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Stability follows efficiency based on the
analysis of a large perovskite solar cells
ageing dataset

Noor Titan Putri Hartono 1,3 , Hans Köbler 1,3, Paolo Graniero 1,2,
Mark Khenkin 1, Rutger Schlatmann 1, Carolin Ulbrich 1 & Antonio Abate1

While perovskite solar cells have reached competitive efficiency values during
the last decade, stability issues remain a critical challenge to be addressed for
pushing this technology towards commercialisation. In this study, we analyse a
large homogeneous dataset of Maximum Power Point Tracking (MPPT)
operational ageingdata thatwe collectedwith a custom-built High-throughput
Ageing System in the past 3 years. In total, 2,245 MPPT ageing curves are
analysed which were obtained under controlled conditions (continuous illu-
mination, controlled temperature and atmosphere) from devices comprising
various lead-halide perovskite absorbers, charge selective layers, contact lay-
ers, and architectures. In a high-level statistical analysis, we find a correlation
between the maximum reached power conversion efficiency (PCE) and the
relative PCE loss observed after 150-hours of ageing, with more efficient cells
statistically also showing higher stability. Additionally, using the unsupervised
machine learningmethod self-organisingmap,we cluster this dataset basedon
the degradation curve shapes. We find a correlation between the frequency of
particular shapes of degradation curves and the maximum reached PCE.

Perovskite solar cells (PSCs) have reached a competitive efficiency of
26.1%1, indicating that the technology has the potential to be com-
mercialised and implemented on a large scale. However, the current
PSCs lifetime is subpar (~1 order of magnitude lower) compared to
silicon solar cells2, even if environmental stressors like water and
oxygen are excluded.

Several publications have intended to gain insights into PSC
stability via machine learning2–4. The recently published Perovskite
Database Project5, which collected > 42,400 PSCs data extracted
from literature, is a major step towards machine learning applica-
tion in the PSCs field. Despite the database’s large size, less than 20%
of data points (~7500) have any degradation data available, which is
also not necessarily homogeneous. Graniero et al. have shown that
the degradation data in this database has low quality to apply
supervisedmachine learning algorithms properly6. The study points

out that rather than adding more low-quality data points, a higher
data quality (i.e. withmore complete information) is needed to train
machine learning algorithms. Despite this issue, Zhang et al.
recently performed a statistical analysis on the Perovskite Database
Project by introducing a new figure of merit for stability called
TS80m. They project the measured TS80 (the time taken to reach 80%
of the stabilised efficiency at the end of the burn-in region)3 to
TS80m, which is the predicted value under reference conditions
(300 K, 20% relative humidity, and 1 sun illumination). The authors
re-calculate TS80 with the help of acceleration factors which are
determined based on various assumptions and which consider the
temperature, humidity, and illumination levels during the actual
ageing test7. While this choice enables a more rigorous statistical
analysis, the uncertainty from co-dependencies between different
stressors and the range of parameters lowers the accuracy of
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calculated TS80m and the analysis does not consider the shapes of
degradation curves.

Here, we present a statistical analysis on a highly homogeneous
dataset of maximum power point tracking (MPPT) ageing curves,
collected during the past 3 years under controlled environmental
conditions in a custom-built High-throughput Ageing System8. We
analyse the power conversion efficiency (PCE) loss after 150 h relative
to the maximum efficiency reached during the ageing test. We con-
sider the maximum efficiency to reflect the maximum potential or
capability of the solar cell under test, which is why it is chosen as a
figureofmerit. The dataset comprisesMPP-tracks of devices of various
structures, including lead-halide perovskite absorbers (both organic
and inorganic), charge-selective layers (small molecules, polymer, and
inorganic), diverse contact layers (silver, copper, and gold), and
architectures (both n-i-p and p-i-n). See Supplementary Note 1: Data
Quality, Supplementary Tables 1 and 2 for a detailed description.

In addition, since PSCs show large variations in degradation curve
shapes, there is still no universal metric for PSC stability. Our dataset
shows various degradation curve shapes that can be categorised into
different groups (see Supplementary Fig. 1). In this study, we perform
an unsupervised machine learning method called self-organising map
(SOM) to obtain degradation curve shape clusters from the MPP-
tracking dataset, where we are able to identify the dominant shape of
ageing curves. We observe a correlation between the occurrence of
particular shape clusters and the maximum reached PCE. We believe
that categorising ageing test data and identifying the main shapes will
bring PSC research closer to finding suitable lifetimemetrics for PSCs.

Results and discussion
Dataset description
We collected 2245MPPT curves of various device architectures, layers,
and perovskite composition materials from August 2019 to August
2022 in the HySPRINT Laboratory at Helmholtz-Zentrum Berlin, Ger-
many. The ageing testswereperformed in a custom-built ageing setup8

under continuous illumination at 1 sun and with individual MPP-
tracking for every single solar cell. Variations of the ageing conditions
are the device temperature and the use of a UV filter. A summary of the
ageing conditions is shown in Supplementary Information Table 1. All
devices were fabricated within the same laboratory, albeit fabricated
by different researchers (total: ~33 researchers). Within the dataset,
502 solar cells have an n-i-p architecture and 1,743 solar cells have a
p-i-n architecture. The devices have different electron transport
materials (e.g. TiO2-c, C60/BCP, PCBM, and others), hole transport
materials (e.g. spiro-OMeTAD, MeO-2PACz, NiO, PTAA, and others),
and top electrodes. The perovskite absorber material dominating the
dataset is the so-called triple cation (3CAT) perovskite9 with the gen-
eral formula CsxMAyFAzPbImBrn (881 cells, with x + y + z = 1 and m +
n = 3); other absorbers present in the dataset include CsPbI3 (218 cells)
and FAPbI3 (56 cells). A complete breakdownof the cell numbersbased
on the material layers is shown in Supplementary Information Table 2.

Cell grouping and relative change in PCE
Only the first 150 h of all ageing experiments are analysed to have the
maximum amount of comparable data (see Supplementary Fig. 2 for
degradation data length distribution in this dataset), and data points
which reach maximum efficiency beyond 150 h are excluded (see
Supplementary Note: Degradation Time Length for a detailed
description). To investigate trends in dependency of the maximum
power conversion efficiency (PCE), the ageing tracks are grouped
based on the maximum PCE reached during the first 150h of MPP-
tracking as follows: <10.4%, 10.4–14.2%, 14.2–16.8%, 16.8–19.2%, and
>19.2%. The data points are divided so that everymaximum PCE group
has an equal number of cells (449 cells/ group). Maximum PCE is
chosen as a parameter of interest because many devices undergo an
initial phase of grave losses in PCE at the beginning of the experiment,

also known as the burn-in period3. In some cases however, devices
undergo an initial gain in efficiency, so-called light soaking
improvements3 and as a result, their initial PCEwill not comparewell to
devices for which theMPP-track immediately decays and for which the
initial PCE equals the maximum PCE. Consequently, the maximum
reached PCE is selected as value of interest since it reflects the max-
imum potential or capability of the solar cell under test more uni-
versally between different ageing curve shapes. The change of PCE
observed after ageing for 150h relative to the maximum PCE in a cell
(ΔPCE, rel) is calculated for each of the different efficiency groups,
according to Eq. 1.

Relative change in PCE ðΔPCE, relÞ= MaximumPCE� PCE ð150hÞ
MaximumPCE

ð1Þ

This figure of merit reflects the percentage of PCE loss after 150 h
concerning the maximum efficiency reached. Note that the relative
changeΔPCE, rel will include the ‘burn-in’phase if theMPP-track shows
an immediate decay (and the maximum PCE equals the initial PCE),
while it excludes themeta-stable phase if theMPP-track shows an initial
gain where the maximum is reached after the stabilisation phase.
However,ΔPCE, rel should be understood as the relative loss observed
after 150 h of ageing timewith respect to themaximal capability of the
system. See SupplementaryNote:MPPTBehaviour andSupplementary
Fig. 3 for a detailed discussion. The relative change ΔPCE, rel is plotted
over the efficiency groups in Fig. 1b.

An observation in Fig. 1b shows that as themaximumPCE reached
increases, themean of theΔPCE, reldecreases. This trend suggests that
solar cells reaching a higher maximum efficiency during the ageing
experiment, statistically also offer a lower loss in efficiency in the first
150 h and can be considered to bemore stable according to this figure
of merit for stability. The trend is supported by the linear regression
performed on the mean of the maximum PCE group and the mean of
the ΔPCE, rel shown in Fig. 2. Based on the linear regression, for every
1% increase in maximum PCE reached during the first 150h of degra-
dation, the ΔPCE, rel is reduced by ~1.5%.

We point out that the observation that more efficient devices
also provide higher stability should not be taken literally as a design
rule. Specific device layers are known to improve PCE at the expense
of long-term stability and vice versa (e.g. inorganic perovskites,
spiro-OMeTAD as hole transport layer, and carbon electrodes). The
statistical statement given here only illustrates the general trend
when looking at the wide range of devices with various stacks and,
therefore, different degradation mechanisms. Yet, when looking
across different PSCs with various intertwined degradation
mechanisms, we see a clear trend that more efficient cells are sta-
tistically more likely to have a longer lifetime. Understanding the
underlying reasons behind such a trend can strengthen our under-
standing of PSC ageing behaviour and accelerate the development of
highly stable devices.

We propose two hypothetical explanations for the observed
relationship between PCE and stability with different causality.

Firstly, at the high level, statistically better stability of high-
efficiency PSCs might be explained using a simple conservation of
energy model, which states that the total energy of a system stays
constant over time. A perovskite solar cell could be modelled as a
system that converts incident solar into electric power, as illustrated in
Fig. 3. The lower the efficiency of a solar cell, the larger is the amountof
energy that remains in the system.

Generally, unavoidable processes lowering the power output of a
single junction solar cell are Carnot, Boltzmann and emission losses,
thermalisationof above-band-gapphotons, and transmissionof below-
band gap photons10. According to the detailed balance limit of effi-
ciencyby Shockley–Queisser11, this leaves ~43–48%of the input energy
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to be absorbed, and a maximum ~30% of the input energy to be con-
verted into electric energy by a solar cell under AM1.5G for a band gap
of 1.6–1.7 eV9 corresponding to the triple cation perovskite which
provides the majority of data points of the present data. Assuming an
equal or similar band gap and similar optical properties, the differ-
ences between a low and a high efficient solar cell originate in
recombination12 or transport losses13. The fraction of absorbed energy,
which is not extracted again from thedevice electrically, remains in the
solar cell and gets dissipated in the device where it can potentially
trigger degradation. For example, in a 10% efficient “triple cation
perovskite (energy absorbed ~466W/m2) device, ~366W/m2 of the
input energy would be potentially available to cause damage under 1
sun, while for a 20% device it wouldbe ~266W/m2. For an estimationof
the influence of the band gap in this dataset9, 14–21 on this theory, see
Supplementary Information: Influence of band gaps, Supplementary
Table 3, Supplementary Figs. 4 and 5. In the case of trap-assisted
recombination, which is likely to be non-radiative, the energywould be
transferred to heat that can initiate or accelerate degradation

mechanisms in the device. If the device efficiency is lowered by
transport limitations, excess charges will remain in the device and can
potentially trigger degradation processes. For example, Lin et al. have
shown that the insufficient extraction of generated charge carriers
leads to a stimulation of ion migration causing enhanced degradation
of devices22 and Di Girolamo et al. reported that injected charges
induce phase separation23.

The theory that excess energymight be responsible for instability
is also in accordance with the observation that VMPP is the mildest
electronic load ageing condition for PSCs24 and also other PV
technologies25. The reasoning is that at MPP, the maximum possible
amount of electric energy is extracted from the device, leaving less
energy or charges in the device potentially triggering degradation,
which leads to the higher stability observed under MPP-tracking
compared to JSC (short-circuit current) and VOC (open-circuit voltage)
conditions. At JSC and VOC conditions, no electric energy is extracted
from the system and all absorbed energy is potentially available to
trigger degradation processes. Note that under VOC condition addi-
tional effects might come to play25–27.

We want to point out that our high-level statistical analysis is
performed over various PSCswith awide range ofmaterial layers used.
Hence it is very likely that also various underlying physical degradation
mechanisms are present and it is impossible to directly relate the
results of the analysis to the physical causes of degradation. Therefore,
the given theory of the conservation of energy should also be under-
stood as a high-level explanation.

A second potential explanation for the correlation between effi-
ciency and stability may lie in the presence of pinholes and defects,
incomplete solvent removal, or generally poor device quality. This
would put some devices at a disadvantage, and the “fresh device” is
already defective at the start of the ageing test, lowering the PCE.
Degradation mechanisms could be triggered at defect sites or unre-
moved solvent. Therefore, the presence of imperfections of any origin
might affect efficiency and stability simultaneously. In this potential
explanation, the causality is that the same reasons that make a device
low in efficiency is also causing a device to be unstable, while in the
energy conversion model the low efficiency would make devices
unstable as a secondary cause.
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Degradation curve shape clustering
We observe large variations of degradation curve shapes in the first
150 h of the degradation process (see Supplementary Fig. 1). Hence, a
machine learning method called self-organising map (SOM) was
implemented to find themaindegradation curve shapes in the dataset.
SOM is a popular unsupervised machine learning method for cluster-
ing data by converting the nonlinear statistical relationships of high-
dimensional data into geometric relationships in low-dimensional
nodes while preserving the topological structure of data, i.e. the rela-
tions between one data point and others28. In short, SOM compresses
information of high-dimensional data, providing visualisation and
abstraction of the data.

SOM is utilised to identify the distinct types of degradation
curves’ shapes based on the normalised PCE data. Four clusters of
curve shapes are identified and shown in Fig. 4a: initial gain (cluster 1,
total: 1324points), slowexponential decay (cluster 2, total: 722 points),
medium exponential decay (cluster 3, total: 237 points), and fast-
exponential decay (cluster 4, total: 97 points). Four is the optimum
number of clusters based on the elbow plot analysis shown in Sup-
plementary Fig. 6 and discussed in Supplementary Information: SOM
Quantisation Error. In this case, the SOMparameters used explicitly are
sigma = 0.5 and learning rate = 0.1.

While it is known that perovskite solar cells can show very diverse
ageing behaviours3 (see also Supplementary Fig. 1 for a higher number
of clusters), this is an impressive example of how diverse ageing tracks
are in reality. The vast deviations between the cluster shapes clearly
show that the commonly used device lifetime metric T80 (among
others) cannot beconsidereduniversal for perovskite solar cells. A new
figure of merit or a set of parameters that can work across different
shapes of degradation curves is therefore urgently needed to compare
the ageing results of PSCs.

The normalised count of different clusters for each maximum
PCE group is shown in Fig. 4b. As the maximum PCE reached increa-
ses, cluster 1, initial gain, increases in share and becomes the majority
(> 50% of the share) of degradation curves’ shapes for higher max-
imum PCE groups, showing that more optimum devices tend to have
such ageing curves. Simultaneously, the fraction of degradation
curves with cluster 4, fast-exponential decay decreases, meaning that
high-efficiency devices show less of this type of failure. Those trends
can still be observed when the clustering is performed with other
possible SOM parameter values (see Supplementary Fig. 7). The
clustering results generated by SOM also agree with the result gen-
erated with the k-means clustering method29 (see Supplementary
Fig. 8). Moreover, the slight dominance of cluster types in

dependency of the architecture (majority of p-i-n architecture devices
have initial gain shape, andmajority of n-i-p devices have exponential
decay shapes) are in agreement with an earlier single-stack report by
Saliba et al.30 (see Supplementary Information: Device Architecture
Impact on Clustering).

In Fig. 5, the relative change in efficiency ΔPCE, rel is shown in
dependency of the maximum PCE group and sorted by cluster type (a
table with the statistics is provided in Supplementary Table 4). The
histogram in accordwith Fig. 5 is also available inSupplementaryFig. 9.
Cluster 4 fast-exponential decay clearly has the largest ΔPCE, rel with
most values located around 100% relative change (i.e. fully degraded).
Within the same cluster 4 fast-exponential decay, no data point comes
from > 19.2% maximum PCE group, highlighting again that higher
efficient devices do not show this catastrophic failure. Defective fresh
devices could be one of the reasons that some of the cells, especially
from cluster 4, exhibit an instant failure behaviour within the first few
hours of the ageing test.

We can also observe that the distribution of ΔPCE, rel in depen-
dency of maximum PCE shown in Fig. 1b possesses contributions from
different clusters and is composed of the combination of those. This is
most apparent in the maximum PCE group of <10%, where all types of
clusters are represented and a large spread in the distribution is seen in
Fig. 1b. A possible outcomeof this analysis is that in future ageing tests,
the curve shapemight be a predictor of stability: If we can observe the
initial gain curve shape during the first couple hours, devices have a
higher likelihood to be stable within the first 150 h.

In this study, we analysed a large dataset of MPPT-ageing data
collected in-house. The specific aimwas to investigate the relationship
between the maximum PCE reached during the first 150 h of opera-
tionalMPPT ageing and the relative loss after 150hΔPCE, rel as ametric
for PSCs stability. We discovered that the higher the maximum PCE
reached in thefirst 150hof testing is, the lower is themeanofΔPCE, rel.
While this statistical relationship cannot be generalised, it is an
encouraging finding that efforts in improving PSC’s efficiency go
alongside enhancing stability. The finding could be explained using an
energy conservation model. Another possible explanation is that
increased defect densities render devices to have low efficiency and
simultaneously lower stability, as defectsmight also act as initialisation
points for degradation.

Secondly, we clustered the MPPT curves regarding their shape
and we discovered that the degradation curve shape is also related
to both the cells’maximum PCE group and stability. The initial gain
degradation curve shape delivers lower ΔPCE, rel than other shapes,
and this shape type is seen more frequently on cells with higher
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maximum PCE. This might act as an early indicator for stability: if
the initial gain curve shape is observed during the first couple of
hours, devices have a higher likelihood to be stable during the
first 150 h.

Methods
Ageing of solar cells
Solar cells were aged in a custom-built High-throughput Ageing
System8. Special electronics were used to MPP-track all cells individu-
ally. A perturb and observe algorithm31 with a delay time of 1 s and a
voltage step-width of 0.01 V was applied to track the MPP. PCEMPP

values were taken every 2min for all cells automatically. Devices were
constantly kept at 25, 45, 65 or 85 °C (seeSupplementaryTable 1) by the
use of actively controlled Peltier-elements. Active areas of deviceswere
touching a heat pad for direct thermal coupling. Ageingwas performed
under a continuous flowof nitrogen (in some cases air) in a closed box,
no additional encapsulationwasused in themajority of samples (2220).
Twenty-five cells were encapsulated with a glass-to-glass encapsula-
tion. Sunlight with 1 sun intensity was provided by a metal-halide lamp
using aH6 filter. Supplementary Fig. 10 shows the spectrumof the light
source in comparison to AM1.5 G. The light intensity was actively

controlled with the help of a silicon irradiance-sensor which was cali-
brated using a KG3-filtered silicon reference cell certified by Fraunho-
fer ISE. In 475 cells, a UV filter was used to block UV-light with
wavelengths below 380nm. The ageing test conditions are sum-
marised in Supplementary Table 2 in Supplementary Information.
Tests are in accordance with the protocols ISOS-L-1I or ISOS-L-2I3.

Data analysis
All the data pre-processing and analysis steps are done in Python.
MPPT data pre-processing involves resampling to 10minutes (since
the frequency of measurement varies for each data point), interpola-
tion using the Akima method32, normalisation based on the maximum
point of the data (MaxAbsScaler) using scikit-learn33 package, and
applying a Savitzky-Golay filter34 to reduce the noise within the dataset
using SciPy35 package (with window length parameter = 71).

The MaxAbsScaler normalisation is performed on the data by
dividing the MPPT PCE across time with the maximum MPPT PCE
reached in the first 150 h of ageing test (Eq. 2).

xMaxAbsScaler =
x

maxð∣x∣Þ ð2Þ
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The self-organising map28 analysis is done using the MiniSOM36

package, and the linear regression and k-means clustering is per-
formed using the scikit-learn33 package. The parameters for each
machine learning model are stated under the respective results in the
manuscript.

Data availability
TheMPPT data used in this study are available in the Zenodo database
under accession code 8185883 37.

Code availability
The Jupyter Notebook with the code for running the analysis is avail-
able on Zenodo under accession code 8181602 38 and Github.
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