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Environmental and genetic predictors of
human cardiovascular ageing

Mit Shah1, Marco H. de A. Inácio1, Chang Lu 1, Pierre-Raphaël Schiratti1,
Sean L. Zheng 2, Adam Clement1, Antonio de Marvao1, Wenjia Bai 3,4,
Andrew P. King 5, James S. Ware 1,2, Martin R. Wilkins 2, Johanna Mielke 6,
Eren Elci6, Ivan Kryukov6, Kathryn A. McGurk 1,2, Christian Bender 6,
Daniel F. Freitag 6 & Declan P. O’Regan 1

Cardiovascular ageing is a process that begins early in life and leads to a
progressive change in structure and decline in function due to accumulated
damage across diverse cell types, tissues and organs contributing to multi-
morbidity. Damaging biophysical, metabolic and immunological factors
exceed endogenous repair mechanisms resulting in a pro-fibrotic state, cel-
lular senescence and end-organ damage, however the genetic architecture of
cardiovascular ageing is not known. Here we usemachine learning approaches
to quantify cardiovascular age from image-derived traits of vascular function,
cardiac motion and myocardial fibrosis, as well as conduction traits from
electrocardiograms, in 39,559 participants of UK Biobank. Cardiovascular
ageing is found to be significantly associated with common or rare variants in
genes regulating sarcomere homeostasis, myocardial immunomodulation,
and tissue responses to biophysical stress. Ageing is accelerated by cardio-
metabolic risk factors and we also identify prescribed medications that are
potential modifiers of ageing. Through large-scale modelling of ageing across
multiple traits our results reveal insights into the mechanisms driving pre-
mature cardiovascular ageing and reveal potential molecular targets to
attenuate age-related processes.

Cardiovascular disease (CVD) is the leading cause of death globally,
and ageing is a primary risk factor for its development and
progression1,2. Cardiovascular ageing is a process that begins in early
life and occurs at multiple scales across different organ systems
leading to an accumulation of damage that cannot be recovered
through endogenous repair and regeneration. Biophysical, metabolic
and immunological factors lead to a pro-fibrotic state, cellular senes-
cence, and end-organ damage affecting both the heart and circulatory
system3,4. Ageing is driven by intrinsic processes that act at genetic,
molecular and cellular targets, as well as extrinsic drivers such as

lifestyle and environmental risk factors thatmodify these processes. In
common with ageing in other organ systems, these mechanisms con-
verge upon dysregulated inflammation, alteration of epigenetic mod-
ifications, and metabolic imbalances5. A final common pathway of
cardiovascular ageing is loss of tissue compliance which is manifest
through diastolic dysfunction, interstitial fibrosis and vascular
remodelling6,7. Such changes can be assessed through non-invasive
imaging and enable an estimate of how an individual’s cardiovascular
system has aged relative to a normative population8. An equivalent
calculation of the 'age gap' has been shown to be a promising neuro-
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imaging marker for modelling dynamic lifespan trajectories of brain
ageing9–11.

Here we used computer vision techniques to analyse cardiac
magnetic resonance (CMR) imaging in 39,559 participants of the UK
Biobank to extract image-derived phenotypes of the three-
dimensional (3D) geometry and motion of the heart as well as
dynamic assessment of vascular function. These image-derived traits
were used to train supervised machine learning algorithms to predict
participants’ ages and derive a cardiovascular age-delta for each indi-
vidual, quantifying the deviation in years from healthy ageing. We also
trained a model to learn the spatial features of electrocardiograms
(ECG) associatedwith aging. Using age-delta as a trait for genome-wide
common and exome-wide rare variant association analyses, we found
ageing-associated loci containing genes known to be associated with
tissue elasticity, myocardial contractility, inflammatory regulation and
immune response to apoptosis. We also describe the relationship
between cardiovascular risk factors and characteristics of premature
cardiovascular ageing, and describe associated patterns of structural,
functional and tissue-level changes in the heart. Together these ana-
lyses reveal the environmental and genetic mechanisms which
underlie ageing of the cardiovascular system and indicate potential
targets for risk modification.

Results
Study overview
We analysed CMR data from 39,559 participants in UK Biobank using
machine learning segmentation and motion tracking to measure
multiple imaging traits associated with cardiovascular structure,
function and fibrosis (Fig. 1). Baseline characteristics of the population
and a flow chart of analysis steps are shown in Supplementary Mate-
rials. We first trained a machine learning model to define healthy car-
diovascular ageing in a development set determined to be free of
cardiac, respiratory and metabolic disease, using a gradient boosting
algorithm (CatBoost)12. We used the image-derived traits to predict
cardiovascular age and computed an age-delta for the difference
between predicted age and chronological age. We then predicted
cardiovascular age in the rest of the UK Biobank population, and
analysed the associations of the cardiovascular age-delta with tradi-
tional cardiovascular risk factors. We next performed a genome-wide
association study (GWAS) of cardiovascular age-delta and then a
phenome-wide association study (PheWAS) to identify phenotypes
associated with both age-delta and polygenic risk score (PRS) for age-
delta. We performed rare variant association analyses using whole

exome sequencing (WES). Latent features of ECG traits may also be
associatedwith ageing, and sowe also trained a deep learning network
to predict corresponding “ECG-ages” and age-deltas to discover any
shared genetic architecture with cardiovascular ageing13.

Image and electrocardiogram phenotyping
We performed automated quality-controlled analysis on CMR cine
imaging to assess bi-atrial and bi-ventricular volumes and function, as
well as left ventricularmass14. Diastolic function, which is a key feature
of the ageing heart, was assessed using motion analysis to derive end-
diastolic strain rates6. We assessed diffusemyocardial fibrosis, an early
feature of natural ageing15, using native T1 mapping of the inter-
ventricular septum16. Central vascular function was assessed by mea-
suring aortic distensibility from central blood pressure estimates and
dynamic aortic imaging14. In total, 126 quantitative imaging pheno-
types characterising structure, function and tissue characteristicswere
generated for each participant. To visualise variation in cardiac mor-
phology with age, we used time-resolved 3D morphometry of the
heart17. Resting ECG traces were parsed from XML files in UK Biobank.
Each ECG sample corresponded to a measured recording for 1 s at
500Hz (see Supplementary Materials for further pre-processing
details).

Cardiovascular and ECG age predictions
A CatBoost machine learning model trained on healthy participants
(n = 4019), applied on a holdout test set (n = 1044), yielded a coeffi-
cient of determination (R2) of 0.49, a Pearson correlation coefficient
(∣r∣) between predicted age and chronological age of 0.70
(P < 1.0 × 10−16) and a mean absolute error (MAE) of 4.21 years. After
bias-correction, there was no correlation between cardiovascular age-
delta and chronological age (∣r∣ = − 5.5 × 10−16, P ≈ 1), showing that any
deviations from healthy cardiovascular ageing were not related to the
participant’s actual age. There was a strong correlation between pre-
dicted age and chronological age (∣r∣ = 0.85, P < 2.2 × 10−16) using latent
ECG features, which is comparable to other deep learning
architectures18. There was also no relationship to the participants’
actual age (∣r∣ = −0.01, P ≈ 1).

The distribution and correlation between image-derived traits is
shown in Figs. 2, 3, and the feature importance of traits for cardio-
vascular age-delta is shown in Fig. 4. Differences between sexes were
observed across most phenotypes and were strongest for volumetric
data. Sex was therefore used as a covariate in all analyses. There were
also correlations between left and right chamber measurements,
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Fig. 1 | Summary of data used for cardiovascular age prediction in UKBiobank.
aAgedistributions of participants by sex (kernel density estimates, 20,502 females,
and 18,947 males). b Phenotypes used for prediction. The top row shows cardiac
magnetic resonance images with automated time-resolved segmentation of the
aorta and cardiac chambers. The bottom row shows an example of left ventricular
motion analysis to derive radial strain rate and a parametric T1 map of the left
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Fig. 2 | A summary of non-imaging and imaging features used in the cardio-
vascular age prediction model. a Heatmap for the features, with colours repre-
senting the Pearson correlation coefficient (n = 39,559). b Ridge plots summarising
the distribution densities of features, normalised for visualisation purposes
(n = 39,559). Asc Ao dist ascending aortic distensibility, Asc Ao min./max. area
ascending aortic minimum/maximum cross-sectional area, Dsc Ao dist descending
aortic distensibility, Dsc Aomin./max. area descending aortic minimum/maximum

cross-sectional area, LA left atrium LASV left atrial stroke volume, LAEF left atrial
ejection fraction, LVESV left ventricular end-systolic volume, LVEDV left ventricular
end-diastolic volume, LVCO left ventricular cardiac output, LVM left ventricular
mass, LV left ventricle, PC principal component, RA right atrium, RV right ventricle,
Radial/Long SR radial/longitudinal strain rates (numbers in bracket referring to
frame number in cardiac cycle), RA max. vol right atrial maximum volume, RVESV
right ventricular end-systolic volume.
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Fig. 3 | Image phenotype associations with chronological age. In total, we
measured 126 image-derived phenotypes, including temporal motion analysis of
cine imaging. A selection of 15 representative phenotypes of volumes, function, and
tissue characterisation are shownwith their relationship to chronological age at the
time of imaging. (n = 39,443, ages jittered, density contours, point colours repre-
sent coefficient of determination (R2)). LVEDV left ventricular end-diastolic volume,

LVM left ventricular mass, LA max. vol left atrial maximum volume, RVEDV right
ventricular end-diastolic volume, RA max. vol right atrial maximum volume, Asc/
DscAomax. ascending/descending aorticmaximal cross-sectional area, Asc/DscAo
dist. ascending/descending aortic distensibility, RV/LVEF right/left ventricular
ejection fraction, LAEF left atrial ejection fraction, PDSR peak diastolic strain rate,
T1 longitudinal relaxation time of the tissue.
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reflecting ventricular interdependence, with left-sided traits having
greater predictive value. Arterial distensibility, in both the ascending
and descending thoracic aorta, was the strongest predictor of age-
delta. Late diastolic strain rates were also important contributors to
the predictive model, especially the radial component. 3D models of
the heart also enabled visualisation of the morphological and func-
tional changes related to age (Fig. 5). Left ventricular volumes
decreased with age with the remodelling of the lateral wall, while wall
thickness showed progressive septal hypertrophy. Motion analysis
demonstrated that regional changes in both left ventricular systolic
contraction and diastolic relaxation occur with ageing.

Phenome-wide association study and risk factor analysis
We first aimed to assess associations of cardiovascular age-delta with
an unbiased range of diseases in the UK Biobank using a PheWAS. Here
we performed independent logistic regression analyses with age-delta
as a predictor for each outcome adjusted for age, sex, ethnicity and
multiple comparisons. We used PheCodes to aggregate a broad range
of disease classifications and showed that age-deltawaspredominantly
associated with circulatory and metabolic disorders (Fig. 6a), with the
strongest associations linked to hypertension and diabetes.

We next aimed to quantify the associations between established
risk factors and cardiovascular age-delta. We used linear regression
with each risk factor in turn as a predictor and age-delta as the
dependent variable. We adjusted for age, sex and multiple compar-
isons controlling for false discovery and showed that hypertension
(+1.58 years, P < 1.0 × 10−16) and diabetes (+0.74 years, P = 0.0012) were
both associated with an increase in predicted age (Fig. 6b).

Age-delta was also elevated in both males with obesity (+0.46
years, P =0.018), and females with coronary artery disease (+0.85
years, P =0.047). Serum levels of apolipoprotein B (+0.70 years per
mg/dL, P = 5.0 × 10−4), triglyceride (+0.56 years per mmol/L,
P < 1.0 × 10−16) and LDL (+0.13 years per mg/dL, P =0.020) levels were
all also associated with adverse effects on cardiovascular ageing.

Smoking (+0.03 years per smoking pack year, P = 3.0 × 10−9) and
alcohol (+0.02 years per gram per day increase in daily alcohol con-
sumption, P = 2.5 × 10−8) were also associated with adverse effects on

cardiovascular ageing, with comparable effect sizes to brain ageing19.
Telomere length was associated with favourable effects on cardio-
vascular age (−0.10 years per unit increase in z-adjusted telomere
length, P =0.025) (Fig. 6c).

Age-delta and cardiovascular events
We found a modest association between cardiovascular age-delta and
major adverse cardiovascular events (hazard ratio, 1.09; 95% con-
fidence intervals, 1.01 − 1.21; P =0.022) when comparing upper and
lower quartiles of age-delta in a covariate-adjusted model, but no
significant associations inmodels considering cardiovascular age-delta
as a continuous variable (see Supplementary Material for details).

Prescribed medications and cardiovascular age
To assess the potential use of age-delta as a surrogate marker of car-
diovascular disease progression, we also performed separate drug-
specific linear regression models with age-delta as the dependent
variable, and drug use as the independent variable. We used two
models, with the firstmodel adjusting for sex, age, age2, cardiovascular
risk factors and the second model additionally adjusting for haemo-
dynamics (bloodpressure andpulse rate) (see SupplementaryMaterial
for further details). Most associations between anti-hypertensives and
age-delta were explained by cardiovascular risk factors and haemo-
dynamics. Beta-blocker (+0.61 years) andmetformin (+0.80 years) use
was associated with elevated cardiovascular age, and calcium channel
blocker (−0.34 years) use was associated with favourable cardiovas-
cular age, independent of cardiovascular risk factors and haemody-
namic parameters (Fig. 7).

Genome-wide association study of cardiovascular age-delta
All genetic analyses are reported in compliance with STREGA
guidelines20. The proportion of phenotypic variance in image-derived
age-delta due to additive genetic variation (h2) explained by all geno-
typed single nucleotide polymorphisms (SNPs) was 10.5% (see Sup-
plementary Material). We identified five genome-wide significant
independent loci from our GWAS that are associated with image-
derived cardiovascular age-delta (P = 5 × 10−8) (Fig. 8a). Summary
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information for the 5 loci identified using the full GWAS dataset are
presented in Table 1, with further information provided in Supple-
mentary Material. The nearest gene to the locus is defined, along with
the most “likely gene” based on: evidence of a functional effect on a
gene; previously documented cardiovascular disease association; or
reported mechanism potentially involved in cellular ageing processes
(Supplementary Material). The lead variants have known roles in
myocardial contractility (Titin, TTN)21, and arterial mechanics (Elastin,
ELN)22, and have been implicated in pro-inflammatory activity and
antihypertensive responses (Phospholipase C Epsilon 1, PLCE1)23,24.
Additionally, TTN was a likely causal gene for ECG-derived age-delta
amongst 7 other independently-associated loci that include genes
related to trabecular development (T-Box Transcription Factor 3,
TBX3)25, and regulation of cardiac rhythm (Sodium voltage-gated
channel alpha subunit 5, SCN5A; Calcium/Calmodulin Dependent Pro-
tein Kinase II Delta, CAMK2D and Myozenin 1, MYOZ1) (Fig. 8b).

A covariate-corrected polygenic risk score (PRS) comprising 13
SNPs selected using a clumping/thresholding approach for image-
derived cardiovascular age-delta was evaluated in 373,948 indepen-
dent genotyped participants of UK Biobank, and showed an associa-
tion with hypertension (P = 2.9 × 10−12) (see Supplementary Material).

Rare variant association study of cardiovascular age-delta
Predicted loss of function variant (pLoF) gene burden testing using
Regenie26, with three variant prioritisation masks on allele frequencies
applied, identified two further genes associated with image-derived

cardiovascular age-delta independent of common variant signals.
ThesewereTriggeringReceptor ExpressedOnMyeloidCells 2 (TREM2)
and Mitochondrial Calcium Uptake Family Member 3 (MICU3). TREM2
encodes a transmembrane receptor expressed in the central nervous
system and macrophages, and has been linked to anti-inflammatory
effects in atherosclerotic plaque, cardiac tissue repair and immuno-
modulation of monocytes in the heart27–29.MICU3 encodes a uniporter
channel in the heart and skeletal muscle, which regulates calcium
homoeostasis30,31.

Discussion
Cardiovascular ageing is an interaction of genetic, cellular, and bio-
physical processes that results in declining adaptive homoeostasis. In
this study, we used machine learning of multiple image-derived and
electrical cardiovascular phenotypes to predict biological age and
determine the genetic and environmental associations with deviation
fromhealthy ageing.We found that healthy ageingwas associatedwith
a progressive decline in both vascular and myocardial tissue com-
pliance, and these traitswere also the strongest predictors of deviation
from healthy cardiovascular ageing. A decline in diastolic function is
recognised as a hallmark of cardiac ageing, which occurs through
multiple pro-fibrotic and energetic pathways.32,33 A key driver of dia-
stolic impairment is myocardial interstitial fibrosis, and we found
that an imaging biomarker of fibrosis predicted accelerated ageing.
Variation in this specific biomarker is thought to be mediated by
glucose metabolism, tissue repair and oxidative stress34, with fibrosis

Left ventricular wall thickness

Left ventricular wall motion

Left ventricular shape

50 - 59 years 60 - 69 years 70 - 79 years

50 - 59 years 60 - 69 years 70 - 79 years

50 - 59 years 60 - 69 years 70 - 79 years

a

b

c

increaseddecreased

Fig. 5 | Three-dimensionalmodelsof cardiac ageing.Three-dimensionalmapping
of left ventricular shape (a), left ventricular wall thickness (b) and left ventricular
motion (c) with increasing age. The models show the mean phenotype for each

decade of age relative to 40–49-year olds, aggregating data using registration of
cardiac segmentations, with parameters represented on the epicardial surface.
Paired views of the inferolateral and anteroseptal walls.
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being a final common pathway after homoeostatic mechanisms are
exhausted35. Three-dimensional image analysis showed that ageing
results in asymmetrical remodelling, and patterns of contractility and
relaxation in the left ventricle. We observed progressive septal
hypertrophy, which is recognised as an independent feature of ageing
in longitudinal studies36. The aorta alsobecomes stifferwith age,which
is associated with numerous cardiovascular disease endpoints37. Elas-
tin fragmentation, endothelial dysfunction and deposition of
advanced glycation end-products are thought to play a causal role38,
and distensibility is associatedwith pathways related to cardiovascular

development, extracellularmatrix production, and smoothmuscle cell
contraction39.

Our study provides insights into the biological basis of hetero-
geneity in cardiovascular ageing. One of our loci implicated PLCE1,
which regulates contractile myocardial reserve with loss of expressed
PLCε signalling sensitising the heart to the development of hyper-
trophy in response to chronic cardiac stress40. PLCε also regulates
inflammatory responses to myocardial injury23, consistent with the
putative causal relationship of 'inflammageing' with cardiovascular
disease andmulti-morbidity41. ELNwas also a leading locus,with elastin

Fig. 6 | Cardiovascular age-delta PheWAS and risk factor associations.
a Phenome-wide analysis of cardiovascular age-delta adjusted for age, age2, sex and
the first ten genetic principal components by two-sided logistic regression
(n = 34,137 participants). The red line represents the significance threshold after
accounting for multiple testing using Bonferroni correction (1149 phenotypes,
P < 4.4 × 10−5). Upright triangles indicate positive correlations, and inverted trian-
gles indicate negative correlations. b Linear regression analysis of categorical risk
factorswith cardiovascular age-delta. Error bars indicate the beta-coefficients point
estimates ± 95% confidence intervals (CI) of the experiments, adjusted for age, age2

and sex, and compared with age and sex-matched controls. The test samples
comprised n = 7089 participants with obesity, n = 7089 controls without obesity;

n = 11,047 participants with hypertension, n = 11,047 controls without hyperten-
sion; n = 2466 participants with diabetes mellitus (DM), n = 2466 controls without
DM; n = 2658 participants with coronary artery disease (CAD), n = 2658 controls
without CAD. c Linear regression analysis of quantitative risk factors with cardio-
vascular age-delta. Error bars indicate the beta-coefficients point estimates per
standard deviation (SD) increase in a unit of risk factor ± 95% confidence intervals
(CI) of the experiments, adjusted for age, age2 and sex. Data comprises 32,151
participants with apolipoprotein B data, 32,263 participants with triglyceride data
and 32,241 participants with low-density lipoprotein (LDL) data, 31,871 participants
with telomere length data, 9283 participants with smoking data and 21,374 parti-
cipants with alcohol consumption data.
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being an abundant extracellularmatrix protein that provides elasticity
and resilience to tissues, including the distensibility of blood vessels.
The low turnover of elastin and chronic biophysical stress makes it
susceptible to age-related changes caused by mechanical fracture,
proteolysis, and calcification22. Age-associated arterial structural and
functional decline may not be inevitable and lifestyle interventions
have been shown to preserve vascular elasticity42. We observed two
loci in common between our cardiovascular age-delta GWAS and
previously reported single-trait GWASs of aortic function, suggesting
that the majority of these trait-associated pathways are not modifiers
of ageing39,43. For instance, elastin expression and organisationmodify
arterial ageing through signalling pathways which are accelerated by
oxidative stress and inflammation.41,44 Using WES, we found rare var-
iants in two further genes that were associated with deviation from
healthy cardiovascular ageing. The protein expressed by TREM2 is an
immune regulator controlling monocyte/macrophage transitions in
response to apoptosis in the heart28. This suggests it may play a role at
the interface of immunomodulation and cardioprotection in the age-
ing heart. MICU3 plays an important role in regulating pathological
calcium overload in the heart30, and has been implicated in deter-
mining antioxidant responses in skeletal muscle ageing31.

We identified variants in a cardiomyopathy-associated gene (TTN)
suggesting a role for sarcomere homoeostasis as a mediator of human
cardiac ageing. This may occur through an age-dependent effect on
adaptive capacity that is distinct to the changes in titin isoform
expression seen in heart failure45. Common variants in TTN were also
implicated in ECG age-delta, suggesting a shared genetic mechanism
with conduction-associated traits, however, other loci were pre-
dominately related to pathways regulating cardiac rhythm, suggesting

that the conduction system ages through distinct mechanisms, as has
been observed in other organs and tissues46. For instance, CAMK2D is a
gene associated with atrial remodelling, fibrosis and premature atrial
fibrillation, and we found it to be a factor influencing ageing in the
conduction system47. Fibrosis due to ageing is thought to play a major
role in modulating conduction and repolarization diseases, with age
also known to affect the severity and expressivity of the
channelopathy-associated gene SCN5A identified in the ECG age-delta
GWAS48. Gain or loss of function mutations in SCN5A are also impli-
cated in progressive atrial fibrosis, although the mechanisms are not
fully understood49.

Overall the SNP-based heritability of cardiovascular ageing was
10.5%, suggesting that non-genetic contributions predominantly affect
ageing. We found that cardiometabolic risk factors, including hyper-
tension, diabetes and dyslipidemia, all contribute to an increased age-
delta. 'Early vascular ageing' is thought to be induced by the integrated
effect of haemodynamic factors, glycaemic dysregulation and fetal
programming50, while diabetes and dyslipidaemia have also been
shown to be causally associated with diastolic dysfunction, which is
also a major contributor to premature ageing in the heart6. Athero-
sclerosis is associated with normal and premature biological ageing,
and although we could not assess atherogenesis or plaque burden
directly, our image-derived phenotypes are sensitive to downstream
effects of arteriosclerosis and vasculopathy as plaque is associated
with diffuse changes to distensibility51. The lack of specific athero-
sclerotic phenotypingmay underestimate its role in mediating ageing,
but we did find that circulating atherosclerosis-related biomarkers
were associated with accelerated ageing.

Obesity showed divergent effects in each sex, and in men, was
associated with accelerated ageing while the opposite effect was
observed inwomen. Obesity and overweight are associatedwith a non-
linear increased risk of all-cause mortality52, but misclassification of
body composition, particularly amongwomen,may lead to biased risk
estimates53. There is evidence that obesity accelerates the ageing
process through epigenetic alterations, mitochondrial dysfunction,
cellular senescence and a pro-inflammatory state54. Obesity may also
affect telomere dynamics and accelerate the ageing process, although
the data is heterogeneous55. We did observe an association between
telomere shortening and premature cardiovascular ageing, although
the effect size was relatively small. Alcohol and smoking showed
adverse associations with cardiovascular ageing that were of similar
effects sizes to those observed in brain ageing19. For cardiovascular
age-delta to be a useful surrogate endpoint, it would need to be cor-
related with hard clinical outcomes in the absence of intervention and
modulated by established therapies, with its magnitude ofmodulation
related to the effect of the intervention56. In cross-sectional analyses,
whilst most antihypertensive effects on ageing were explained by
known risk factors, beta-blockers, CCB, and metformin were inde-
pendent predictors of age-delta. Further research is needed to inves-
tigate the response of cardiovascular age-delta to drug therapy, either
in appropriately designed interventional studies, or through analysis
of emerging observational data, whilst appropriately accounting for
potential biases in this type of data.

There are limitations of this study. The rate of participation in the
UK Biobank is higher among women, older age groups, and persons
living in less socioeconomically deprived areas57. The population is
predominantly European and further work is required to explore
ageing traits and outcomes in people of diverse ancestries and social
groups as an accelerated ageing phenotype may be observed due to
the interaction of biological, psychosocial and socioeconomic
factors58. Cardiovascular age-delta is derived at a single time-point in
this cross-sectional study, and we could not assess within-person
ageing of the cardiovascular system nor fully account for differential
cohort and periodic effects. Nonetheless, such studies are able to
capture disease-relevant features of biological ageing that are not

ACEi

ARB

BB

CCB

Digoxin

Diuretics

Metformin

Statins

−2 −1 0 1 2 3

Beta coefficient

With SBP/DBP/HR
Without SBP/DBP/HR

-0.25 (-0.53, 0.02)
0.11 (-0.16, 0.38)

0.95 (0.29, 1.62
0.80 (0.16, 1.44)

-0.29 (-0.74, 0.16)
0.11 (-0.32, 0.55)

0.82 (-1.67, 3.30)
0.55 (-1.83, 2.92)

-0.69 (-1.02, -0.35)
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-0.82 (-1.20, -0.43)
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0.18 (-0.20, 0.57)

-0.42 (-0.76, -0.08)
-0.04 (-0.37, 0.29)

Fig. 7 | Cardiovascular age-delta and drug use associations. Linear regression
analysis of cardiovascular drug usage with cardiovascular age-delta. Error bars
indicate the beta-coefficients point estimates ± 95% confidence intervals (CI) of the
experiments (n = 27,546 participants). The results of the two models are demon-
strated. One model adjusted for age, age2 and sex, cigarette and alcohol intake,
body-mass index, diagnoses of obesity, coronary artery disease, hypertension,
diabetes mellitus, hypercholesterolaemia and heart failure. A second model addi-
tionally adjusted for haemodynamic parameters (heart rate, diastolic blood pres-
sure and systolic blood pressure). ACEi angiotensin-converting enzyme inhibitors,
ARB angiotensin receptor blockers, BB beta-blockers, CCB calcium channel
blockers, DBP diastolic blood pressure, HR heart rate, SBP systolic blood pressure.
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related to chronological age or fully explained by later-in-life beha-
viours and exposures59. Age-delta provides information beyond var-
iance in the individual traits used for prediction and is also
independent of chronological age60, with associations reflecting
modifiers of healthy aging in the phenotypes assessed. We also
observed that stronger effect sizes may be seen for age-delta SNP
associations than underlying single traits. Longitudinal imaging will
help to assess whether early-life influences and polygenic scores are
the predominant drivers of the rate of aging across the lifespan and
any pleiotropy between age-related changes in cardiac function and
baseline traits.

We did not find that conventional ECG intervals improved pre-
dictive performance in a joint model with image-derived phenotypes,
so we used an independent convolutional neural network to learn
spatial features in ECG traces related to aging. Incorporating multi-
modal features that include imaging, ECG waveforms, and other clin-
ical data could provide a broader assessment of traits contributing to
cardiovascular aging, although this may be at the expense of model
explainability and would need an appropriate network architecture.
Our findings, using independent image and ECG models, also show
distinct patterns and genetic associations of ageing in different sys-
tems suggesting that ageing is not a homogeneous process9, and that
conduction phenotypes provide complementary information to car-
diovascular imaging on age-related atrial fibrosis and electrical remo-
delling. Further work is required to assess the contribution of
processes to biological cardiovascular ageing not captured by CMR
imaging or ECG data, for instance, atherosclerosis, by using more
direct measures of plaque burden. Additionally, a longer follow-up
period after image-phenotyping would provide greater power to
investigate the association of age-delta with outcomes and the
cumulative risks of accelerated aging, adjusting for any genetically
associated disease phenotypes. Furthermore, understanding causal
mechanisms and the effect of genetically-modulated cardiovascular
ageing on 'health-span' could be performed on independent geno-
typed cohorts where time-to-event data is available. While we did not
see a very strong association with binary outcomes, we may expect
accelerated ageing to mediate age-associated morbidity as has been
observed in other organ systems46,61.

In conclusion, we found that cardiovascular ageing is linked to
multiple modifiable risk factors, shows distinct patterns of remodel-
ling, and is associated with loci related to genes regulating sarcomere
homoeostasis, myocardial immunomodulation, and tissue responses
to biophysical stress.

Methods
All analyses in this study are available online (https://github.com/
ImperialCollegeLondon/cardiovascular_ageing) and were conducted
with R v.>3.6.0 and Python v.3.9.

Participants
UK Biobank comprises ~500,000 community-dwelling participants
aged 40–69 years who were recruited across the United Kingdom
between 2006 and 201062. All participants provided written informed
consent for participation in the study, which was approved by the
National Research Ethics Service (11/NW/0382). Our study was con-
ducted under terms of access approval numbers 28807 and 40616. A
range of available data were included in this study, comprising geno-
typing arrays andWES, cardiac imaging, health-related diagnoses, and
biological samples. There were 488,252 genotyped participants, of
which 454,787 have WES.

Non-imaging phenotypes
Participants underwent a resting 12 lead ECG. Other phenotypes
were collected by touch screen questionnaire, interview, biophysical
measurement, hospital episode statistics, and primary care data

(see Supplementary Material). Leucocyte telomere length (LTL) was
measured using a multiplex qPCR assay from 488,415 available DNA
samples of participants in UK Biobank63. After quality control (QC),
valid LTLmeasurementswere available for 472,577 individuals and log-
transformed and z-standardised values were used for analysis (UK
Biobank data field code 22192). Details of how each phenotype was
acquired are available on the UK Biobank Showcase (http://biobank.
ctsu.ox.ac.uk/crystal/).

Imaging protocol
A standardised CMR protocol was followed to acquire two-dimen-
sional, retrospectively-gated cine imaging on a 1.5T magnet (Siemens
Healthineers, Erlangen, Germany)64. Short-axis plane cine imaging
involved acquiring a contiguous stack of images from the left ven-
tricular base to the apex, and long-axis cine imaging was also per-
formed in the two and four-chamber views. Cine sequences all
consisted of 50 cardiac phaseswith an acquired temporal resolution of
31ms64. Transverse cine imaging of the ascending and descending
thoracic aorta was also performed. Native T1 mapping within a single
breath hold was performed at the mid-ventricular level using a shor-
tened modified Look-Locker inversion recovery (ShMOLLI) sequence.
Imaging phenotypes all underwent QC prior to use in analysis65.

Cardiac image analysis
Automated segmentation of the short-axis and long-axis cine images in
UK Biobank was performed using fully convolutional networks6. Image
segmentation in the UK Biobank dataset using this deep learning net-
work is equivalent to expert human readers65. Volumes (end-diastolic,
end-systolic, and stroke volume) and ejection fraction were deter-
mined for both ventricles. Myocardial volumes were used to compute
left ventricular myocardial mass, assuming a density of 1.05 gml−1.
Atrial volumes were calculated using the biplane area-length formula
V = 8

3π �
A2Ch �A4Ch

L (where A2Ch and A4Ch are the atrial areas on the two and
four-chamber cine views, respectively, and L is the averaged long-
itudinal diameter across two views). Measurements were indexed
to body surface area (BSA) as per the Du Bois formula:
0.20247 × (Weight0.425) × (Height0.725), withweight in kg andheight inm.
The heart was divided into 16 standardised anatomical segments,
excluding the true apex66.

The aorta was segmented using the cine images with a spatio-
temporal neural network67, fromwhichmaximumandminimumcross-
sectional areaswerederived.Distensibilitywascalculatedusing central
blood pressure estimates obtained using peripheral pulse-wave ana-
lysis (Vicorder, Wuerzburg, Germany)14.

Non-rigid image registration between successive frames enabled
motion tracking on greyscale images.68 Registration errors were
minimised by tracking motion in both backwards and forwards
directions from end-diastole, resulting in an averaged displacement
field14, which was then used to warp segmentations from end-diastole
to successive adjacent frames. Circumferential (Ecc) and radial (Err)
strains were calculated using short-axis cines as Edir =

ΔLdir
Ldir

, where dir
represents circumferential or radial direction, Ldir the absolute length
of a line segment along this direction and ΔLdir its change in length
over time. Longitudinal (Ell) strain was calculated from long-axis four-
chamber motion tracking measured at basal, mid-ventricular, and
apical levels. Segmental and global peak strains were then calculated.
Strain ratewas computed as thefirst derivative of strain, and thereafter
peak early diastolic strain rate in radial (PDSRrr) and longitudinal
(PDSRll) planes was then identified. The ShMOLLI T1 maps were ana-
lysed using probabilistic hierarchical segmentation with automated
quality control defining a region of interest within the interventricular
septum as previously validated16. Blood pool T1 was used as a linear
correction of myocardial T1 values16,69.

Three-dimensional visualisation of left ventricular shape and
motion with respect to age was performed through atlas-based
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registration of the segmentations andmotion fields. We calculated the
mean phenotypes (shape, wall thickness and motion pathlines) for
each decade of chronological age and represented these values on the
epicardial surface of the models relative to participants aged 40–49
years17.

Cardiovascular age prediction
To define a model of healthy cardiovascular ageing, as previously
validated in other organ systems,11,61,70,71 we first partitioned the 39,559
participants into a development set, which consisted of 5063 “healthy”
individuals that were free of cardiac, metabolic or respiratory disease,
with a body-mass index below 30 (see Supplementary Material for
details). We randomly split this group into separate training (80%,
n = 4019) and test (20%, n = 1044) sets.

We used CatBoost, a decision-tree-based gradient boosting
machine learning algorithm, on this feature set to predict the age of
each participant in the healthy training and test sets. CatBoost was
trained using the default hyperparameter set, except for early stop-
ping rounds (patience) between 50 and 100, which was chosen by the
default hyperparameter search method. A 10% validation holdout set
(n = 403) was used for hyperparameter search (using the Python
package Optuna). From the remaining training dataset, an additional
10% (n = 362) holdout set was taken to be used byCatBoost for internal
early stopping evaluation (therefore, training CatBoost with the
remaining n = 3256 instances). Thirty models (with distinct random
initialisation seeds) were trained, and the one with the lowest mean
absolute error on the holdout dataset was chosen.

The trained CatBoost model was used to predict the age of par-
ticipants from the evaluation set (n = 34,147)10,11. As in brain age
modelling11,19,72–74, we corrected the correlation between age-delta and
chronological age. For this bias-correction we used linear regression
between the initial uncorrected cardiovascular age-delta against
chronological age73. An offset is then calculated by multiplying
chronological age by the slope of the regression line, and adding the
intercept. A corrected predicted age is computed by subtracting this
offset from the uncorrected predicted age.

Evaluating associations of cardiovascular age-delta with risk
factors
To explore associations of cardiovascular age-delta with classical
cardiovascular risk factors, we curated four groups from the eva-
luation set, comprising individuals with obesity, hypertension, dia-
betes mellitus (DM) and coronary artery disease. We additionally
obtained smoking frequency, serum levels of low-density lipopro-
tein, triglycerides and apolipoprotein B, z-adjusted leucocyte telo-
mere length data, and derived alcohol consumption for participants
(see Supplementary Material for details). For each of the four dis-
eases, we selected a set of controls from the test set who did not
have the disease, matched for age and sex using 1:1 propensity score
matching. Each test sample thus had the same number of controls as
the number with the disease of interest, and data from some parti-
cipants also acted as control data for several disease groups
(see Supplementary Material for further detail). Consistent with
recommendations from brain ageing literature, all onward statistical
analyses adjusted for age, age2 and sex10,74. We then fit a linear
regression model to test for the association between cardiovascular
age-delta and the presence of disease. For continuous risk variables
(alcohol and smoking consumption, serum levels of low-density
lipoprotein, triglycerides and apolipoprotein B, and telomere
length), we fit a linear regression model in all individuals of the test
dataset that had complete data for these variables to assess the
association between cardiovascular age-delta and risk factor. We
adjusted formultiple comparisons by controlling the false discovery
rate (α = 0.05). For modelling associations with self-reported medi-
cation see Supplementary Materials.

Outcome analysis
For assessing the association of cardiovascular age-delta with pro-
spective cardiovascular events, we calculate the time-to-first major
cardiovascular event (MACE) (stroke, heart failure, arrhythmia, cardi-
ovascular death; see SupplementaryMaterial for details) from the time
of the imaging visit. We stratify by MACE prior to the MRI visit. Parti-
cipants are split into quartiles, and associations with MACE are asses-
sed through both descriptive analysis (cumulative incidence curves
with all-cause death as a competing event) and model-based analysis
with both a fully covariate-adjusted Cox model (age, sex, obesity,
diabetes, smoking, alcohol consumption, hypertension, coronary
artery disease and hypercholesterolaemia) or a minimally covariate-
adjusted Cox model (age and sex).

Medication effect analysis
We considered the most commonly used drugs, for which effective-
ness on clinical outcomes is established: all major anti-hypertensives,
i.e. beta-blockers, angiotensin-converting-enzyme inhibitors (ACEi),
angiotensin receptor blockers (ARBs), calcium channel blockers
(CCBs) and diuretics, as well as statins, metformin and digoxin (Sup-
plementary Table 5). To assess the association between self-reported
medication intake across the drugs and drug-classes considered, and
cardiovascular age-delta, we performed separate drug-specific linear
regression models with age-delta as the dependent variable, in 27,546
participants with complete data. We adjusted for sex, age, age2,
smoking pack years, alcohol consumption in grams per day, body-
mass index, SBP/DBP, heart rate, prior diagnosis of obesity, coronary
arterydisease, hypertension, diabetesmellitus, hypercholesterolaemia
and heart failure. All covariates were evaluated at the time of the
imaging visit.

Genotyping and sample quality control
Genotyping of UK Biobank participants has been detailed previously62,
and in brief, UK Biobank genotyping for 488,252 participants was
performed on UK BiLEVE or UK Biobank Axiom arrays and imputation
performed with the HaplotypeReference Consortium panel and the
UK10K+1000Genomes Project panel.We usedUKBiobank Imputation
V3 (in GRCh37 coordinates). The UK Biobank released whole exome
data sequencing of 454,787 participants in 2021, and details regarding
sequencing methods and variant calling procedures are described
elsewhere75. We utilised genotypes in their released PLINK-format files,
and restricted the cohort to the European population. We performed
standard quality control steps recommended by UK Biobank, detailed
in the Supplementary Material.

GWAS analysis
GWAS analyses for cardiovascular age-delta were performed with
PLINK (v.2) (n = 29,506). All GWAS analyses were adjusted for sex, age
(at the time of MRI), age2, the first ten genetic principal components,
MRI assessment centre and genotyping array. Post-GWAS analysis
removed SNPs with a Hardy–Weinberg equilibrium P < 0.05 andminor
allele frequency (MAF) <0.005. Lead variants for each locus were
assigned likely causal genes using variant annotations. Expression
quantitative trait loci (eQTL) evidence for each locus was extensively
searched for using the GTEx Portal and where available, full summary
statistics were downloaded to assess co-localisation (Supplementary
Material).

Identification of rare variant gene-based associations that were
independent of common variant signals
We performed rare-variants burden testing on UK Biobank WES using
Regenie26 on the Research Analysis Platform (RAP) (https://ukbiobank.
dnanexus.com). The intersection of Europeanparticipants with exome
sequencing data, the age-delta phenotype, and array data after QC is
31,515. We further quality-checked the WES data by requiring that at

Article https://doi.org/10.1038/s41467-023-40566-6

Nature Communications |         (2023) 14:4941 12

https://ukbiobank.dnanexus.com
https://ukbiobank.dnanexus.com


least 90% of genotypes for a given variant, independent of variant
allele zygosity, have a read depth of at least 10 (the 90pct10dp filter) to
avoid spurious hits. After QC, we ran step 1 to obtain predictors of
individual trait values basedon commongenetic data,whichwere then
used in step 2 for the rare variant gene burden testing.

For step 2, we annotated pLoF variants and defined gene variant
sets using the UK Biobank 450K Exome helper files76, also see UK
Biobank Resource 916. We tested the pLoF variants on three sepa-
rate burden masks per gene, based on the frequency of the alter-
native allele of the variants: MAF ≤1%, MAF ≤0.1% and singletons
only. We tested genes with enough (5) pLoF carriers across all
samples. Namely, the number of genes tested for singletons is 4271,
for MAF ≤0.1% is 10,431, and for MAF ≤1% is 10,592. We performed
Regenie step 2 with the adjustment of sex, age (at the time of MRI),
age2, the first ten genetic principal components, and genotyping
array. The association was considered significant after multiple
testing correction at α = 0.05.

Polygenic risk score (PRS) and PheWAS
Candidate variants for PRS for the cardiovascular age-delta were
obtained based on the respective GWAS results by performing
clumping (PLINK v1.9) using a linkage disequilibrium (LD) threshold of
R2 = 0.1 (in awindowof 250kb) and considering all SNPswith P < 0.001.
These selected variants were then used to construct a genetic score for
all individuals in the dataset using linear scoring in PLINK v2. Missing
genotypeswere imputed using the defaultmean imputation approach.
We have additionally constructed a multivariable linear model eval-
uated on the European subset of the full imaging cohort, using sex, age
(at the time of MRI), age2, the first ten genetic principal components,
MRI assessment centre and genotyping array as additional covariates,
and cardiovascular age-delta as the dependent variable. We report the
variance explained by the PRS as the difference of linear regression R2

between a model of age-delta with all non-genetic covariates and the
model that additionally includes the PRS as a covariate (see Supple-
mentary Material).

PheWAS of image-derived cardiovascular age-delta and age-delta
PRS was performed in European ancestry participants in the UK Bio-
bank. PRS PheWAS was performed in participants that were not
included in the derivation GWAS (n = 373,948), whilst image-derived
age-delta PheWAS was performed in the same imaging cohort
(n = 34,137). For phenotypes with at least 20 cases, the association was
tested using logistic regression for categorical outcomes and linear
regression for continuous traits, adjusting for age, age2, sex, and the
first ten genetic principal components. Statistical significance thresh-
old (P < 4.4 × 10−5) was adjusted for multiple testing using Bonferroni
correction for the total number of phenotypes tested (1149 pheno-
types), and data presented with Manhattan plots grouped by body
systems. PheWAS was performed using the PheWAS package in R
version 4.0.3.

Age prediction using resting electrocardiograms
Age-delta predictions have been performed previously using ECG
data77.Wewere interested to see howpredictions fromCMR imaging
and resting ECG data might correlate, and also investigate shared
genetic variants for age-delta. To achieve this, we adapted a pre-
viously published neural network model to perform the ECG-based
predictions. We trained themodel using ECG input data from the UK
Biobank RAP and re-formatted these according to the requirements
of the model. Subsequently, we fine-tuned the pre-trained model
using the same development set used in the imaging-based predic-
tions. Details on data input adaption and model refinement are
provided in Supplementary Material. We used the same statistical
and GWAS approach for ECG age-delta as described for image-
derived cardiovascular age-delta.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw and derived data in this study are available from UK Biobank
(http://www.ukbiobank.ac.uk/), conducted under application number
40616. GWAS summary level data were publicly available through the
GWAS catalogue (https://www.ebi.ac.uk/gwas/), deposited using
accession numbers GCST90239748 and GCST90239749. For coloca-
lization analyses, we used the unfiltered eQTL results from eQTL Cat-
alogue (https://www.ebi.ac.uk/eqtl/) and the Genotype-Tissue
Expression (GTEx) Portal v.8 (https://gtexportal.org/home/).

Code availability
The code used for our analyses are publicly available: https://github.
com/ImperialCollegeLondon/cardiovascular_ageing(https://doi.org/
10.5281/zenodo.8143760)78.
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