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A deep learning method for replicate-based
analysis of chromosome conformation
contacts using Siamese neural networks

Ediem Al-jibury 1,2 , James W. D. King1, Ya Guo1,3,4, Boris Lenhard 1,5,
Amanda G. Fisher 1, MatthiasMerkenschlager 1,7 & Daniel Rueckert 2,6,7

The organisation of the genome in nuclear space is an important frontier of
biology. Chromosome conformation capturemethods such asHi-C andMicro-
C produce genome-wide chromatin contact maps that provide rich data
containing quantitative and qualitative information about genome archi-
tecture. Most conventional approaches to genome-wide chromosome con-
formation capture data are limited to the analysis of pre-defined features, and
may therefore miss important biological information. One constraint is that
biologically important features can bemasked by high levels of technical noise
in the data. Here we introduce a replicate-based method for deep learning
from chromatin conformation contact maps. Using a Siamese network con-
figuration our approach learns to distinguish technical noise from biological
variation andoutperforms image similaritymetrics across a range of biological
systems. The features extracted from Hi-C maps after perturbation of cohesin
and CTCF reflect the distinct biological functions of cohesin and CTCF in the
formation of domains and boundaries, respectively. The learnt distance
metrics are biologically meaningful, as they mirror the density of cohesin and
CTCF binding. These properties make our method a powerful tool for the
exploration of chromosome conformation capture data, such as Hi-C capture
Hi-C, and Micro-C.

Eukaryotic chromatin is spatially organised within the cell nucleus to
facilitate essential genome functions including transcription, replica-
tion, repair, and chromosome segregation1–6. Mutations that affect
nuclear architecture can lead to disease7–9. Aspects of this organisation
such as the formation of chromosome territories, the separation of
heterochromatin from euchromatin, and the formation of topologi-
cally associating domains (TADs) are highly conserved10, but finer
details such as chromatin loops and the strength of contact domains

can vary in a cell type-specificmanner11. While the precisemechanisms
governing chromatin organisation remain an intense area of study, one
of themainmechanisms for the formation of domains and loops is the
active extrusion of chromatin by the cohesin complex, which is con-
strained by CTCF binding12–15.

Key tools for mapping the organisation of genomes include Hi-C
and Micro-C16,17. Both combine proximity-based ligation and high
throughput sequencing to produce genome-wide chromatin contact
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maps that provide a rich data source containing quantitative and
qualitative information about genome architecture. The analysis of Hi-
C andMicro-C data typically relies on visual inspection combined with
methods that score known features of chromatin conformation maps,
for example insulation score, directionality index, TADs, loops or
stripes1,10,18. This approach is not only laborious but could also result in
features of biological importance being missed. New methods are
required for the analysis of the vast quantities of information con-
tained in genome-wide chromatin conformation capture data.

One approach, well suited to the large levels of data, is to usedeep
learning to find differences in chromatin conformation data19. Here,
the problem becomes identifying subtle differences between a largely
heterogeneous genome and accounting for very high levels of non-
uniform noise present in conformation contact maps. Viewing these
conformation maps as images allows the use of image analysis tech-
niques. Hi-C andMicro-C data contain high levels of noise that are not
present in standard image datasets, and the suitability of naive image
similarity metrics for the analysis of such data is currently under
discussion20,21. To address this issue we have developed and validated

Twins, a deep learning-based analysis method which leverages repli-
cates using a Siamese convolutional neural network22. Unlike standard
image analysis tools, Twins learns to distinguish technical noise (dif-
ferences between replicates) from biological variation (differences
between conditions) using contrastive learning23. We validate the
resulting embedding distance metric as biologically meaningful using
independent chromatin immunoprecipitation data, and demonstrate
the robustness of our method to technical noise associated with Hi-C
normalisation and sequencing depth. Finally, we use the trained Twins
network to extract features which are gained or lost between condi-
tions in Hi-C maps.

Results
Twins learns to distinguish technical from biological variation
We developed a Siamese network metric learning approach from
chromatin conformation data that takes advantage of Hi-C replicates
in order to distinguish technical noise from chromatin conformation
changes between biological conditions (Fig. 1a, b). Identical convolu-
tional neural networks with shared weights are trained to produce an
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Fig. 1 | A replicate-based method for deep learning from chromatin con-
formation contact maps. a Overview of the Twins workflow. b Illustration of the
Siamese network architecture for chromatin conformation maps. c Twins

embedding distance distributions for replicates (blue) and conditions (orange,
mature versus immature thymocytes) for training (chromosomes 1, 3–17, 19) and
validation (chromosome 18). d As in (c) but on test set (chromosome 2).
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embedding for regions taken from Hi-C paired by genomic location.
Initially, we applied this approach to Hi-C data generated from
immature (CD4 CD8 double positive, DP) and mature (CD4 single
positive, SP) T lymphocytes derived from mouse thymus on each of
two replicates per cell type. We split each Hi-C map into overlapping
regions along the diagonal with a stride of 160 kb, measuring 2.56Mb
in size at 10 kb resolution normalised by Knight-Ruiz (KR)24. We paired
the resulting images across the genome. Each pair was labelled either
as a replicate pair (i.e. a pair of images taken from two biological
replicates under the same biological condition) or a condition pair (i.e.
a pair of images taken from two different biological conditions). The
network was then trained using contrastive learning to minimise the
Euclidean distance between replicate pair representations and max-
imise the distance for condition pair representations. An additional
cross embedding loss termwas added at the end of on fully connected
layer as a regularisation term.We omitted chromosomes 2 and 18 from
training in order to maintain independent test and validation sets. We
used performance on chromosome 18 to avoid over-fitting by halting
training when the validation loss began to increase. We find our net-
work learns to separate the variation from the replicate noise (Fig. 1c).
To assess our network performance we used two metrics which judge
the separability of the replicate and condition pair distance distribu-
tions; mean performance and the separation index each vary from 0
(overlapping) to 1 (well separated). We apply these measures on the
remaining and previously unseen test chromosome 2 and find that
embedding distances for different biological conditions are well
separated from replicates with a separation index of 0.7001 and a
mean performance of 0.8513 (Fig. 1d). To demonstrate that these
results are independent of the choice of test chromosome, we trained
new networks each with a different choice of test chromosome omit-
ted from training selected from 1 to 6. We found that the resulting
embedding distances were highly correlated genome wide (Fig. S1).

TheTwins trainingprocedure leads to a relevant distancemetric
We then trained our network independently on two additional data-
sets; hepatocytes under control conditions (tamoxifen control) versus
deletion of the Nipbl cohesin gene (ΔNIPBL)3 and neural progenitor
cells under control conditions compared to CTCF degradation (CTCF
degron)25. In each case the separation index and mean performance
remained high (Fig. 2a). Figure 2 shows the resulting embedding dis-
tances for chromosome 2. Deletion of Nipbl resulted in extensive
separation between biological conditions and replicates across most
of chromosome 2 (Fig. 2b). This was expected, as NIPBL is required for
cohesin loading, and the loss of cohesin from chromosomes abrogates
the formation of contact domains and loops3,15,26. CTCF degradation
also led to extensive changes, but compared to ΔNIPBL these changes
were less uniformly distributed along the length of the chromosome
(Fig. 2c). This is consistent with the reported focal loss of insulation at
domain boundaries in response to CTCF degradation, but the pre-
servation of domains2. Compared to the global loss of NIPBL/cohesin
and CTCF, T cell differentiation was associated with regionally selec-
tive changes in embedding distances, which likely represent
differentiation-associated changes in 3D genome organisa-
tion (Fig. 2d).

To challenge the ability of the network to recognise an erroneous
input, we applied the trained Twins ΔNIPBL metric to a shuffled data
set contained an equal number of reads derived from ΔNIPBL and the
corresponding control Hi-C data20. The scores for the shuffled data
combinations were similar to replicate pairs, and clearly different from
condition pairs (Fig. S4). The ability of the network to dismiss the
shuffled data demonstrates the robustness of the Twins metric.

To test the validity of the Twinsmetric distributions generated for
ΔNIPBL and CTCF degron, we compared the Twins metric to cohesin
and CTCF binding sites as determined by chromatin immunoprecipi-
tation. To quantify whether Twins distances reflect the biological

perturbations anlysed, we separated the genome into regions with
high versus low densty of cohesin and CTCF binding sites as deter-
mined by chromatin immunoprecipitation followed by high through-
put sequencing (ChIP-seq) (Fig. S2). Consistent with the essential role
of NIPBL in the chromosomal loading of cohesin27, genomic regions
with a high density of ChIP-seq peaks for the cohesin subunits RAD21
and SMC3 showed significantly higher Twins distances in ΔNIPBL than
genomic regions with a low density of RAD21 and SMC3 peaks (Fig. 2e,
p = 1.4e − 191 and p = 2.9e − 230)). Genomic regions with a high density
of CTCF ChIP-seq peaks showed significantly higher Twins distances in
CTCF degron than genomic regions with a low density of CTCF peaks
(Fig. 2f, p = 2.3e − 37) whereas regions with a high and low number of
H3K27me3 peaks did not show any significant change in distance dis-
tribution 2f, p >0.05) consistent with previous studies2. Taken toge-
ther, these data demonstrate the validity of the Twins metric.

In the T-cell differentiation system, we observed that regions with
visual changes in chromatin conformation had high embedding dis-
tances, while regions without visible changes in chromatin con-
formation had low embedding distances (Fig. S3a). Quantifiable
changes in Hi-C features such as the gain or loss of contact domains,
altered A/B compartmentalisation, directionality, and insulation
resulted in significantly higher embedding distances (Fig. S3b). To test
the sensitivity of Twins we applied our trained T-cell differentiation
network toHi-Cdata fromDN2 thymocyteswheredeletionof thedistal
Bcl11b enhancer results in localised chromosome conformation
change28. Twins scores across chromosome 12 showed a prominent
peak centred around the location of the deleted Bcl11b enhancer at
108.4Mb (Fig. 2g). This demonstrates that the Twins score provides a
good reflection of visual changes to the Hi-C map and can indeed
identify small-scale differences that result from focal perturbation of
the genome.

Finally, we retrained the hepatocyte ΔNIPBL network to include
additional ΔNCAPH2 Hi-C29. The inclusion of the ΔNCAPH2 did not
affect the overall distributions of the ΔNIPBL data (Fig. 3a). However,
Twins found no clear differences in embedding distances between
ΔNCAPH2 and control hepatocytes either visually along chromosome
2 (Fig. 3b) or quantitatively (Fig. 3c). This was reassuring for two rea-
sons. Firstly, changes in chromosome conformation in response to
Ncaph2 deletion are known to become visible only after the comple-
tion of at least one cell cycle, and hepatocytes are largely quiescent
in vivo29. Secondly, this demonstrates that the use of replicates pre-
vents the network from learning arbitrary differences even with
enforced contrastive loss learning.

Comparison of Twins with naive image similarity metrics
To assess the performance of the Twins metric compared with a naive
metric, we applied five well-established image similarity metrics to Hi-
C data generated from immature DP and mature CD4 SP thymocytes
on each of two replicates per cell type. Two of thesemetrics, SSIM and
PSNR, have recently been used in the analysis of Hi-C data20,21,30. As
described above, KR-normalised Hi-C maps at 10 kb resolution were
split into regions measuring 2.56Mb in size, and the resulting images
were paired by genomic location.

In contrast to Twins, across chromosome 2, replicates and con-
ditions are not well resolved by the five image similarity metrics
(Fig. 4a). This was the case even for regions that undergo visible
reorganisation during the course of thymocyte differentiation. To
illustrate this, we selected two example regions on chromosome2. The
first is a noisy replicate pair without actual differences in chromatin
conformation. The second region contains a contact domain that is
lost during thymocyte differentiation (chr2: 48.5–51Mb).Here, the loss
of a contact domain was associated with the developmentally regu-
lated change in the expression of the Mmadhc gene. The SSIM and
PSNR metrics failed to understand inherent noise in the Hi-C map and
misclassified this noise as high levels of image dissimilarity (Fig. 4b),
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Fig. 2 | Twins delivers meaningful embedding distances for a range of different
biological settings. a Mean performance and separation index for independent
Twins networks on three datasets; T-cell differentiation, ΔNIPBL and CTCF degron.
b Normalised Hi-C maps at 10 kb resolution generated from ΔNIPBL versus control
hepatocytes were split into regions measuring 2.56Mb in size, and the resulting
images were paired by genomic location. Twins embedding distances for condi-
tions (orange) and replicates (blue) are plotted across test chromosome 2. Data are
presented as mean values ± the 95% confidence interval. c As in (b) for neural
progenitor cells under CTCF degron versus control conditions. d As in (b) for
thymocytes atCD4SPversusDP stages of differentiation. eRegions are categorised
by the density of ChIP-seq peaks. For ΔNipbl data, regions are split into high and
low (n = 2063, 13,154, respectively) and Twins scores are calculated for the two sets.

Regions with high levels of RAD21 binding have higher Twins scores by two-sided t-
test (p = 1.4e − 191). For Smc3 binding, regions are split into high and low
(n = 1813, 13,404, respectively). Regions with high levels of Smc3 binding have
higher Twins scores by two-sided t-test (p = 2.9e − 230). f For theCTCFdegron data,
regions are split into those with high and low CTCF binding (n = 4192, 10,043,
respectively) and those with high and low H3K27me3 binding (n = 1312, 12,923,
respectively). Regions with high levels of CTCF binding had significantly higher
Twins scores by t-test (p = 2.3e − 37). but regions with high levels of H3K27me3
binding did not have significantly different Twins scores by t-test (p =0.053). g The
results of the T-cell network applied to an enhancer deletion in DN2 thymocytes.
The Twins network is able to identify the region containing the enhancer deletion
as having a differential chromatin conformation.
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while the MSE, Hausdorff and NMI metrics were unable to score dif-
ferences between Hi-C regions of DP and CD4 SP thymocytes (Fig. 4b).
We calculated the separation index and mean performance between
the distance distributions for replicate pairs and condition pairs for
each the five standard image similarity metrics and the learnt Twins
metric in thymocyte differentiation, CTCF degron, and ΔNIPBL. The
learnt Twins metrics was far more capable of distinguishing technical
noise from biological differences than the five established image
similarity metrics in each of the systems (Fig. 4c).

Twins is robust to Hi-C normalisation methods
To address the impact of Hi-C normalisation approaches we applied
four of the most widely used normalisation method: Knights-Ruiz
(KR)24, Vanilla coverage (VC), square root of vanilla coverage (VC
SQRT)1 and iterative correction (ICE)31 to Hi-C data for thymocytes at
CD4 SP versus DP stages of differentiation. For each normalisation we
trained a Twins network and then produced distances for each geno-
mic location along the test chromosome. Across chromosome 2, the
distance distribution was visually highly similar regardless of the nor-
malisation (Fig. 5a). We also found a high correlation coefficient for all
normalisations used (p < 2e − 308, Fig. 5b), indicating that the method
applied for the normalisation of Hi-C data does not impact Twins
performance.

Twins has a data set-dependent optimal operating resolution
Next, we looked at the effect of the chosen Hi-C resolution on the
separability of embedding distributions for conditions and repli-
cates. In this case, for each resolution R = 2, 5, 10 and 25 kb the
genome was split into overlapping windows of size 256R. For mouse
thymocyte differentiation data at an average sequencing depth of
234M contacts, we found that the condition and replicate distribu-
tions were optimally separated at a resolution of 10–25 kb (Fig. 5c).
We hypothesised that this is a product of the sequencing depth of the
data. To test this, we applied Twins to a Micro-C dataset comparing
human H1 and HFF cell-lines in human32 at 365.46M contacts
(Fig. S5). Twins performed noticeably better on Micro-C than Hi-C
data. There are several possible reasons for this. Micro-C has higher
resolution, and therefore contains many more fine-scaled contacts.
The increased resolution of Micro-C also enables near-optimal per-
formance of the Twins network across a range of window sizes and
resolutions (Fig. 5d). In addition, human embryonic stem cells (H1)

and fibroblasts (HFF) are distantly related cell types, and therefore
show many biological differences.

Twins can be trained to be robust against artefacts resulting
from discrepancies in sequencing depth
Differences in sequencing depth are a potential source of noise in the
analysis of Hi-C data. To understand how differences in sequencing
depth affect the training of a Twins network we employed two addi-
tional Hi-C replicates for DP thymocytes that we sequenced to twice
the depth of the replicates we used for the analysis of DP and CD4 SP
differentiation shown above. For simplicity, we call theseDP replicates
high-depth R3 and R4. We then trained a network specifically to learn
the comparison between high-depth and low-depth Hi-C data with the
unequal Hi-C resolutions as ’conditions’ (Fig. 6a). This network was
able to train efficiently, and both components of the loss decreased
significantly over the course of training (Fig. 6b). The network learnt
differences in Hi-C data related to sequencing depth and was able to
separate DP replicates with high and low sequencing depth (Fig. 6c, d).
This demonstrates that it is possible for the Twins network to learn
sequencing depth-related characteristics of Hi-C data if differences in
sequencing depth occur across conditions.

We compared these results with the output of our earlier T-cell
differentiation network that had been trained on evenly matched
replicates of fromCD4SP andDP cells. This networkdid not regard the
two different DP resolutions (Fig. S6a). In comparison to our well-
trained T-cell differentiation network, the sequencing depth network
has more noisy integrated gradient maps (Fig. S6b, c). This is an indi-
cator that the network has learnt an artefact relating to sequencing
depth. This is because discrepancies in sequencing depth can change
both the sparsity and the fine-scaled features observed in chromatin
contact maps33.

Finally, we trained a control network on one high-depth and low-
depth replicate, and asked to compare these replicates to a secondpair
of high-depth and low-depth replicates (Fig. 6e). In this case, the
training loss was unstable and did not meaningfully decrease (Fig. 6f),
indicating that the network was unable to distinguish between the two
replicate groupings. The resulting network did not have a meaningful
separation between distance distributions of different sequencing
depths (Fig. 6g, h). This demonstrates a robustness to sequencing
depth-related artefacts. This analysis indicates that learning sequen-
cing depth-related artefacts is avoidable, provided that differences in
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sequencing depth are mirrored between replicates and conditions.
Where mirrored data is unavailable it may be possible to minimise the
effects ofdisparities in sequencingdepthby sub-sampling the contacts
from the chromatin conformation maps.

Twins networks reveal differential Hi-C features that reflect the
nature of the underlying perturbations
Based on the ability of the Twins network to distinguish meaningful
differences in Hi-C from technical noise, we applied the Twins learnt
convolution filters to the extraction of differential features from
chromatin conformation maps. Figure 7 shows how differential fea-
ture detection can be conducted using the Twins network. We
applied the convolutional layers of the trained Twins network and
amalgamated the results across the genome to generate the ‘Twins
features’ map. We then apply a threshold to this map and use a
convex hull operation on the isolated features. We find that visually
this gives a good approximation of the differential features visible in
the Hi-C maps (Fig. 7).

To understand how different features may arise from different
perturbations we applied our feature detection method to

hepatocytes comparing ΔNIPBL and tamoxifen control and also to
CTCF degradation in the neural progenitor cells. For each dataset we
took the isolated features, re-scaled them and, then applied a k-means
clustering (k = 10) to the resulting images. We then grouped the
resulting clusters manually into three broad categories; ‘Domain-like’
features resembling contact domains, ‘Asymmetric domain-like’ fea-
tures which resemble part of a contact domain and ‘Stripes’ (Fig. 8a).
We find that consistentwith the role of NIPBL in loop extrusion, almost
all features are lost in the ΔNIPBL, whereas some features are lost and
others gained following CTCF degradation. Interestingly, stripes can
be gained following degradation of CTCF, and could suggest the pre-
sence of other barriers to loop extrusion34. Strikingly, after loss of
NIPBL most of the features affected are ‘domain-like’ in comparison
after degradation of CTCF most are asymmetric domains or stripes,
reflecting the distinct functions of cohesin and CTCF in genome
organisation.

Discussion
Current algorithms for the analysis of chromatin conformation cap-
ture excel in the quantification of specific features, but limited in their
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ability to discover novel or unexpected features. This may lead to
important features of chromatin conformation capture being over-
looked. For example, chromatin jets have only recently been identified
as Hi-C features and, once discovered, have helped to elucidate
properties of cohesin-driven loop extrusion35,36. Advanced algorithms
are therefore required to process and quantify chromatin conforma-
tion capture data in a feature-agnostic manner.

A major challenge in the analysis of chromatin conformation
capture data is the presence of significant levels of non-uniform
noise, which can arise for example from variations in base compo-
sition and the non-uniform distribution of restriction sites across the
genome. The use of replicates to estimate and control the impact of
noise is well established for the analysis of genomics data37–39.
Although feature-agnostic analysis methods for chromatin con-
formation maps exist30, these rely on naive image similarity metrics,
andmay be less able to effectively differentiate biological differences
from technical noise than a replicate-based approach. Here, we
introduce the use of Hi-C replicates for contrastive loss learning in an
approach we have termed Twins. Using this approach we demon-
strate that the use of replicate-based machine learning can produce
informative results on chromatin conformation capture data. We
show that replicate-based training can produce meaningful embed-
ding distances in multiple biological contexts including the identifi-
cation of subtle differences during T-cell development. Further, we
find that using the replicates is sufficient to protect against false or
exaggerated differences which could appear due to enforced train-
ing. In contrast to naive image similarity metrics, some of which have
been applied to Hi-C analysis in the past30, replicate-based training
enables Twins to ignore noise and focus on differences between

biological conditions. We tested the effects of Hi-C normalisation
and sequencing depth. trained on datasets of different sequencing
depth, Twins can learn sequencing depth artefacts. However, if dif-
ferences in sequencing depth are mirrored between conditions, the
use of replicates protects from learning sequencing depth artefacts.
One limitation of the image-based Twins approach is that it can not
assess very long-range intrachromosomal or interchromosomal
interactions.

Finally, wedemonstrate that Twins canbe used for reliable feature
detection, and that the learnt convolutional filters are sufficient to
reveal distinct features arising from perturbation of the genome
organisers cohesin and CTCF. We envisage numerous other applica-
tions for Twins in the field of chromatin conformation, including the
analysis of normal versus disease states in development, homeostasis,
and regeneration. It is therefore important that Twins is fully compa-
tible with the analysis of Micro-C as well as Hi-C. In conclusion, the
Twins algorithm is able to produce two key meaningful outputs. The
embedding distance indicates differences between conditions for
chromosomal positions genome-wide and can be correlated and
compared with chromatin features of interest. The extracted differ-
ential features indicate the direction of change, as well as the shape
and size of features. They will serve as a useful guide for choosing
suitable tools for downstream quantification of chromosome con-
formation contact maps.

One major outcome of this work is the processing of chromatin
conformation data into a format which can be applied to other
machine learning architectures to build on the approach. Leveraging
of replicates by contrastive loss training could be combined with new
approaches such as fully convolutional networks40 that are emerging
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from the field of change detection to transform the analysis of chro-
matin conformation data.

Methods
Statistics and reproducibility
No data were excluded from the analyses.

Data sources and processing
ChIPseq. Peaks from ChIPseq data were downloaded directly from
the files readily available at the given sources (Table 1). For the
CTCF peaks, motif orientation was detected using fimo41 using the
MA0139.1 motif. Approximately 81% of peaks contained a motif
at p < 1e − 5.
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Hi-C and Micro-C. Where possible datasets were downloaded from
publicly available files (Table 2). For all the other datasets we process
the raw sequencing files using the distiller nextflow pipeline (v0.3.3) to
produce .mcool files, respectively, for each experimental replicate.
Raw sequencing files were downloaded using sratoolkit (v2.10.7) in
fastq format, were alignedwithmax_mismatch_bp = 3 and then filtered
by mapq ≥30. Unless explicitly stated we normalise each interaction
map by either KR (if .hic) and ICE (if .mcool).

Compartment eigenvector values were determined at 100 kb
resolution using42 (v0.8.10), A andB compartmentswere then assigned
by using the GC-content. Hi-C contact domains were called using
Arrowhead with default parameters at 5 kb and 10 kb resolution with
conflicts between the 10 Kb and 5 kb resolved by keeping the smaller
contact domain as described in previous studies1,43.

Twins algorithm
Twins data processing. The Twin processing pipeline relies on
Straw43 (v0.0.8) and Cooler42 (v0.8.10) modules in python in order
to extract normalised windows from the interaction maps in .hic
and .cool formats.Windowof resolution R and of size S = 256 × R are
extracted from the interaction maps with a stride indicating the
level of overlap between windows. Unless explicitly stated other-
wise R = 10 kb and S = 2.56Mb and the stride was 160 kb. To main-
tain the number of training points when the resolution/size are
varied in Fig. 5, the stride is also adjusted. The parameters are
available in Table S1.

We tested the effects of varying the stride. The stride impacts
number of data points used at training which has three key con-
sequences. The first consequence is that there is a higher potential for
the network to over-fit on the train data. The second is that train time
will be longer. Finally, thefile size, as the stride becomes smaller thefile
size becomes larger and with multiple networks to train in a size lim-
ited environment this constraint can be a significant for most users
(see Table S2).

For each window, any nan values are set to 0 and it is re-
normalised by dividing by themaximum value in the window, this is to
avoid underflow errors. Some windows are filtered out due to a high
number of nan or 0 values, for this paper we filter any window where
the number of nan values is more than the number of nonzero values
and where the number positions containing with no information (i.e.
all 0 values) exceeds 10%of thewindow.We found that this criteriawas
necessary to avoid training on empty data points which can lead to
dead neurons in the siamese network.

These data are formatted into pytorch Datasets44 (torch v1.6.0)
and saved in separate files for each replicate/condition and for test
(chromosome 2), validation (chromosome 18) and training (all
other chromosomes). Before training they are paired by genomic
location with label 0 if the pair of windows is from the same condi-
tion group and label 1 if the pair of windows is from different con-
dition groups.

To fulfil the criteria of mirrored sequencing depths, our datasets
are selected such that the span of the sequencing depths overlap for
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example given two replicates of sequencing depths x1 and x2 a network
may be trained with a conditions containing two replicates of
sequencing depth y1 and y2 and the intervals [x1, x2], [y1, y2] overlap (see
Table S3).

Network parameters. We used a classical Siamese network with var-
ious adaptions. Firstly, owing to the large levels of irrelevant infor-
mation/noise emitting from the diagonal of the interactions maps, we
mask the diagonal. In our network we choose to remove the 3 pixels
along the diagonal which is usually 30 kb (3 ×R). After thismasking we
use the standard LeNet45 parameters however we replace the ReLU
layers with Gaussian Error Linear Units (GeLU) layers46. This is because
interaction maps are sparse and dead ReLU layers often become a
problem.

In order to find the best learning rate we trained on networks with
learning rate∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05} and random
seed∈ {30008, 72689, 50662, 60265, 30004}. We find that the learn-
ing rate has little impact on the performance sowefix the learning rate
at 0.01. Final networks for all the analysis are published on GitHub.

Twins training. We train the twins network using the standard con-
trastive loss on the Euclidean distance of the embeddings (L1) and add
a cross embedding loss term which sits after a fully connected layer
that takes the difference in the embeddings (L2). This is used as a
regularisation term and training with or without this term leads to
highly correlated distances p < 2.2e − 308. We weight these such that
the total loss = 2L1 + L2.

In order to ensure stable training and account for the high levels
of variability in the genome we use a batch size of 128 and to prevent
over-fitting the network is forced to train for 5 epochs after which
training is halted when the validation contrastive loss increases by
more than 10%.

Twins testing. To test the network performance we use the Euclidean
embedding distance as our learnt metric. To calculate a measure of
mean performance we use the train and validation distance distribu-
tions to create a threshold for classification into replicate/condition
pairs and count the rate of correct classification for replicates (repli-
cate rate) and conditions (condition rate). The threshold is calculated
using point where the replicate and condition distributions overlap.
The mean performance is then the average of the replicate and con-
dition rates. This is to take into account the in-balance between the
replicate and condition distributions.

Another measure of network performance is given by separation
index, this is derived from the 1 - integral of the overlap between the
replicate and condition probability density distributions. This gives a
metric for performance which is 1 if the replicate and condition dis-
tributions do not overlap and 0 if there is a complete overlap between
the distributions.

Finally, we use the integrated gradients on individual window
pairs to understand where the network places importance. To do this
we deep copy the network weights into a standard CNN and then use
the IntegratedGradients function from the captum package47 to com-
pare the windows.

Table 1 | Information on ChIPseq peaks and their availability

Dataset Organism Conditions Protein No. peaks Availability

NPCs Mouse Untreated control NPCS (day 4) CTCF 29782 25(Supplementary Table 2)

Liver cells Mouse Tamoxifen control Rad21 44306 GSM2740561

Smc3 61195 GSM2740563
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Feature extraction. To extract features from our chromatin con-
formationmapswe feedourwindows through the convolutional layers
of the network.We feed each of ourwindows each individually into the
convolutional layers and then subtract the output and amalgamate
across the genome taking the mean values across locations and filters.
We then take the mean across all replicate groupings and the mean
across all condition groups to produce one replicate and one
condition map.

We calculate the threshold by taking the 0.95th percentile of
values obtained by the application of the same method on the
replicate map. We label features48 and remove any which are
smaller than 50 kb in both dimensions or greater than 2.56Mb in
size. We then apply a convex hull to our extracted features. These
are re-scaled and fed as matrices into a kmeans algorithm with
k = 10. Since the orientations are not separated, stripes pointing
up or down stream are grouped into two separate clusters,
similarly asymmetric contact domains are grouped according to
orientations and there are several clusters which correspond to
domain-like events. These clusters are grouped together by
manual inspection to form the three groups discussed in Fig. 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new data were generated as part of this study, information on data
sources is available in the materials and methods. Processed data com-
patible with our code base and fully trained networks have been
deposited in theGEOdatabase under accession codeGSE233377. Source
data are provided with this paper.

Code availability
All original code is publicly available as of the date of publication and
has been version controlled on Zenodo anddeposited on github49. Any
additional codeor information required to reanalyze the data reported
in this publication is available from the lead contact upon request.

References
1. Rao, S. et al. A 3Dmap of the human genome at kilobase resolution

reveals principles of chromatin looping. Cell. 159,
1665–1680 (2014).

2. Nora, E. et al. Targeted degradation of CTCF decouples local
insulation of chromosome domains from genomic compartmenta-
lization. Cell. 169, 930–944.e22 (2017).

3. Schwarzer, W. et al. Two independent modes of chromatin
organization revealed by cohesin removal. Nature 551,
51–56 (2017).

4. Dekker, J. &Mirny, L. The 3Dgenomeasmoderator of chromosomal
communication. Cell 164, 1110–1121 (2016).

5. Merkenschlager,M. &Nora, E. CTCF and cohesin in genome folding
and transcriptional gene regulation. Annu. Rev. Genomics Hum.
Genet. 17, 17–43 (2016).

6. Mirny, L., Imakaev, M. & Abdennur, N. Two major mechanisms
of chromosome organization. Curr. Opin. Cell Biol. 58,
142–152 (2019).

7. Goldman, R. et al. Accumulation of mutant lamin A causes pro-
gressive changes in nuclear architecture in Hutchinson-Gilford
progeria syndrome. Proc. Natl Acad. Sci. USA 101,
8963–8968 (2004).

8. Lupiáñez, D. et al. Disruptions of topological chromatin domains
cause pathogenic rewiring of gene-enhancer interactions. Cell 161,
1012–1025 (2015).

9. Spielmann,M., Lupiáñez, D. &Mundlos, S. Structural variation in the
3D genome. Nat. Rev. Genet. 19, 453–467 (2018).Ta

b
le

2
|I
n
fo
rm

at
io
n
o
n
H
i-C

an
d
M
ic
ro
-C

d
at
a
av

ai
la
b
ili
ty

an
d
p
re
-p
ro
ce

ss
in
g
p
ip
el
in
es

D
at
as

et
O
rg

an
is
m

C
o
n
d
it
io
n
s
&
re
p
lic

at
es

u
se

d
R
ef
er
en

ce
g
en

o
m
e

P
ro
ce

ss
in
g
p
ip
el
in
e

H
i-
C

ty
p
e

A
va

ila
b
ili
ty

T-
ce

lls
M
ou

se
C
D
4
S
P:

R
1,
R
2
C
D
6
9
ne

g
D
P:

R
1,
R
2

m
m
9

H
iC
-P
ro

.h
ic

G
S
E2

22
21
1G

S
E1
9
9
0
59

H
ig
h
re
s
T-
ce

lls
M
ou

se
C
D
6
9
ne

g
D
P:

R
3
,R

4
m
m
9

H
iC
-P
ro

.h
ic

G
S
E1
9
9
0
59

N
PC

s
M
ou

se
au

xi
n:

R
1,
R
2
co

nt
ro
l:
R
1,
R
2

m
m
10

.h
ic

G
S
E9

4
4
52

Li
ve

r
ce

lls
M
ou

se
Δ
N
IP
B
L:

R
1,
R
2
ta
m
ox

ife
n:

R
1,
R
2
Δ
N
A
C
PH

2:
R
1,
R
2

m
m
9

D
is
til
le
r

.m
co

ol
G
S
E9

34
31
G
S
E1
22

15
7

M
ic
ro
-C

H
um

an
H
1:
R
1,
R
2
H
FF

:R
1,
R
3

h
g
38

D
is
til
le
r

.m
co

ol
4
D
N
ES

W
S
T3

U
B
H
4
D
N
ES

21
D
8
S
P8

4
D
N
ES

2R
6
PU

EK
4
D
N
ES

R
J8
K
V
4
Q

Article https://doi.org/10.1038/s41467-023-40547-9

Nature Communications |         (2023) 14:5007 11

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE233377
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE222211
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199059
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199059
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94452
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93431
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122157
https://data.4dnucleome.org/experiment-set-replicates/4DNESWST3UBH/
https://data.4dnucleome.org/experiment-set-replicates/4DNES21D8SP8
https://data.4dnucleome.org/experiment-set-replicates/4DNES2R6PUEK/
https://data.4dnucleome.org/experiment-set-replicates/4DNESRJ8KV4Q/


10. Dixon, J. et al. Topological domains in mammalian genomes iden-
tified by analysis of chromatin interactions. Nature 485,
376–380 (2012).

11. Winick-Ng, W. et al. Cell-type specialization is encoded by specific
chromatin topologies. Nature 599, 684–691 (2021).

12. Fudenberg, G. et al. Formation of chromosomal domains by loop
extrusion. Cell Rep. 15, 2038–2049 (2016).

13. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome
topology and enhancer/promoter function. Cell 162,
900–910 (2015).

14. Wit, E. et al. CTCF binding polarity determines chromatin looping.
Mol. Cell 60, 676–684 (2015).

15. Rao, S. et al. Cohesin loss eliminates all loopdomains.Cell 171, 305-
320.e24 (2017).

16. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range
interactions reveals folding principles of the human genome. Sci-
ence 326, 289–293 (2009).

17. Hsieh, T. et al. Mapping nucleosome resolution chromosome fold-
ing in yeast by Micro-C. Cell 162, 108–119 (2015).

18. Crane, E. et al. Condensin-driven remodelling of X chromosome
topology during dosage compensation. Nature 523,
240–244 (2015).

19. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

20. Lee, H., Blumberg, B., Lawrence, M. & Shioda, T. Revisiting the use
of structural similarity index in Hi-C. Preprint at bioRxiv https://doi.
org/10.1101/2021.09.23.459925 (2021).

21. Ing-Simmons, E., Machnik, N. & Vaquerizas, J. SSIM can robustly
identify changes in 3D genome conformation maps. Preprint at
bioRxiv https://doi.org/10.1101/2021.10.18.464422 (2021).

22. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E. & Shah, R. Signature
verification using a “Siamese" time delay neural network. in Pro-
ceedings of the 6th International Conference on Neural Information
Processing Systems 737–744 (1993).

23. Chopra, S., Hadsell, R. & LeCun, Y. Learning a similarity metric
discriminatively, with application to face verification. in 2005 IEEE
Computer Society Conference On Computer Vision And Pattern
Recognition (CVPR’05) Vol. 1, 539–546 (2005).

24. Knight, P. & Ruiz, D. A fast algorithm for matrix balancing. IMA J.
Numer. Anal. 33, 1029–1047 (2013).

25. Kubo, N. et al. Promoter-proximal CTCF binding promotes distal
enhancer-dependent gene activation. Nat. Struct. Mol. Biol. 28,
152–161 (2021).

26. Wutz, G. et al. Topologically associating domains and chromatin
loops depend on cohesin and are regulated by CTCF, WAPL, and
PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

27. Nasmyth, K. &Haering, C. Cohesin: its roles andmechanisms.Annu.
Rev. Genet. 43, 525–558 (2009).

28. Isoda, T. et al. Non-coding transcription instructs chromatin folding
and compartmentalization to dictate enhancer-promoter commu-
nication and T cell fate. Cell 171, 103-119.e18 (2017).

29. Abdennur, N. et al. Condensin II inactivation in interphase does not
affect chromatin folding or gene expression. Preprint at bioRxiv
https://doi.org/10.1101/437459 (2018).

30. Galan, S. et al. CHESS enables quantitative comparison of chro-
matin contact data and automatic feature extraction. Nat. Genet.
52, 1247–1255 (2020).

31. Imakaev, M. et al. Iterative correction of Hi-C data reveals
hallmarks of chromosome organization. Nat. Methods 9,
999–1003 (2012).

32. Krietenstein, N. et al. Ultrastructural details of mammalian chro-
mosome architecture. Mol. Cell 78, 554–565.e7 (2020).

33. Akgol Oksuz, B. et al. Systematic evaluation of chromosome con-
formation capture assays. Nat. Methods 18, 1046–1055 (2021).

34. Dequeker, B. et al. MCM complexes are barriers that restrict
cohesin-mediated loop extrusion. Nature 606, 197–203 (2022).

35. Guo, Y. et al. Chromatin jets define the properties of cohesin-driven
in vivo loop extrusion. Mol. Cell 82, 3769–3780.e5 (2022).

36. Drayton, J. & Hansen, A. Right on target: chromatin jets arise from
targeted cohesin loading in wild-type cells. Mol. Cell 82,
3755–3757 (2022).

37. Lun, A. & Smyth, G. diffHic: a Bioconductor package to detect dif-
ferential genomic interactions in Hi-C data. BMC Bioinform. 16,
258 (2015).

38. Gilgenast, T. & Phillips-Cremins, J. Systematic evaluation of statis-
tical methods for identifying looping interactions in 5C data. Cell
Syst. 8, 197–211.e13 (2019).

39. Fernandez, L., Gilgenast, T. & Phillips-Cremins, J. 3DeFDR: statistical
methods for identifying cell type-specific looping interactions in 5C
and Hi-C data. Genome Biol. 21, 219 (2020).

40. Zhang, B. et al. Unsupervised wildfire change detection based on
contrastive learning. Preprint at https://arxiv.org/abs/2211.
14654 (2022).

41. Grant, C., Bailey, T. &Noble,W. FIMO: scanning for occurrences of a
given motif. Bioinformatics 27, 1017–1018 (2011).

42. Abdennur, N. & Mirny, L. Cooler: scalable storage for Hi-C data and
other genomically labeled arrays. Bioinformatics 36,
311–316 (2020).

43. Durand, N. et al. Juicebox provides a visualization system for
Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101
(2016).

44. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. in Advances In Neural Information Processing
Systems 32 (2019).

45. LeCun, Y. et al. Backpropagation applied to handwritten zip code
recognition. Neural Comput. 1, 541–551 (1989). Conference Name:
Neural Computation.

46. Hendrycks, D. & Gimpel, K. Gaussian error linear units (GELUs).
Preprint at arXiv https://doi.org/10.48550/arXiv.1606.
08415 (2020).

47. Kokhlikyan, N. et al. Captum: a unified and generic model inter-
pretability library for PyTorch. Preprint at arXiv https://doi.org/10.
48550/arXiv.2009.07896 (2009).

48. Weaver, J. Centrosymmetric (cross-symmetric)matrices, their basic
properties, eigenvalues, and eigenvectors.Amer.Math.Monthly92,
711–717 (1985).

49. Al-jibury, E. ea409/twins_hic: Publication Release (V1.0). Zenodo.
https://doi.org/10.5281/zenodo.8112129 (2023).

Acknowledgements
This work was supported by the Medical Research Council UK, The
Wellcome Trust (Investigator Award 099276/Z/12/Z to M.M.), EMBO
(ALTF 620-2016 to Y.G.), a UK Government Industrial Strategy
Rutherford Fund Fellowship (Y.G.), a UK National Productivity
Investment Fund PhD studentship in Data Science or Artificial
Intelligence (E.A.-J.), and the Shanghai Science and Technology
Commission (20PJ1405500/21DZ2210200 to Y.G.), and ERC grant
Deep4MI (884622 to D.R.).

Author contributions
E.A.-J., Y.G., J.W.D.K., B.L., A.G.F., M.M. and D.R. conceptualised the
study, E.A.-J., J.W.D.K. and M.M. analysed and visualised data, E.A.-J.,
M.M. and D.R. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-023-40547-9

Nature Communications |         (2023) 14:5007 12

https://doi.org/10.1101/2021.09.23.459925
https://doi.org/10.1101/2021.09.23.459925
https://doi.org/10.1101/2021.10.18.464422
https://doi.org/10.1101/437459
https://arxiv.org/abs/2211.14654
https://arxiv.org/abs/2211.14654
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.2009.07896
https://doi.org/10.48550/arXiv.2009.07896
https://doi.org/10.5281/zenodo.8112129


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-40547-9.

Correspondence and requests for materials should be addressed to
Ediem Al-jibury, Matthias Merkenschlager or Daniel Rueckert.

Peer review information Nature Communications thanks Guoqiang Li,
Yuannyu Zhang and the other, anonymous, reviewer(s) for their con-
tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-40547-9

Nature Communications |         (2023) 14:5007 13

https://doi.org/10.1038/s41467-023-40547-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A deep learning method for replicate-based analysis of chromosome conformation contacts�using Siamese neural networks
	Results
	Twins learns to distinguish technical from biological variation
	The Twins training procedure leads to a relevant distance metric
	Comparison of Twins with naive image similarity metrics
	Twins is robust to Hi-C normalisation methods
	Twins has a data set-dependent optimal operating resolution
	Twins can be trained to be robust against artefacts resulting from discrepancies in sequencing depth
	Twins networks reveal differential Hi-C features that reflect the nature of the underlying perturbations

	Discussion
	Methods
	Statistics and reproducibility
	Data sources and processing
	ChIPseq
	Hi-C and Micro-C
	Twins algorithm
	Twins data processing
	Network parameters
	Twins training
	Twins testing
	Feature extraction
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




