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Deep-learning based detection of vessel
occlusions on CT-angiography in patients
with suspected acute ischemic stroke
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Swift diagnosis and treatment play a decisive role in the clinical outcome of
patientswith acute ischemic stroke (AIS), and computer-aideddiagnosis (CAD)
systems can accelerate the underlying diagnostic processes. Here, we devel-
oped an artificial neural network (ANN) which allows automated detection of
abnormal vessel findings without any a-priori restrictions and in <2minutes.
Pseudo-prospective external validationwas performed in consecutive patients
with suspected AIS from4 different hospitals during a 6-month timeframe and
demonstrated high sensitivity (≥87%) and negative predictive value (≥93%).
Benchmarking against two CE- and FDA-approved software solutions showed
significantly higher performance for our ANN with improvements of 25–45%
for sensitivity and 4–11% for NPV (p ≤0.003 each). We provide an imaging
platform (https://stroke.neuroAI-HD.org) for online processing of medical
imaging data with the developed ANN, including provisions for data crowd-
sourcing, which will allow continuous refinements and serve as a blueprint to
build robust and generalizable AI algorithms.

Imaging constitutes a crucial step in the assessment of patients with
acute ischemic stroke (AIS), and CT-based diagnostics offer the
quickest and most broadly available solution to demonstrate early
ischemic signs, location of the vessel occlusion, and tissue perfusion1.
The current gold standard of treatment for AIS due to large vessel
occlusion (LVO) is the mechanical recanalization of the vessel through
angiographic endovascular treatment (EVT), possibly in combination
with intravenous thrombolytic agents2, and a timely diagnosis of the
location and type of vessel occlusion on CT-angiography is critical to
reduce onset-to-recanalization time and improve patient outcome3.
However, a reliable evaluation of the CT-angiography data canbe time-

consuming, especially for less frequent distal occlusions such as
medium-vessel occlusions (MeVOs), which might even be missed by
non-experienced readers4.

Several commercial computer-aided diagnosis (CAD) tools are
available for automated analysis of stroke imaging data, with the goal
of enabling neurovascular clinical teams to a faster andmore reliable
initial diagnosis, improving patient outcomes5–9. However, these CAD
solutions generally just focus on the detection of large intracranial
LVOs of the anterior circulation through an indirect assessment of
vascular density on maximum intensity projections, rather than
working directly on the original high-resolution data, without the
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possibility to assess extracranial or posterior circulation occlusions;
moreover, they oftentimes present lower performance or even no
support for MeVOs or patients with multiple occlusions10,11.

In this study, we aimed at developing a deep learning-based tool
capable of automatically detecting any type of vessel occlusion from
CT-angiography data in the context of AIS, without limiting the
analysis to any vessel size or location similarly to a realistic clinical
scenario, to expedite the detection of abnormal vessel findings and
provide a reliable screening tool to improve clinical workflow in the
emergency setting. A large single-institutional retrospective dataset
was used for model development, training, and internal testing,
whereas multicentre external testing was performed in a pseudo-
prospective setting using datasets from three primary/secondary
care hospitals of a regional stroke consortium as well as from a
tertiary-care university hospital. Furthermore, we benchmarked the
performance of our tool in the external data samples against two CE-
marked and FDA-cleared software solutions which are currently
available on the market.

Results
Detailed information on the distribution of patient demographics,
occlusion location and acquisition parameters across the patient
cohorts treated at the Heidelberg University Hospital (Heidelberg
cohort), at the three primary/secondary care hospitals of the regional
stroke consortium Rhine-Neckar with acute teleneurology/tele-
radiology coverage through the Heidelberg University Hospital (FAST
cohort), and at the Bonn University Hospital (UKB) are listed in Sup-
plementary Tables 1–4. A flowchart showing patient inclusion- and
exclusion criteria for training and testing of the artificial neural net-
work (ANN) are shown in Fig. 1. The network architecture is depicted in
the Supplementary Fig. 1.

The Heidelberg cohort comprised 1179 patients, including 800
consecutive patients (68%) with AIS and either LVO or MeVO who
underwent EVT as well as 379 consecutive patients (32%) without
vessel occlusion as a control group. Among the 800patientswithAIS,
648 patients (81%) showed one vessel occlusion whereas 152 patients
(19%) showed two or more occlusions. A total of 966 vessel occlu-
sions were annotated, including 610 LVOs (63%) and 263 MeVOs
(27%) in the anterior circulation and 93 LVOs/MeVOs (10%) in the
posterior circulation. Overall, 835/1179 of patients in the Heidelberg
cohort (71%) were assigned to the training dataset, including 628/
800 patients (79%) with LVO/MeVO and 207/379 control patients
(55%) without LVO/MeVO. The remaining 344/1179 patients of the
Heidelberg cohort (29%) were assigned to the test dataset, including
172/800 patients (22%) with LVO/MeVO and 172/379 control patients
(45%) without LVO/MeVO.

The FAST and UKB datasets comprised 327 and 323 patients with
suspected AIS, respectively, and were used for pseudo-prospective
testing of the ANN, as described in the following sections. The two
datasets presented different scanner models, vendors, slice thickness
and acquisition kernels (Supplementary Table 3). Moreover, they also
differed in acquisition quality, as demonstrated by the substantially
different contrast media distribution phase (Supplementary Table 5);
here, the vast majority of patients in both the FAST and UKB dataset
presented delayed contrast phases as compared to the Heidelberg
dataset, with substantial venous overlay (p<0.001). Patients presented
also concurrent intracranial pathology in accordance with an unse-
lected, continuous cohort of patients. For example, patients in the FAST
datasets presented n = 14 intracranial bleedings, n = 2 subdural hema-
tomas, n =8 intracranial aneurysms (n = 5 untreated, n = 3 post-treat-
ment), n = 3 intracranial masses, n =6 intracranial meningeomas. In the
UKB dataset, patients presented n =6 aneurysms (n =4 untreated, n = 2
post-treatment), n = 6 intraparenchymal hemorrhages, n = 2 subdural
hematomas, n = 7 post-operative status after craniotomy (e.g., tumor
resection), n = 2 AVMs, n = 2 intracranial stents.

Selection of the confidence threshold
First, a confidence threshold for the ANN prediction was determined
on the training set of the Heidelberg cohort by maximizing the F2-
score, thereby focusing on minimizing false-negatives rather than
false-positives (Supplementary Figs. 2 and 3).

Predictions and inference time measurements
Illustrative cases with a single occlusion correctly predicted by the
ANN are shown with the prediction process in Fig. 2, whereas predic-
tion results from cases with multiple occlusions are shown in Fig. 3;
illustrative cases with false-positive predictions by the ANN are shown
in Fig. 4.

For each patient in the test set of the Heidelberg cohort, the total
processing time, the time used for pre-processing and the time used to
predict theANNsweremeasured. The totalmedian processing time for
a single case was 103 s (IQR 83–142 s), with pre-processing accounting
for 83 s (IQR 67–113 s) of processing time and inference of the ANNs
accounting for 20 s (IQR 16–28 s) of processing time. Additional details
can be found in the Supplementary Fig. 4.

Patient- and object-level performance—Heidelberg test set
ROC curves for all datasets are shown in Fig. 5. Ourmethod achieved an
AUROC of 0.96 (95% CI, 0.95–0.98) for prediction of the presence of a
vessel occlusion on CT-angiography within the test dataset of the Hei-
delberg cohort (see Supplementary Fig. 5). Evaluation at the confidence
threshold of 0.647 resulted in a sensitivity of 94% (95% CI, 90–97%), a
specificity of 83% (95% CI, 77–88%) and a negative predictive value of
93% (95%CI, 88–96%) on the test dataset (see Supplementary Tables 6, 7
for additional evaluation metrics and the cross-validation cohort).

In terms of object detection our method achieved an overall
FROC score of 0.79 (95% CI, 0.73–0.84) for correctly localizing the
anatomical site of the vessel occlusion on CT-angiography within
the test dataset of the Heidelberg cohort, see Supplementary
Tables 8, 9 and Supplementary Fig. 6 for detailed results on the
specific occlusion locations and thresholds as well as the cross-
validation cohort.

There was a significant association (R² = 0.34, p =0.028) between
the number of available cases per occlusion site in the training set and
the achieved confidence of the prediction for the respective occlusion
site in the test set (Supplementary Fig. 7) i.e., higher confidence of the
prediction was obtained for those occlusion sites where a greater
number of cases were available for training the ANN.

External testing—FAST and UKB cohorts
The prevalence of vessel occlusions among patients with suspected
AISwere53/327 for FAST (16%) and85/323 forUKB (26%), including49/
53 patients (93%, FAST) and 76/85 (89%, UKB) with one vessel occlu-
sion and 4/53 patients (7%) and 9/85 (11%)with twoormore occlusions,
respectively. The distributions of vessel occlusion sites between FAST
andUKBwas balanced, except forM2-segment occlusions, whichwere
more frequent in the UKB dataset (n = 9 vs. n = 22 cases, p = 0.025; see
Supplementary Table 1 for details on the occlusion sites).

The patient-level performancemetrics of the ANN in the FAST and
UKB cohort as determined by automated, quantitative evaluation
(similarly to the Heidelberg dataset) are listed in Tables 1 and 2. Briefly,
in the FAST dataset the ANN achieved a patient-level AUROC of 0.90
(95%CI = 0.84–0.94), sensitivity of 0.87 (95% CI, 0.77–0.95), PPV of
0.42 (95%CI = 0.32–0.51) and NPV of 0.97 (95%CI = 0.94–0.99). As lis-
ted in Supplementary Table 10 the sensitivity at an object-level was
0.77 (95% CI, 0.62–0.91) for LVOs in the anterior circulation, 0.87 (95%
CI, 0.67–1.00) for MeVOs in the anterior circulation, and 0.42 (95% CI,
0.11–0.71) LVOs/MeVOs in the posterior circulation. In the UKB dataset
the ANN achieved a patient-level AUROC of 0.85 (95%CI = 0.79–0.91),
sensitivity of 0.81 (95% CI, 0.71–0.90), PPV of 0.58 (95%CI = 0.49–0.67)
and NPV of 0.93 (95%CI = 0.89–0.96). As listed in Supplementary
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Table 11 the sensitivity at an object-level was 0.83 (95% CI, 0.70–0.94)
for LVOs in the anterior circulation, 0.66 (95% CI, 0.48–0.83) for
MeVOs in the anterior circulation, and 0.53 (95% CI, 0.29–0.78) LVOs/
MeVOs in the posterior circulation.

Benchmarking against commercial software products
Benchmarking against two different FDA-cleared and CE-marked
software products demonstrated significantly higher performance
metrics for the developed ANN in both UKB (Table 3) and FAST

Fig. 1 | Flowchart of patient selection and procedures. The individual panels for
each dataset (Heidelberg, FAST and UKB cohort) summarize patient selection as
well as the procedures applied for developing, testing, and performance evaluation

of the artificial neural network (ANN) for detecting and localizing vessel occlusions
on CT-angiography (CTA).
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cohorts (Supplementary Table 12). To allow for a fair comparison,
we limited the benchmarking to the detection of occlusions for
which regulatory approval is granted by the two software products.
This included the detection of vessel occlusion in the anterior cir-
culation, specifically for occlusions in the internal carotid artery
(ICA) and the M1-segment of the middle cerebral artery for LVOs,

and in the M2- and M2-segment of the middle cerebral artery
for MeVOs.

Specifically, for the UKB cohort the developed ANN achieved a
patient-level sensitivity of 0.83 (95%CI = 0.72–0.91), which was higher
as compared to Software 1 (subsequently referred to as S1) with 0.38
(95%CI = 0.27–0.51), and as compared to Software 2 (subsequently
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referred to as S2), with 0.45 (95%CI = 0.32–0.57) (p < 0.001 each); it
also achieved a higher PPV of 0.61 (95%CI = 0.50–0.71) vs. 0.30 (95%
CI = 0.21–0.42) for S1 and 0.41 (95%CI = 0.29–0.53) for S2 (p <0.001
each), and NPV of 0.95 (95%CI = 0.92–0.98) vs. 0.84 (95%
CI = 0.78–0.88) for S1 and 0.86 (95%CI = 0.81–0.90) for S2 (p <0.001
each). The same results were maintained when examining the perfor-
mance for LVO- (ICA and M1-segment occlusions) or MeVO-only (M2-
and M3-segment occlusions). Again, the developed ANN achieved a
higher sensitivity (0.92 [95%CI = 0.79–0.98] vs. 0.61 [95%
CI = 0.43–0.76] for S1 vs. 0.63 [95%CI = 0.46–0.78] for S2, p <0.001
each), a higher PPV (0.50 [95%CI = 0.38–0.62] vs. 0.29 [95%
CI = 0.19–0.40] for S1 vs. 0.36 [95%CI = 0.25–0.49] for S2, p <0.001
each) and a higher NPV (0.99 [95%CI = 0.96–1.00] vs. 0.93 [95%
CI = 0.89–0.96] for S1 vs. 0.94 [95%CI = 0.90–0.97] for S2, p <0.001
each) for LVOs, and maintained a higher sensitivity (0.70 [95%
CI = 0.50–0.86] vs. 0.07 [95%CI = 0.01–0.24] for S1 vs. 0.19 [95%
CI = 0.06–0.38] for S2, p <0.001 each), a higher PPV (0.35 [95%
CI = 0.23–0.49] vs. 0.03 [95%CI = 0.00–0.12] for S1 vs. 0.11 [95%
CI = 0.04–0.23] for S2, p < 0.001 each) and a higher NPV (0.97 [95%
CI = 0.93–0.99] vs. 0.89 [95%CI = 0.84–0.93] for S1 vs. 0.91 [95%

CI = 0.86–0.94] for S2, p <0.001 each) for MeVOs. Table 3 includes a
complete list of performance metrics and confidence intervals.

Due to contractual limitations, benchmarking for S1 was not
possible in the FAST cohort. Performance of S2 as compared to the
developed ANN in the FAST cohort is listed in the Supplementary
Table 12. Here, the developed ANN again demonstrated again a higher
sensitivity of 0.92 (95%CI = 0.79–0.98) vs. 0.67 (95%CI = 0.50–0.81) for
S2 (p = 0.003), as well as a higher PPV of 0.46 (95%CI = 0.35–0.58) vs.
0.34 (95%CI = 0.23–0.45) for S2 (p = 0.021) and a higher NPV of 0.99
(95%CI = 0.96–0.1.00) vs. 0.95 (95%CI = 0.91–0.97) for S2 (p =0.003).

Inclusion of high-grade stenosis
For the subset analysis including HGS besides vessel occlusions as
prediction target—as referenced in the methods, 40 HGS were recor-
ded among the 327 patients of the FAST dataset, including 20 on large
vessels (40%) and 14 on medium-sized vessels (35%) in the anterior
circulation, and 6 within the posterior circulation (15%). In the 323
patients of the UKB dataset weobserved 36HGS, including 20 on large
vessels (55%) and 7 onmedium vessels (19%) in the anterior circulation,
and 9 in the posterior circulation (25%). A total of 16/40 HGS were

Fig. 2 | Flowchart of the inference pipeline and example results. The flowchart
presenting the inferencepipeline of ourmethod is shown in (A): datawerefirst pre-
processed by resampling the data to the target spacing and normalizing the voxel
intensities, and the predictions from the models from fivefold cross-validation are
then emsembled into the final label (combination via Weighted Box Cluster). The
prediction of the artificial neural network (ANN) is visualized as a red bounding box
and the associated confidence score is written next to it. In the lower box, (B), (C)

and (D) show representative output samples. The top row shows the underlying
ground truth annotation for evaluation as a green circle. The bottom row shows the
predicted bounding box by the artificial neural network (ANN) as a red square.
B Left proximal internal carotid occlusion (sagittal view).C Left M1middle cerebral
artery occlusion (coronal view) (D) Basilar occlusion (sagittal view). Images are
depicted using the radiological standard orientation (left image side corresponds
to the patient’s right side).

Fig. 3 | Illustration of prediction results in three patients with multiple occlu-
sions. Correctly predicted bounding boxes by the artificial neural network (ANN)
are shown in red, whereas false positive bounding boxes are depicted in orange,
whereas for false-negative predictions only the ground truth annotations are shown
(green circle).A Patientwith a correctly ANN- identifiedocclusionof the left carotid
bifurcation (chronic;first slice, coronal), the rightmiddle cerebral artery (MCA)M2-
segment (second slice, coronal) and anterior cerebral artery (ACA) A3-segment
(third slice, sagittal). In addition, a false positive finding of left MCA M2-segment
occlusion was identified by the ANN (second slice, coronal) possibly due to
decreased opacification of the vessel due to chronic occlusion of the left internal
carotid artery. B Patient with occlusion of the right common carotid artery (CCA)

not detected by the ANN (first slice, coronal) however false positive prediction of a
right carotid bifurcation occlusion distal from the CCA occlusion (second slice,
axial). True positive detection of an additional right proximal M1-segment occlu-
sion and false positive of amore distally locatedM1 occlusion (third slice, coronal).
False positive detection of a left MCA M2-segment occlusion (fourth slice, axial),
and false negative detection of a right ACA A2-segment occlusion (fifth slice,
sagittal). C Patient with tandem occlusion of the carotid bifurcation and the
proximal MCA M1-segment correctly detected by the ANN (first slice, both occlu-
sion visible, sagittal; second slice - ICAM1-segment occlusion visible, axial). Images
are depicted using radiological orientation (left image side is the patient’s
right side).
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located at the bifurcation of the carotid artery in the FAST dataset
(40%) and 15/36 in the UKB dataset (42%).

For this task the ANN demonstrated in the FAST cohort a patient-
level AUROC of 0.92 (95%CI = 0.88–0.96), sensitivity of 0.87 (95% CI,
0.79–0.94), PPV of 0.64 (95%CI = 0.55–0.74) and NPV of 0.95 (95%
CI = 0.92–0.98). In the UKB dataset, the ANN showed an AUROC of
0.88 (95%CI = 0.83–0.93), sensitivity of 0.80 (95% CI, 0.72–0.87), PPV
of 0.76 (95%CI = 0.68–0.83) and NPV of 0.90 (95%CI = 0.86–0.94). The
corresponding object-level performance are listed in Supplementary
Tables 10 and 11.

Confidence scores and false positives
In the FAST and UKB dataset, the ANN demonstrated significantly
higher confidence scores when detecting true-positive vessel occlu-
sions (VO,medianFAST0.90 [0.81–0.95] andUKB0.92 [0.85–0.96]) as
compared to HGS (median FAST 0.81 [0.74–0.85], p < 0.05 and UKB
0.84 [0.74–0.88], p <0.001), as well as compared to false positive
results (FP, median FAST 0.72 [0.67–0.78], p <0.05 and UKB 0.73
[0.68–0.77], p < 0.05). The developed ANN demonstrated also higher
confidencewhendetectingHGSas compared to FP (p < 0.001). (Fig. 6).
There were 48 false positive findings of the ANN in the FAST dataset
and 44 in the UKB dataset, and the majority of them (26/48 [54%] and
27/44 [61%]) were located on small veins rather than arterial vessels
(Supplementary Table 13).

Public web platform
Finally, the developed ANN was deployed to an online platform
(https://stroke.neuroAI-HD.org) which allows online processing of
CT-angiography data (for research purposes only). The platformwas

Fig. 4 | False positive output samples. The top row row shows the underlying
ground truth annotation for evaluation as a green circle, if applicable. The bottom
row shows the predicted bounding box by the artificial neural network (ANN) as a
yellow square for predictions classified as false positive and red square for pre-
dictions classified as true positive.A False positive prediction at the left carotid T in
a patient with proximal internal carotid artery occlusion. The retrograde perfusion
of the left A1-anterior cerebral artery is responsible for this impression. (axial view).
B False positive prediction of a subtotal left M1-middle cerebral artery occlusion,

followed by a correctly predicted total left M1 occlusion. (coronal view). C M1-
middle cerebral artery occlusion classified as false positive. The prediction is cor-
rectly located, but the volume of the predicted bounding box is too low compared
to the annotation and hence does not reach the intersection-over-union (IoU)-
threshold to be classified as true positive. (coronal view). Images are depicted using
the radiological standard orientation (left image side corresponds to the patient’s
right side).

Fig. 5 | ROCs of the ANN performance in the internal and external test sets.
Overall classification performance at the patient level measured by the receiver
operating characteristics on the test set of the Heidelberg cohort (green colored),
the FAST cohort (orange colored) and the UKB cohort (blue colored). All types of
vessel occlusions are considered in the curves (anterior/posterior, LVO/MeVO).
Source data are provided as a source data file.
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implemented using Kaapana (https://github.com/kaapana/
kaapana), which is an open source toolkit for state of the art plat-
form provisioning in the field of medical data analysis12. Specifically,
the web platform allows to upload CT-angiography data in DICOM
format, with subsequent execution of an automated workflowwhich
includes (1) automated de-identification routines (including de-
facing) for the uploaded data, (2) image pre-processing, (3)

inference by the ANN and (4) image post-processing, according to
the specifications listed in the Methods and Supplementary Meth-
ods. The website then provides prediction results (presence and
localization of vessel occlusions) through an embedded web-based
DICOM viewer. Moreover, the platform includes provisions for data
crowdsourcing (i.e., optional donation of CT-angiography data after
upload), which may serve as a basis for continuous refinements of

Table 1 | Patient-level performance for detection and localization of vessel occlusions in the FAST cohort

Cohort n = Num Patients AUROC Sensitivity Specificity PPV NPV

Full Dataset

VO (n = 52)/Controls (n = 274) 0.90 [0.84, 0.94] 45/52; 0.87 [0.77, 0.95] 212/274; 0.77 [0.72, 0.82] 45/107; 0.42
[0.32, 0.51]

212/219; 0.97
[0.94, 0.99]

VO +HGS (n = 79)/Con-
trols (n = 247)

0.92 [0.88, 0.96] 69/79; 0.87 [0.79, 0.94] 209/247; 0.85 [0.80, 0.90] 69/107; 0.64
[0.55, 0.74]

209/219; 0.95
[0.92, 0.98]

Class: VO

Anterior Circulation

LVO (n = 23) 0.89 [0.80, 0.97] 20/23; 0.87 [0.73, 1.0] - 20/82; 0.24 [0.15, 0.34] 212/215; 0.99 [0.97, 1.0]

MeVO (n = 14) 0.93 [0.87, 0.97] 14/14; 1.0 [1.0, 1.0] - 14/76; 0.18 [0.1, 0.27] 212/212; 1.0 [1.0, 1.0]

Posterior Circulation

VO (n = 10) 0.82 [0.65, 0.93] 6/10; 0.60 [0.25, 0.89] - 6/66: 0.09 [0.03, 0.16] 212/216; 0.98
[0.96, 1.00]

Class: VO+HGS

Anterior Circulation

LVO (n = 32) 0.94 [0.89, 0.98] 30/32; 0.94 [0.85, 1.0] - 30/68; 0.44
[0.33, 0.56]

209/211; 0.99 [0.98, 1.0]

MeVO (n = 20) 0.96 [0.94, 0.98] 20/20; 1.00 [1.0, 1.0] - 20/58; 0.34
[0.23, 0.46]

209/209; 1.00 [1.0, 1.0]

Posterior Circulation

VO (n = 13) 0.79 [0.65, 0.91] 6/13; 0.46 [0.2, 0.75] - 6/44; 0.14 [0.04, 0.24] 209/216; 0.97
[0.94, 0.99]

Patients with multiple occlusions were ignored for the automated analysis in the per-class category.
VO vessel occlusion, HGS high-grade stenosis (>70%).

Table 2 | Patient-level performance for detection and localization of vessel occlusions in the UKB cohort

Cohort n = Num Patients AUROC Sensitivity Specificity PPV NPV

Full Dataset

VO (n = 80)/Controls (n = 243) 0.85 [0.79, 0.91] 65/80; 0.81 [0.71, 0.90] 196/243; 0.81 [0.75, 0.85] 65/112; 0.58
[0.49, 0.67]

196/211; 0.93
[0.89, 0.96]

VO+HGS (n = 106)/Con-
trols (n = 217)

0.88 [0.83, 0.93] 85/106; 0.80 [0.72, 0.87] 190/217; 0.88 [0.83, 0.92] 85/112; 0.76
[0.68, 0.83]

190/211; 0.90
[0.86, 0.94]

Class: VO

Anterior Circulation

LVO (n = 29) 0.95 [0.88, 0.99] 28/29; 0.97 [0.89, 1.0] - 28/75; 0.37 [0.27, 0.48] 196/197; 0.99 [0.98, 1.0]

MeVO (n = 27) 0.79 [0.66, 0.90] 20/27; 0.74 [0.57, 0.89] - 20/67; 0.30
[0.20, 0.41]

196/203; 0.97
[0.94, 0.99]

Posterior Circulation

VO (n = 15) 0.79 [0.63, 0.92] 10/15; 0.67 [0.40, 0.90] - 10/57; 0.18 [0.08, 0.28] 196/201; 0.98
[0.95, 0.99]

Class: VO+HGS

Anterior Circulation

LVO (n = 41) 0.95 [0.89, 0.99] 37/41; 0.90 [0.81, 0.98] - 37/64; 0.58
[0.45, 0.70]

190/194; 0.98
[0.96, 1.00]

MeVO (n = 29) 0.85 [0.74, 0.95] 23/29; 0.79 [0.62, 0.94] - 23/50; 0.46
[0.33, 0.60]

190/196; 0.97
[0.94, 0.99]

Posterior Circulation

VO (n = 20) 0.83 [0.71, 0.93] 13/20; 0.65 [0.43, 0.86] - 13/40; 0.33 [0.17, 0.47] 190/197; 0.96
[0.94, 0.99]

Patients with multiple occlusions were ignored for the automated analysis in the per-class category.
VO vessel occlusion, HGS high-grade stenosis (>70%).
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our ANN and as a blueprint to build robust and generalizable AI
algorithms.

Discussion
In this study we developed an ANN capable of automatically labeling
vessel occlusions in the context of AIS without any a-priori restrictions

and irrespectively of number of occlusions, anatomical location or
vessel size, which also worked directly on high-resolution CT-angio-
graphy data without extensive pre-processing, and therefore resem-
bled the real-life evaluation performed by radiologists. The ANN was
developed and tested onto a large single-institutional dataset, and was
capable of predicting the presence of a vessel occlusion on CT-

Fig. 6 | Differences in confidence scores for predictions and false positives.
Plotted confidence scores for the vessel pathology detected by the ANN in each of
the observed categorieswithin the FASTandUKBdataset, demonstrating the utility
of the confidence scores for prioritization of findings within a simulated clinical
setting. Groups are compared using the two-sided Wilcoxon rank-sum test. Sta-
tistical significance is highlighted between the groups. In both datasets the ANN
demonstrated significantly higher confidence when detecting vessel occlusions
(VO, depicted in blue color on the left, median FAST (n = 47) 0.90 [0.81–0.95] and
UKB (n = 71) 0.92 [0.85–0.96]) as compared to high-grade stenosis (HGS, depicted

in green color in the middle, median FAST (n = 32) 0.81 [0.74–0.85], p =0.002 and
UKB (n = 22) 0.84 [0.74–0.88], p <0.001), as well as compared to false positive
results (FP, depicted in salmon color on the right, median FAST (n = 48) 0.72
[0.67–0.78], p <0.001 and UKB (n = 44) 0.73 [0.68–0.77], p <0.001). The ANN
demonstrated also higher confidence when detecting HGS as compared to FP
(FAST, p <0.001 and UKB, p =0.001). Data boxes depict median values (center) ±
interquartile range (bounds of box), bars depict data range. P values are reported
without correction for multiple comparisons.

Table 3 | Performance benchmarking of two CE-marked and FDA-cleared commercial software (blinded) in the UKB cohort,
compared against the developed ANN

UKB DATASET

Software AUROC Accuracy Sensitivity Specificity PPV NPV

Overall [Occlusions n = 65/323]

ANN 0.85 [0.80–0.90] 0.86 [0.82–0.90] 0.83 [0.72–0.91] 0.87 [0.82–0.90] 0.61 [0.50–0.71] 0.95 [0.92–0.98]

Commercial Software 1 0.58 [0.52–0.65] 0.70 [0.65–0.75] 0.38 [0.27–0.51] 0.78 [0.73–0.83] 0.30 [0.21–0.42] 0.84 [0.78–0.88]

p value - - p <0.001 p =0.007 p <0.001 p <0.001

Commercial Software 2 0.65 [0.58–0.71] 0.76 [0.71–0.81] 0.45 [0.32–0.57] 0.84 [0.79–0.88] 0.41 [0.29–0.53] 0.86 [0.81–0.90]

p value - - p <0.001 p =0.310 p <0.001 p <0.001

LVO only [ICA, M1 – n = 38]

ANN 0.89 [0.85–0.94] 0.87 [0.83–0.91] 0.92 [0.79–0.98] 0.87 [0.82–0.90] 0.50 [0.38–0.62] 0.99 [0.96–1.00]

Commercial Software 1 0.69 [0.61–0.78] 0.76 [0.–1–0.81] 0.61 [0.43–0.76] 0.78 [0.73–0.83] 0.29 [0.19–0.40] 0.93 [0.89–0.96]

p value - - p =0.001 p =0.007 p <0.001 p <0.001

Commercial Software 2 0.74 [0.65–0.82] 0.81 [0.76–0.85] 0.63 [0.46–0.78] 0.84 [0.79–0.88] 0.36 [0.25–0.49] 0.94 [0.90–0.97]

p value - - p =0.002 p =0.310 p =0.020 p =0.002

MeVO only [M2, M3 – n = 27]

ANN 0.79 [0.69–0.88] 0.85 [0.80–0.89] 0.70 [0.50–0.86] 0.87 [0.82–0.90] 0.35 [0.23–0.49] 0.97 [0.93–0.99]

Commercial Software 1 0.43 [0.37–0.48] 0.71 [0.66–0.77] 0.07 [0.01–0.24] 0.78 [0.73–0.83] 0.03 [0.00–0.12] 0.89 [0.84–0.93]

p value - - p <0.001 p =0.007 p <0.001 p <0.001

Commercial Software 2 0.51 [0.43–0.59] 0.78 [0.72–0.82] 0.19 [0.06–0.38] 0.84 [0.79–0.88] 0.11 [0.04–0.23] 0.91 [0.86–0.94]

p value - - p <0.001 p =0.310 P =0.002 p <0.001

Comparisons were performed visually for all patients by considering only the detection of occlusions of the anterior circulation. Findings were considered correct as long as labeled on the correct
vessel, in order to provide a fair comparison between the software. Findings labeled in vascular territories not considered by the commercial software (e.g., posterior circulation) were ignored.
McNemar’s two-tailed test was used to compare specificity and sensitivity; comparison of relative predictive values was used instead to compare PPV and NPV (rpv.test function of R’s DTComPair
package, two-tailed). P values refer to the comparison between the developed ANN and the respective commercial software, and are reportedwithout correction formultiple comparisons. P values
considered significant are highlighted in bold.
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angiography data in less than 2min, thus enabling a possible integra-
tion for the triage of CT scans in the emergency setting. External
testing was performed in a pseudo-prospective setting with con-
tinuous data from all patients which received CT-angiography for
suspected AIS within a 6-month timeframe at three different primary/
secondary care hospitals from a regional stroke consortium and at a
tertiary-care university hospital, with data representing a hetero-
geneous real-world setting. Specifically, this included CT data from
different vendors, scanner models, acquisition and reconstruction
protocols, and contrast phases. Here the developed ANN confirmed its
high NPV, which was our key metric by design choice and indeed one
of the most crucial in an emergency setting: while positively labeled
scans will inevitably undergo rapid assessment, missed vessel occlu-
sion might result in acute findings receiving a wrongfully lower
prioritization, further increasing imaging-to-treatment times. The
developed ANN demonstrated object-level performance that reflected
the distribution of occlusion site frequencies in the training set, and
the external analysis also highlighted the importance of confidence
scores for guiding the interpretation of the ANN’s decisions in clinical
practice, as the ANN produced high confidence scores when correctly
identifying occlusions but low confidence scoreswhen producing false
positives. As a secondary analysis, the ANN showed stable perfor-
mance also with the inclusion of HGS within the external datasets;
although this was not the primary purpose of the current study, this
findingwas still usefulwhen considering apotential clinical application
and demonstrated the potential for future expansions of the ANN to
other domains of vessel pathology through new, targeted training
datasets. When benchmarked against two CE-marked and FDA-
approved software solutions which are currently on the market, the
developed ANN demonstrated significantly higher performance
metrics. Specifically, the developed ANN yielded a 25–45% increase for
sensitivity and a 4–11% for NPV (p ≤0.003 each) for the subset of
occlusions for which regulatory approval is granted by the two soft-
ware products, with the largest performance gaps observed for cases
with MeVOs (here defined as M2- and M3-segment occlusions).

Radiology departments are facing an increasing workload13, often
resulting in staff shortages as well as an overload of the workforce in
many western countries. In the context of AIS, detection of vessel
occlusions can be a demanding task for non-specialized personnel,
resulting in increased error rates4, and multiple commercial solutions
have been developed for automated AI-based detection of vessel
occlusions. For the detection of LVOs using available commercial
software, a sensitivity of 96% and specificity of 98% has been reported
for RAPID-LVO (RapidAI), 82% and 90% for Viz-LVO (Viz.ai), 84% and
96% for e-CTA (Brainomix), 93–96% and 78% for StrokeViewer (Nico-
LAB) as well as 73% and 98% for AUTOStroke LVO (Canon)5–9. However,
these solutions are limited by primarily focusing on the detection of
anterior circulation LVOs, while the performance for (potentially also
endovascularly treatable) MeVOs in the anterior circulation is sub-
stantially lower (e.g., with reported sensitivities of 49–72% for detect-
ing M2 occlusions8,9 using StrokeView, AUTOStroke LVO or RAPID-
LVO)6,14. Compared to these studies, the developed ANNdemonstrated
stable, high performance also when assessing MeVOs, and provided
support for posterior circulation and extracranial occlusions. More-
over, the ANN was successful in maximizing NPV, our target metric,
demonstrating scores ≥0.93 across all datasets, despite differences in
scanner hardware, acquisition protocols and contrast phases. Assess-
ment of two different CE-marked and FDA-approved software solu-
tions showed significantly lower performance (as compared to the
developed ANN) for both LVOs and MeVOs. The performance metrics
of the two evaluated software solutions were also well below the
reported values in the literature, most likely reflecting the challenging
real-world setting of our study, which included all consecutive patients
with suspected stroke from a 6-month time period from four different
hospitals for external testing, therefore also including different

scanner hardware and acquisition protocols (e.g., CT-angiography data
with venous overlay, which adds an additional layer of complexity).
Taken together these resultsmay provide amore realistic performance
assessment of commercial software products for this task and may
allow to address potential selection biases of previous studies.

Although all of the commercial solutions previously mentioned
are based on a convolutional neural network (CNN) algorithm to
detect LVOs, each vendor uses different modifications of this method,
and may prefer high sensitivity at the expense of specificity or vice
versa. As far as disclosed, and also in the case of the two benchmarked
software solutions, available tools seem to use CNN-based approaches
for identifying vessel asymmetries (as compared to the contralateral
hemisphere) that are suggestive of an LVO and thereby aim to identify
the presence (LVO yes vs. no) and also infer the anatomical localization
of the vessel occlusion15. While providing an easy solution for larger
vessel occlusion, this approach could at least partially explain the
lower performance for smaller vessel occlusions in peripheral vascular
territories (e.g., M2 segment), where a dramatic drop in vascular
density is at times not present or presents significant interindividual
variability due to the different possible anatomical configurations of
the M2-subdivision (e.g., bifurcation vs. trifurcation)7,10,11,16. Moreover,
this method could also fail to appreciate the large inter-personal dif-
ferences of vascular symmetry which could occur after a vessel
occlusions due to different levels of compensatory vascularization
through distal collaterals. Overall, the large performance gap between
the benchmarked software and the developed ANN suggests that a
reconstruction-independent approach to the detection of vascular
occlusions in AIS could be superior to existing (commercial) methods,
especially in the case of smaller vessels.

Although intracranial LVOs in the anterior circulation constitute
the most frequent type of occlusions (ranging from 39 to 83% in the
previous literature17,18), they are also intuitively thosewith the quickest
learning curve for non-specialized radiologists and ER personnel, and
the detection of occlusions in infrequent locations or throughout
smaller vessels (even in the anterior circulation) is a more demanding
and time-consuming task. In this context, available commercial CAD
tools at times fail in supporting themost difficult diagnostic segments,
andnoneof themhave yet focusedon thedetection and localizationof
(potentially also endovascularly treatable) LVOs or MeVOs in the
posterior circulation.

We found encouraging performance on unseen, external data in
both the FAST and UKB cohorts, with very high NPV across all insti-
tutions. Additionally, we also performed a subset analysis by including
the detection of HGS as prediction target besides vessel occlusions,
because we noticed during the review process that HGS were also
labeled by the ANN. Despite being trained purely to detect occlusions,
we found stable or even improved performance of the ANN when also
including HGS, although these were labeled with comparatively lower
confidence. Overall, this suggests that a steep reduction of vessel
calibermight be sufficient to induce the developedANN inproducing a
pathological label, even without a complete stoppage of the arterial
opacification in the following segments. From a clinical perspective,
this unexpected behavior of the ANN might be of added value: high-
grade stenoses are a clinically relevant entity when evaluating patients
with stroke symptomatic, which in the acute setting might even
require endovascular or surgical treatment if producing symptomatic
perfusion deficits despite optimal blood pressure control. However,
further targeted testing and/or re-training of the developed ANN on
larger samples might be warranted to fully address this pathology.

Upon review of the acquisition phase of the CT-angiography data
we also noticed a systematic shift towards delayed acquisition phases in
the FAST and UKB cohorts as compared to the Heidelberg cohort. This
led to a higher frequency of venous overlay, and during the assessment
of false positive findings by the ANN in the FAST and UKB cohort we
indeed noticed that the majority of themwere located on small venous
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vessels rather than on arteries. Here, the partial opacification of the
venous system at delayed acquisition phases might have confused the
developed ANN by highlighting small or medium veins which then
seemingly disappeared into the brain tissue, thus mimicking the
appearance of a vessel occlusion. Suboptimal contrast phase compli-
cates the evaluation of CT-angiography in the clinical setting, and
similarly as to how human readers require increased effort to evaluate
these exams, the ANN was also confused by the venous overlay, pro-
ducing low-confidence false positives on venous vessels. This further
highlights the importance of consistent, high-quality acquisition
schemes in the early arterial phase for CT-angiography, especially when
applying CAD systems, to avoid higher false positive rates.

Our study has some limitations. First, while we tried to collect a
large dataset, there was a clear class imbalance for some of the less
common vessel occlusions which affected the object-level performance
of the ANN for under-represented occlusions. Although theNPV—which
was excellent throughout the whole cohort, even for underrepresented
occlusion sites–maybe regarded as the keymetricwhen evaluating the
screening capabilities of themethod, future large-scale studies focusing
on novel decentralized AI algorithms, as well as our publicly available
crowdsourcing platform (http://stroke.neuroAI-HD.org) may foster
multi-site collaborations and allow to further improve the object-level
performance for less common vessel occlusion sites, specifically in the
posterior circulation. Second, although we found encouraging results
regarding the detection of HGS besides vessel occlusions, it requires
further validation and/or re-training on targeted populations to prove
its clinical efficacy. Third, although the current median processing time
of 103 s is already largely within an acceptable clinical timeframe, itmay
be further reduced by improving the pre-processing time for each
patient, which currently accounts for more than 80% of the total pro-
cessing time for each case in our study. As we relied on commonly
available freeware software packages, the pre-processing in our study
was entirely performed through the central processing unit (CPU) due
to the lack of Graphics Processing Units (GPU)-accelerated libraries for
some required operations. Future studies should therefore focus on
implementing a fully GPU-based prediction pipeline, which would allow
for faster resampling and to remove additional time spent to transfer
information between different computing units. Fourth, although
benchmarking was performed using two widely used CE-marked and
FDA-approved software solutions for identifying vessel occlusions on
CT-angiography in patients with suspected acute ischemic stroke,
potentially different (higher) performance metrics may have been
achieved with other commercially available software solutions that
were not evaluatedwithin this study. Finally, our tool does not currently
perform an automated quality control for the input data, and further
developments should aim at providing an integrated solution capable
of screeningdatawith insufficientquality aswell as further testingof the
algorithm on increasingly noisy data.

In conclusion, the developed ANN yielded a high performance for
the detection and localization of vessel-occlusions on CT-angiography
in patients with AIS and substantially outperformed two currently
available CE- and FDA-approved commercial software solutions during
pseudo-prospective external benchmarking in consecutive patients
with suspected AIS from four different hospitals during a 6-month
timeframe. We provide an imaging platform (https://stroke.neuroAI-
HD.org) for online processing of medical imaging data with the
developed ANN, including provisions for data crowdsourcing, which
may serve as a basis for continuous refinements and as a blueprint to
build robust and generalizable AI algorithms.

Methods
Study design and participants
The study of the imaging data was approved by the local ethics com-
mittee of the University of Heidelberg and the requirement to obtain

informed consent was waived due to the due to the retrospective
nature of the study and the thorough anonymization of the data.

In this retrospective multicentre study, we used CT-angiography
data from 1179 patients previously treated at Heidelberg University
Hospital (Heidelberg cohort) to develop and train a one-stage object
detection ANN for detecting and localizing vessel occlusions on CT-
angiography. The Heidelberg cohort included 800 consecutive
patients with AIS and confirmed vessel occlusion on CT-angiography
who subsequently underwent EVT between 03/2010 and 02/2020, as
well as 379 consecutive patients with a suspected diagnosis of stroke
but no vessel occlusion (control group) who underwent CT-
angiography between 10/2019 and 02/2020. Pseudo-prospective
external testing of the ANN was performed onto two different data-
sets, and namely (i) the FAST cohort, with 358 consecutive patients
who underwent CT-angiography between 01/2022 and 06/2022 for
suspected AIS at three primary/secondary care hospitals of the regio-
nal stroke consortium Rhine-Neckar with acute teleneurology/tele-
radiology coverage through the Heidelberg University Hospital, and
the UKB cohort, with 323 patients who underwent CT-angiography
between 09/2020 and 04/2021 for suspected AIS at the Department of
Neuroradiology of the Bonn University Hospital.

Figure 1 depicts the flowchart with the inclusion and exclusion
criteria for patients in the Heidelberg, FAST and UKB cohorts. All
patients underwent multimodal CT, including CT-angiography. The
scanner and acquisition parameters are shown in Supplementary
Table 3.

Procedures
Figure 1 depicts the flowchart of the procedures performed for train-
ing, model development and testing of the ANN. For the Heidelberg
cohort, imaging data was exported from the PACS system and con-
verted to the NifTI file format using dcm2niix (https://github.com/
rordenlab/dcm2niix). All data was visually inspected, and cases pre-
senting insufficient imaging quality were excluded (e.g., movement
artifacts, insufficient vessel opacification, etc.). Vessel occlusions were
then labeled by ES and reviewed by GB, a neuroradiology resident with
6 years of experience, and PV, a board-certified neuroradiologist with
10 years of experience, using ITK-SNAP (http://www.itksnap.org/). All
vessel occlusions within the CT-angiography acquisition were labeled
using a spherical 3D-ROI with 15 (MeVOs) or 30 (LVOs) voxels of dia-
meter, placed with its center at the most proximal point of loss of
contrast on one axial slice; the segmentation was then automatically
propagated from the centerpoint in the 3D-plane. Both the treated
occlusion and incidental findings were included in the labeling. The
original radiological report was reviewed in all cases to improve
robustness. Four main classes of occlusions were defined:
A. Anterior LVOs—occlusions in the common carotid artery (CCA),

internal carotid artery (ICA), M1-segment of the middle cerebral
artery (MCA) and A1-segment of the anterior cerebral
artery (ACA)19

B. Anterior MeVOs—occlusions of the M2-/M3-segment of the MCA,
A2-/A3-segment of the MCA20

C. Posterior LVOs—occlusions in the vertebral artery (VA), basilar
artery (BA) and the P1-segment of the posterior cerebral
artery (PCA)19

D. Posterior MeVOs—occlusions of the P2/3-segment of the PCA20

Next, patients with vessel occlusion were randomly split on a per-
class basis into a training set (75%) and test set (25%) to maintain the
distribution of occlusion locations.Within the test set, a 1:1 distribution
between patients with vs. without vessel occlusionwas established i.e.,
the same number of patients without vessel occlusion was added to
the test set, whereas the remaining patients without vessel occlusion
were added to the training set.
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Detecting objects based on coarse annotations is a fundamental
problem of computer vision and can be tackled with various methods.
Here, we based our study on the use of RetinaNet21,22, a single-stage
object detector that is both simple in design and provides a solid
foundation for robust performance across various clinical problems23.
A confidence threshold for the ANN prediction was determined on the
training set by maximizing the F2-score, thereby putting more atten-
tion on minimizing false-negatives rather than false-positives. Perfor-
mance was evaluated using 5-fold cross-validation on the training set
and using the ensemble model for predicting the test set.

For the FAST cohort, imaging data from three regional hospitals
(located in Mosbach, Sinsheim and Heppenheim - Germany) were
previously sent to Heidelberg University Hospital for teleradiological
reporting and therefore available in our local PACS system. Imaging
data was exported in batch from the PACS system using ADIT (https://
github.com/radexperts/adit) and converted to the NifTI file format
using dcm2niix. Patients presenting insufficient data quality ormissing
data were excluded. To simulate a realistic usage of the developed
ANN within a clinical scenario, CT-angiography data were then pro-
cessed through the ANN (previously developed onto the Heidelberg
cohort) to detect vessel occlusions, producing both labels and con-
fidence scores (Fig. 2).

Commercial software comparison. Benchmarking of the developed
ANN was performed against two FDA-cleared and CE-marked com-
mercial software solutions which are currently available for purchase
on the market (Software #1 and Software #2, respectively). Both soft-
ware were tested on the UKB cohort, but only Software #2 could be
tested onto the FAST dataset due to contractual limitations. The
software names are blinded throughout the paper and cannot be dis-
closed at any given point; information on the architecture or
mechanisms used by the software to detect the vessel occlusions are
also not available due to the proprietary nature of the software solu-
tions. Briefly, the software provided binary predictions and localiza-
tions of vessel occlusions, without further measures of uncertainty or
confidence scores. Comparisons were performed visually by GB and
reviewed by PV and UN; disagreements were resolved through con-
sensus discussion. Written reports within the PACS system were
referenced during the review process to increase accuracy and avoid
misdiagnosis.

In order to provide a fair comparison with commercial software,
which by design were both limited to detecting occlusions in the
anterior circulation only, we analyzed all patients by considering only
the detection of occlusions in the anterior circulation, and specifically
limiting the analysis to occlusions in the internal carotid artery (ICA)
and the M1-segment of the middle cerebral artery for LVOs, and in the
M2- andM2-segment of themiddle cerebral artery forMeVOs. Findings
were considered correct as long as labeled on the correct vessel,
without considering the precise localization of the occlusions, in order
to provide a fair comparison between the software. Findings labeled in
vascular territories not considered by the commercial software (e.g.,
posterior circulation, anterior cerebral artery) were ignored. McNe-
mar’s test was used to compare specificity and sensitivity; comparison
of relative predictive values was used instead to compare PPV and NPV
(rpv.test function of R’s DTComPair package).

Statistical analysis
In order to provide a full analysis of the capabilities of our algorithm
while increasing comparability to previous studies5–10,14,16,24–34, the
evaluation of the models was divided into (i) object-level and (ii)
patient-level evaluation.

We performed automated and quantitative evaluation by using
the expert-generated segmentation masks and the predicted bound-
ing boxes from the CNN as input. Specifically, as further explained, the
localization of a vessel occlusion was referred to as correct if the

Intersection over Union (IoU) between the predicted bounding box
exceeded 0.1027,28.

Briefly, for the calculation of patient-level performance the loca-
lization information was ignored, and patient-level classification
results were produced by selecting the maximum of the predicted
confidence scores. All CTA scans with at least one marked VO were
then considered positive findings. The AUC was then used to evaluate
the continuous predictions while sensitivity, specificity, PPV, and NPV
were calculated at the same confidence thresholds as the object level
evaluation. Only patients with a single VOwere included in the patient-
level evaluation when performance was assessed for each subgroup
separately. Bootstrapping with 1000 iterations was used to determine
the bootstrap percentile with 95% confidence intervals for the free-
response operating characteristics (FROC35) and all other performance
estimates.

FROC36 are a commonly found metric to evaluate CAD systems,
and assesses the sensitivity at multiple working points and with a
varying number of false-positive predictions per image. To obtain a
single performance score from the entire curve, the sensitivity values
at [1/8, 1/4, 1/2, 1, 2, 4, 8] were averaged. These values were selected in
accordance with previous publications of CAD tools35,37 and account
for the need for methods with high sensitivity in a screening setting
while rewarding a low number of false positives. To account for the
cubic decline of the IoU in three dimensional data and the coarse
annotation of the RoI, the localization of a VO was referred to as cor-
rect if the IoU between the predicted bounding box and ground truth
bounding box exceeded 0.1023,38.

For the object-level evaluation, localization information was
maintained, and the localization of a vessel occlusion was referred to
as correct if the IoU between the predicted bounding box and ground
truth bounding box exceeded 0.1039. Duplicate predictions of the
same VO were considered false positives. Since the detection task was
formulated as a binary detection task (differentiating vessel occlusions
from background), false-positive predictions could not be assigned to
a respective subgroup. Subgroup analysis on the object-level was thus
performed by computing sensitivity for each subgroup separately
while the number of false positives were counted across all subgroups.

As further listed in the results, it also became apparent through
the visual case review process that the network was also focusing on
high-grade stenosis (HGS), and labeling these as false positive occlu-
sions. High-grade stenoses constitute a clinically relevant vessel
pathology which can cause stroke symptoms at presentation and
require additional considerations when evaluating stroke CTAs, as well
as when planning the following intervention. Therefore, we conducted
a separate sub-analysis by also documenting high-grade vessel ste-
noses. HGS were labeled with the same procedures as VOs, and were
considered high-grade if above 70% of the vessel lumen; measure-
ments at the carotid bifurcation were performed according to the
NASCET trial standard40. Within this sub-group analysis, previous false
positives labels on confirmed high-grade stenoses were considered
true positives. Conversely, any missed high-grade stenosis was con-
sidered a false negative both at case- and object-level. Cross-
referencing with the radiological report was always performed dur-
ing the labeling procedures to increase accuracy.

Network training: image pre-processing
The target spacingwas set to themedian spacing of the training cohort
(namely, 0.5mm×0.453mm×0.453mm). Since the single voxel den-
sity values of CT scans are implicitly measured on an absolute scale
expressed in Hounsfield units, we employed a global normalization
scheme for all cases in order to avoid loss of information41; specifically,
the statistical properties of the voxel intensities such as mean, stan-
dard deviation, and percentiles were collected across the entire
training dataset and were used to clip the voxel intensities to their 0.5
and 99.5 percentiles followed by z-score normalization41.
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ANN architecture
The RetinaNet21 architecture consists of three main components: the
encoder network which consecutively downsamples the image to
extract features on multiple resolutions, the decoder network which
progressively upsamples the obtained features to combine coarse (low
resolution) with fine grained (high resolution) features and the
detection heads which are responsible for classifying and regressing
the anchors. The ANN receives three-dimensional input patches with
[192, 128, 128] voxels for processing. A detailed overview of the
architecture can be found in Supplementary Fig. 1.

The encoder network utilizes 3 × 3 × 3 convolutions, Instance
Normalisation and Leaky Rectified Linear Units to extract features.
Strided convolutions at the beginning of each resolution stage are
used to downsample the feature maps. The four deepest (i.e., lowest
resolution) feature maps are used for further processing by the
decoder network.

A Feature Pyramid Network42 is used to recombine information
from different resolutions. First, each feature map is processed by a
1 × 1 × 1 convolution to reduce the number of channels to 128. Trans-
posed convolutions are used to progressively upsample them and
element wise addition is used to combine the features.

These featuremaps are fed to a set of shared convolutions, usually
referred to as the detection head. It is responsible to classify and
regress the predefined set of anchors and consists of 3 × 3 × 3 con-
volutions, Group Normalisation43, and Leaky Rectified Linear Units.

Network training details
Anchors are an essential concept of several commonly used object
detectors, as they act as initial estimates of objects and are used to
formulate the detection task as a classification and regression pro-
blem. To account for the differently sized annotations, two anchors
of size [8, 10, 10] and [15, 14, 14] were used during our experiments,
which were derived by the planning procedure of nnDetection23. The
assignment of ground truth objects to anchors during the training
was conducted via Adaptive Training Sample Selection44. Binary
cross-entropy loss was used to train the classification branch of the
detection head and the regression branch was trained with the
smooth L1 loss45.

To reduce overfitting and artificially increase the diversity of the
training samples, online data augmentation was utilized throughout
the entire training. In order to avoid artifacts at the edges when
applying spatial augmentations, a patch size of [328, 249, 295] was
extracted from the CTA scan and cropped to the training patch size of
[192, 128, 128] after the spatial augmentations were applied. We uti-
lized the same set of augmentations as nnU-Net41 except dropping the
Simulation of Low-Resolution Samples due to the observation of a
slightly reduced performance when using it.

The ANN was trained with Focal loss21 and smooth L1 loss45 in a
fivefold cross-validation fashion to differentiate between background
and labeled VOs. The 5 folds were generated by generating stratified
randomized folds considering all available classes, and the overall least
frequent class present in a patient was used as a basis for randomiza-
tion. During our cross-validation experiments, we found that training
for 60 epochs with 2500 batches each while using SGD with Nesterov
Momentum23,41 to update theweights achieved the highest FROC score
on our dataset. Here, the last 10 epochs were used for Stochastic
Weight Averaging to further optimize the final model46. Training was
performed on patches to overcome thememory limitations caused by
the 3D model configuration; patches were set to a size of
192 × 128 × 128 voxels, with a batch size of 8, and were sampled from
the CTA scans while ensuring an equal number of foreground and
background patches per batch.

Since occlusion annotation was depending on the occurrence of
intravascular loss of contrast, multiple annotated occlusions may be
present in a single patient. Frequently this was caused by tandem

occlusions, especially simultaneous occlusion of the internal carotid
artery and the middle cerebral artery47. Nevertheless, coincidental
findings as well as combinations of recent and preexisting vessel
occlusions were also included.

Network training: selectionof the confidence threshold. To provide
an analysis at one specific working point, a cutoff had to be deter-
mined for the continuous confidence scores produced by the net-
work. At the time of testing, one model from each fold was then
ensembled to form a single prediction. Since the models need to
agree on the prediction, the distribution of the confidence scores
between the fivefold cross-validation and the test set are implicitly
different. To account for this shift, we designed an additional
experiment on the training set data.

The training cohort (n = 835) was separated into a mini-training
(n = 418) and mini-evaluation (n = 417) cohort. The mini-evaluation
dataset contained 207 control patients and 210 patients with at least
one vessel occlusion, see Supplementary Fig. 2. This experiment used
the same hyperparameters for training and class balancing procedure
to generate the folds as the primary experiment. After predicting the
mini-evaluation dataset, the cutoff was determined to maximize the
F2 score on the object level. The F2 scorewas previously used by ref. 48

to assess object level performance and was chosen in our experiment
to adjust the tradeoff between sensitivity and precision. The best
F2 score of 0.74 on themini-evaluation setwas reached at a confidence
cutoff of 0.647, see Supplementary Fig. 3.

Prediction details
During testing and fivefold cross-validation, each patient was pre-
dicted via a sliding window scheme with 50% patch overlap. To sup-
press duplicate predictions of the same vessel occlusion, Non-
Maximum Suppression with an Intersection Over Union Threshold of
0.3 was applied and predictions that were close to the center of the
patch received a higherweighting thanpredictions close to the border.
For eachmodel, all predictions with a confidence score above 0.2 were
selected for further ensembling. Weighted Box Clustering (WBC)38

(without restrictions on the area of the predictions) was used to
combine predictions from the different models. Predictions that
exceeded an Intersection over Union of 0.4 were considered clusters
andmerged into a single prediction. All bounding boxeswhich hadany
axis smaller than 7 voxels were removed from the final set of
predictions.

Model inference was performed on a NVIDIA DGX A100 (NVIDIA,
Santa Clara, CA, USA) by using four GPUs with a sliding window
scheme and 50% patch overlap23. Non-maximum suppression was
applied in order to remove duplicate predictions from neighboring
patches, with predictions near the center of a patch weighted with
higher importance thanpredictions close to the borders. The finalfive
models (one from each fold) were ensembled via WBC38. Post-
processing parameters were determined by empirical hyperpara-
meter tuning on the training set as previously described in the
literature23.

CTA phase correlation
To assess possible correlations betweenCTA scanphase and detection
performance, as reported before8, test set scans were classified into
five different groups, ranging fromarterial (early arterial, peak arterial)
and equilibrium to venous phase (peak venous, late venous). Classifi-
cation was performed following a previously published method49.

Hardware. The prediction of the test cases was performed on a DGX
A100 with Ubuntu 20.04.4 LTS. The computer was equipped with two
AMD EPYC 7742 with 64 physical cores each as its CPU and 1-TB of
Random Access Memory (RAM). Four NVIDIA A100 with 40-GB of
Video Random Access Memory (VRAM) were used as the GPUs. The
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preprocessing step to normalize the data is the predominant bottle-
neck when multiple GPUs are used to predict the ANNs.

Distributed Data Parallel from PyTorch was used to predict a
subset of the extracted patches for the sliding window approach on
each GPU. The predictions from each GPU were gathered before the
ensembling step. This approach allows for aflexible number ofGPUs to
be used to predict each patient with little synchronization overhead
between different processes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The imaging data used for the study are protected and are not
available due to data privacy laws. Access can be requested by
sending a request to the corresponding author for academic pur-
poses. The corresponding author will process requests within
3 months and follow-up to the requesting party. Any request will be
pending prior approval and revision by the Heidelberg University
Hospital as owner of the data and the Ethics Committee of the
Medical Faculty of the University of Heidelberg, which retain all
rights to deny access. The de-identified data generated during and/or
analyzed during the current study are provided as source data file;
any further de-identified data are available from the corresponding
author on request. The names of the two commercial software can-
not be disclosed at any given point. Source data are provided with
this paper.

Code availability
The development of the ANN is based on our previously published and
publicly available nnDetection method available via https://github.
com/MIC-DKFZ/nnDetection. All other codes can be requested from
the corresponding author,whichwill process requestswithin 3months
and follow-up to the requesting party. The trained model to generate
the results is deployed on our publicly available website https://stroke.
neuroai-hd.org/ and allows online processing of CT-Angiography data
with the developed ANN.
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