein sequences of genes fromnon-
redundant gene catalog or MAGs to the CARD (v 3.1.4) using RGI (v
5.2.1)54 with default parameters. ARGs conferring resistance to at least
two drug classes were grouped into the multidrug class, except the
ARGs conferring resistance to macrolide, lincosamide, and strepto-
gramin antibiotics that were grouped into the MLS class. We analyzed
the distributionofmobile colistin resistance (mcr) genewhichwasfirst
identified in pigs55 and has broadly spread in environments56 and nine
other clinically important ARGs in 745 tested samples. The nine clini-
cally important ARGs were chosen based on (1) it has been found in
clinically relevant pathogens and identified as high-risk ARGs (Q1, top
25%) to human health20; (2) It was listed in the top 20 based on the
abundances in pig gutmicrobiome15 or lungmicrobiomes; and (3) The
seed sequences were available in the SARG (v 2.2) database57. The
distributions of clinical ARGs in pig lung microbiome was determined
by aligning the gene catalog of pig lower respiratory tract microbiome
constructed in the current study to the seed sequences of 10 ARGs
using BLASTP (v2.12.0)58 with options “e-value ≤ 10−5”.

Host bacteria of ARGs were determined by taxonomic assign-
ments of the contigs or MAGs on which ARG ORFs were located20. The
taxonomic annotation of ARG contigs was performed using Kraken2
(v2.1.2)59 with the default parameters. To further confirm whether
Mycoplasma hyopneumoniae harbored ARGs, we integrated 23 geno-
mic sequences of Mycoplasma hyopneumoniae downloaded from the
NCBIRefSeqdatabase (Supplementary Table 3) and sevenMycoplasma
hyopneumoniae MAGs constructed in this study.

MGEs were identified by aligning protein sequences of genes
against the MGE Database “MobileGeneticElementDatabase” created
by Parnanen et al. (2018)16 using DIAMOND (v0.8.36.98)60 using the
criteria of e-value ≤ 10−5, >80% sequence identity, and >80% query
coverage. Under these criteria, we did not identify any MGEs in seven
MycoplasmahyopneumoniaeMAGs.However, whenonly the threshold
of e-value ≤ 10−5 was used, we identified four MGEs in these seven
MAGs. Considering that the e-value ≤ 10−5 has been commonly used in
the alignments of many other studies by DIAMOND (v0.8.36.98)61–63,
and MGE annotations of these MAGs were highly consistent with each
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other, we retained these MGEs for further analysis. The annotation of
prophage sequences within Mycoplasma hyopneumoniae MAGs was
performed using PHASTER’s web interface64. VFGs were identified
through alignments with the Virulence Factor Database (VFDB)65 using
BLASTP (v2.12.0)58 with options “e-value ≤ 10−5 and identity ≥ 80%.”
Since multiple genes in the gene catalog might be annotated to the
same ARG, MGE, or VFG, the abundances of ARGs, MGEs, and VFGs
were calculated by summing the abundances of all members in each
category.

Confirmation of the abundance changes of ARGs, MGEs and
MAGs by qPCR
To validate the abundance changes of ARGs, MGEs and MAGs, and
the co-abundance relationships between them, we designed the
primers for each of three ARGs, two MGEs, and three MAGs har-
boring these ARGs and MGEs for qPCR using the Primer3 (v. 0.4.0)
(Supplementary Table 4). A total of 23 samples containing both the
samples detected and undetected the abundances of these ARGs,
MGEs and MAGs in the metgenomic sequencing analysis, were
selected for qPCR. The 16 S rRNA gene was used as an internal
control in the qPCR analysis. qPCR was carried out in triplicate with
Power SYBR Green Mastermix (Takara, Japan) on an Applied Bio-
systems 7900 system using the following program: 95 °C for 5min;
40 cycles of 95°C for 15 sec, 62°C for 50 sec, and 95 °C for 15 sec;
60 °C for 15 sec. The correlations between the abundance values
from qPCR (ΔCt) and the abundances from metagenomic sequen-
cing (FPKM for ARGs and MGEs, and percentage for MAGs), and
between ARGs or MGEs, and the MAGs carrying these genes were
analyzed with Spearman correlation analysis in R (v4.1.1).

Identification and annotation of ARGs and MGEs in the pig gut
and human lung microbiomes
To investigate the HGTs of ARGs among pig lung microbiome, pig gut
microbiome, and human lung microbiome, we used 6339 MAGs
recovered from 500 pig gut metagenomes of F6 pigs from the same
mosaic population in our previous study (China National GeneBank
DataBase with accession code: CNP0000824)21, 46 metagenomic
sequencing data of BAL fluid samples from childrenwith pneumonia66,
and 118metagenomic sequencing data of BAL fluid samples from adult
COVID-19 patients67. The information about pig gut and human lung
samples, such as age, gender, and health were provided in Supple-
mentary Data 9. Based on the 6,339 MAGs from 500 pig gut meta-
genomes, gene annotationswere performedusing Prokka (v1.13)53 with
default parameters. Forty-six and 118metagenomic sequencing data of
BAL fluid samples were downloaded from GenBank repository
(accession number SRP119571) andNCBI SequenceReadArchive under
project numbers PRJNA687506, respectively. Quality control of
metagenomic sequences was performed as described above (the
metagenomic analysis of the pig lower respiratory tract microbiome),
except the removal of host DNA sequences which used the human
reference genome (GRCh38). Then, co-assemblies were also con-
ducted using the samemethods as described above. Using the contigs
from the co-assembly, gene prediction was conducted with Prodigal
(v2.6.3)41. ARGs and MGEs were identified by aligning the protein
sequences of genes to CARD (v 3.1.4) and “MobileGeneticElementDa-
tabase” databases using the same threshold values using RGI (v 5.2.1)54

and DIAMOND (v0.8.36.98)60, respectively, as described in the section
of pig lower respiratory tract microbiome. Taxonomic annotation of
MAGs was classified by GTDB-Tk (v1.7.0)52, and taxonomic annotation
of contigs were using KRAKEN2 (v2.1.2)59.

Confirming the close linkage relationships between ARGs
and MGEs
To further verify the co-occurrence relationship between Tn916 family
and tetracycline ARGs, and between the tnpA and various types of

ARGs, we downloaded protein sequences and GTF gene annotation
files of 3878 genomes of common ARB isolated from humans and pigs
from Refseq Database, including 1172 Escherichia coli, 529 Acineto-
bacter baumannii, 642 Pseudomonas aeruginosa, 976 Staphylococcus
aureus, 168 Enterococcus faecalis, 297 Enterococcus faecium, and 94
Streptococcus suis (Supplementary Data 5). ARGs and MGEs in these
genomes were then annotated using the same method for the identi-
fication of ARGs andMGEs in the gene catalog of pig lower respiratory
tract microbiome.

Statistics & Reproducibility
Most of the statistical analyses and visualizations were performedwith
R (v4.1.1). The distribution of the host bacteria of ARGs at different
taxonomic levels was plotted with Sankey diagrams using the net-
workD3 R package68. The α-diversity of the compositions of ARGs,
MGEs, VFGs, and bacterial species including richness (the number of
features) and the Shannon index was calculated using the vegan R
package69. The vegan R package was also used to perform Procrustes
correlation analysis between bacterial species and ARGs. The correla-
tions in the α-diversity between ARGs and MGEs, between ARGs and
bacterial species, and between ARGs and MGR were assessed using
Spearman’s rank correlation and were visualized using the ggscatter
function in the ggpubr R package70. Pairwise comparisons of the α-
diversity and the composition of the resistome among four pig groups
with different lung lesions, and between lung and trachea micro-
biomes in the F7 populationwere performedusing two-sidedWilcoxon
tests and visualized with boxplots or heatmaps. All boxplots were
plotted using the ggpubr R package70. All heatmaps were plotted using
the pheatmap R package71. Chord diagrams of ARG types in four pig
groups were generated by the circlize R package72. Network visualiza-
tion between ARGs and MGEs was done using Gephi (v0.9)73 software.
The locations and the corresponding directions of ARGs, MGEs, and
VFGs on contigs were visualized using ggplot274 and gggenes75 R
packages. No statisticalmethodwas used to predetermine sample size.
No data were excluded from the analyses. The experiments were not
randomized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The metagenomic sequencing data generated in this study have been
deposited in the Genome Sequence Archive (GSA) repository under
accession code: CRA007668.MAGs andmicrobial gene catalog used in
this study are available in the GSA database under accession codes:
GWHBPMO00000000 ~GWHBQBU00000000 and OMIX002571
(https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA010893). Source
data are provided with this paper.

Code availability
All codes produced by this project have been deposited in the GitHub
repository (https://github.com/zhouyunyan/LungARGs)76.
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