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iCLOTS: open-source, artificial intelligence-
enabled software for analyses of blood cells
in microfluidic and microscopy-based assays
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JoséM.Valdez7, Sally S. Azer1,2,5, RobertG.Mannino1,2,3,4,5, HyoannChoi 1,2,3,4,5,
Dan Y. Zhang 4,8, Evelyn K. Williams1,2,3,4,5, Erica N. Evans2, Celeste K. Kanne2,
Melissa L. Kemp 1,3,4, Vivien A. Sheehan2, Marcus A. Carden9,
Carolyn M. Bennett2, David K. Wood 7 & Wilbur A. Lam 1,2,3,4,5

While microscopy-based cellular assays, including microfluidics, have sig-
nificantly advanced over the last several decades, there has not been con-
current development of widely-accessible techniques to analyze time-
dependent microscopy data incorporating phenomena such as fluid flow and
dynamic cell adhesion. As such, experimentalists typically rely on error-prone
and time-consuming manual analysis, resulting in lost resolution and missed
opportunities for innovative metrics. We present a user-adaptable toolkit
packaged into the open-source, standalone Interactive Cellular assay Labeled
Observation and Tracking Software (iCLOTS). We benchmark cell adhesion,
single-cell tracking, velocity profile, and multiscale microfluidic-centric appli-
cations with blood samples, the prototypical biofluid specimen. Moreover,
machine learning algorithms characterize previously imperceptible data
groupings fromnumerical outputs. Free to download/use, iCLOTS addresses a
need for a field stymied by a lack of analytical tools for innovative,
physiologically-relevant assays of any design, democratizing use of well-
validated algorithms for all end-user biomedical researchers who would ben-
efit from advanced computational methods.

In the past several decades, microfluidics, devices designed to apply
fluidflow tomicroscale channels, have increased inuse and complexity
for wide-ranging applications including lab-on-a-chip assays and clin-
ical diagnostics1–4. These devices coupled with optical microscopy

provide ameans to answer someof biomedical science’smost pressing
questions, however, the success of these data-rich experiments hinges
on detailed analysis and sophisticated interpretation. While excellent
image analysis software exists (e.g., ImageJ5, CellProfiler6,7, Icy8, and
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Ilastik9), they are not readily compatible with time-course experiments
involving flow. Solutions specialized for microfluidics are typically
limited to a specific device design, are proprietary or dependent on
other software, and/or rely heavily on coding/scripting10–13. To our
knowledge, no easy-to-use, adaptable analytical techniques for meth-
ods incorporating fluid flow, dynamic adhesion, and/or commercially-
available or novelmicrofluidics have beenmadewidely available to the
greater research community. Therefore, researchers often rely on
manual analyses, which are tedious, error-prone, and potentially
biased, shortcomings that affect reproducibility. This lack of viable
image analysis tools results in underutilized data or lost resolution,
preventing researchers from fully realizing the potential of their
experiments.

Computational methods capable of processing/interpreting large
amounts of imaging data efficiently represent a solution. Open-source
computer vision, machine learning, and data science libraries (e.g.,
Trackpy10, OpenCV14, Scikit-image15, Scikit-learn16, Numpy17, Pandas18,
Matplotlib19, and seaborn20) implement well-validated, peer-reviewed
algorithms21–24. However, application requires a level of computational
expertise impractical for most researchers. To meet the clear need for
microfluidic-centric automated analytical tools, we present iCLOTS, a
free and open-source software that adapts these algorithms for spe-
cific use with cellular microscopy data, microfluidics, and in vitro
assays thereof.

iCLOTS comprises four classes of applications to address the
analytical needs of a range of commonly-used microscopy-based
assays, with a focus on emerging microfluidic technologies: (1) adhe-
sion assays provide information about morphology and function of
cells on biologically-relevant surfacess25–27; (2) single-cell tracking
assays provide high-throughput measurements of cell dynamics that
correlate with cellular phenotype and patho/physiology28,29, (3) cell
suspension fluid flow assays generate velocity profiles from videomi-
croscopy of transit through channels, which indicate changes in
rheology in health and disease30–32; and (4) cell accumulation/occlu-
sion assays in microfluidic systems model important pathologic pro-
cesses such as atherosclerosis, thrombosis, or particle deposition33–35.
Each image processing application produces single cell- or feature-
resolution data describing cell characteristics (e.g., size, fluorescence
intensity) and/ormovement (e.g., velocity) as observed in any static or
microfluidic device design, independent of channel number, size, or
dimension. iCLOTS also includes machine learning (ML), a subset of
artificial intelligence, clustering algorithms to assist researchers in
mathematically characterizing natural groupings, e.g., healthy/clinical
sample dichotomies or single-sample subpopulations, within poten-
tially large datasets. Here, we present each application as applied to
blood cells, the prototypical biofluid/biospecimen, which are subject
to unique requirements and constraints including heterogenous cell
types, high cell densities, frequent integration of fluid flow, and
increased viscosity. Indeed, enabled by iCLOTS’ ease of use and effi-
cient analytical capabilities, we report observations that not only
improve our fundamental understanding of inherited bleeding dis-
orders, sickle cell disease (SCD), and sepsis but also have clear clinical
relevance aswell. In addition, benchmarking our software using blood,
with its inherent complexities as a biosample, indicates that our pre-
sented tools can be applied to similar experiments using almost every
other cell type(s), which in general will be simpler biospecimens and
easier to manipulate.

To connect researchers and clinical laboratories that desire the
use of newer,more physiologically-relevant assays with computational
algorithms that maximize experimental impact, we offer iCLOTS with
accessibility and collaboration in mind: iCLOTS is free, is open-source
such that all methods are available for inspection or modification by
interested users, and is standalone such that users without computa-
tional experience fully benefit from all software functionality36.

Software, extensive documentation, and opportunities for all users to
contribute are available at https://www.iCLOTS.org/.

Results
Standalone software is designed to balance ease-of-use with
maximum functionality
We developed iCLOTS to adapt to assays ranging from standard
microscope slide experiments to commercially available flow cham-
bers to novel microfluidic devices (Fig. 1a). Designed as a standalone
post-processing software, users can interpret previously-collected
data with new resolution or may collect new microscopy data with
iCLOTS capabilities inmind (Fig. 1b). Themainmenu directs users into
four main categories of experimental applications (cell adhesion, sin-
gle cell tracking, velocity profile, and multiscale microfluidic accu-
mulation), an ML interpretation application, and a suite of video
preprocessing tools (Fig. 1c). Users interactively adjust parameter
values, numerical factors that define how image processing algorithms
should be applied, then run the prescribed analysis to produce
detailed numerical and graphical data that may be saved for future
reference. Tabular numerical data produced by image processing
applications can be directly imported back into the software as inputs
to ML clustering algorithms (Fig. 1d).

Each application is designed with a similar layout and requires no
coding expertise to implement (Fig. 2a; Supplementary Fig. 1, Sup-
plementary movie 1). Detailed help documentation including infor-
mation on inputs, parameters, outputs, and best practices for image
acquisition and analysis are accessible using an on-screen help button
and at https://www.iCLOTS.org/. Users select inputs including one or
several single image frames, image sequences, or videos (Fig. 2b). The
user is guided through a series of windows to describe their data, e.g.,
selecting a region of interest or relevant color channels, as shown
(Fig. 2c). The original image and the image as analyzed displays in the
center of the window, with changes in inputs or parameters updating
in real-time, allowing users to fit algorithms to their specific set of data
(Fig. 2d). Upon running the analysis, users can quickly parse results
using automatically-generated graphs. Analyses are completed within
seconds to minutes depending on file size and number (Supplemen-
tary Table 1). Options to export graphs, images or videos processed to
include an index for each feature, and numerical data are presented.
Numerical data also contains descriptive statistics (Fig. 2f). Should
users need additional interpretation, the ML application mathemati-
cally characterizes natural groupings within any number of pooled
datasets (Supplementary Fig. 2).

Single-cell tracking workflows
iCLOTS adapts previously described particle-linking algorithms for use
in tracking cells within microfluidic channels10,21. Measures such as a
maximum size parameter to exclude cell clusters and minimum cell
pixel intensity to exclude debris are selected to ensure high-quality
data points are captured. All videomicroscopy-based applications in
iCLOTS require user input of frames per second imaging rate to con-
vert outputs to time-based values. Single-cell measurements of velo-
city, size, and optional fluorescence intensity calculated by summing
the pixel intensity of the indicated cell region are generated. We
demonstrate use of the iCLOTS single-cell tracking application with a
previously described, microfluidics-based cell deformability assay
designed tomeasure single-cellmechanical properties37. In this assay, a
greater cell velocity during transit of a microchannel smaller than the
diameter of the cell indicates increased deformability. Mechanical
properties of blood cells are important indicators of cell
behavior, including red blood cell pathophysiology38,39, leukemia cell
phenotype40, and cellular response to drug treatment28. Cells were
perfused through the device at a constant rate using a syringe pump37.
Here we show application adaptability using a range of blood cells
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obtained from clinical samples and cell lines, including red blood cells
(RBCs) from patients with SCD (Fig. 3a), RBCs from patients with iron
deficiency anemia (Fig. 3b, Supplementary Fig. 3), immortalized white
cell lines (Fig. 3c), and reticulocytes from patients with SCD (Fig. 3d).
iCLOTS single cell tracking analysis methods are robust, repeatable,
and reduce potential formanual error (Supplementary Fig. 3). iCLOTS-
produced cell area values correspond with gold-standard clinical
blood count (CBC)measurements ofmeancorpuscular volume (MCV),
demonstrating result veracity (Supplementary Fig. 4).

Machine learning interpretation workflows
iCLOTS uses Python library scikit-learn16 to implement k-means
clustering41, a specific mathematical model understood to be a
robust general-purpose approach to discovering natural groupings
within high-dimensional data42. Clustering is an unsupervisedmachine
learning technique: pooled single data points (e.g., cells) described by
multiple features (e.g., size, circularity, and/or fluorescence intensity)
are automatically partitioned into clusters that minimize the differ-
ences between sharedmetrics. A screeplot informs anoptimal number
of mathematically significant clusters to retain43. Outputs include a
cluster label for each data point and statistics to assess relative
goodness of clustering44.

Case study 1: the distinct subpopulation of stiff RBCs
characterized by slower velocities within small channels
in SCD is also significantly smaller
Decreased RBC deformability is a major manifestation of the genetic
condition SCD and may lead to complications associated with micro-
vascular obstruction45–48. Measuring deformability characteristics of
RBCs from SCD patients at the single-cell level may lead to a better
understanding of SCD pathophysiology and prevention of these
microvascular occlusive events, reducing incidence of adverse effects
such as pain, organ damage, and stroke46,47. ML clustering separates all
SCD and healthy control RBC data points into an optimal number of

clusters: here, low- and high-velocity groupings (Fig. 3e), in a method
akin to flow cytometrywith objective boundaries.We find that a higher
proportion of SCD RBCs exist in the low-velocity cluster as compared
to healthy controls, indicating a significant subset of these cells have
increased rigidity as compared to healthy control counterparts (Fig. 3f,
Supplementary Fig. 3). In addition to increasing our understanding of
SCD RBC variability in the context of pathophysiology, these analyses
provide proof-of-concept for subpopulation quantification methods,
including a method for objectively defining subpopulation number,
which have potential for use in determining clinical reference ranges
crucial to new diagnostics.

Cell suspension velocity profile workflows
Differences in blood or cell suspension rheological properties are
caused by a range of diseases and processes, e.g., SCD30,31, COVID-1932,
or diabetes49. Channel flow velocity profiles, a representation of the
magnitude of suspension velocity as a function of position, provide
valuable insight into sample characteristics including viscosity50,
hematocrit51, and aggregation52, but can be challenging to create owing
to the many thousands of precise spatial measurements of suspension
speed required. Here, image features from high-speed videomicro-
scopy of cell suspensions under flow, typically pixel intensity patterns
representing a grouping of cells, are detected using Shi-Tomasi corner
detection23. Velocity of features is calculated using Kanade-Lucas-
Tomasi optical flow algorithms (Supplementary movie 2)24. Users
adjust a window size parameter describing the maximum distance
from the original feature that the featuremay travel in the subsequent
video frame. Velocity at each time point and an overall spatial velocity
profile is reported. High-throughput quantification is robust, but user-
defined detection windows smaller than feature displacementmay not
accurately capture suspension velocity (Supplementary Fig. 5). All
iCLOTS computational methods are developed to adapt to a range of
experimental devices, demonstrated here by using a previously
described 3-layered microfluidic device that enables initiation of

a Static systems

Flow-based devices

b c dCollect imaging data

Objective

Perform interactive analysisChoose analysis

Parameters Results

Index
1
2

Numerical
data

Graphical
data

+ +

Machine
learning

Fig. 1 | iCLOTS software enables quantification ofmicroscopy data from awide
range of established hematology assays. a Versatile computational methods
adapt to microscopy images and videomicroscopy of cells and cell suspensions
obtained using static, standard microscopy assays as well as flow-based systems
including traditional flow chambers, commercially-available microfluidic devices,
and custom-made microfluidic devices. b iCLOTS is designed as a post-processing
image analysis software such that users can continue to acquire imaging data using
the methods they are accustomed to. This makes iCLOTS suitable for analysis of
previously collected data or for new assays planned with iCLOTS’ capabilities in
mind. c Image processing capabilities are separated into four main applications:
cell adhesion applications provide single-cell resolution measures of biological
functionality, single cell tracking applications provide single-cell resolution mea-
sures of cell dynamics and movement including a specialized assay to quantify
cellular mechanical properties, velocity profile applications calculate rheological
properties of suspensions under flow, and multiscale microfluidic accumulation

applications provide insight into potentially pathologic processes such as throm-
bosis in blood samples. d Each application facilitates interactive analysis of a spe-
cific experimental workflow. From the microscopy imaging data provided by the
user, after image processing algorithms are applied, iCLOTS detects events such as
individual cells, patterns of cells, or regions of immunostaining signal, which are
then labeled with a number/index on the original and processed imaging files.
Numerical output metrics dependent on application type, e.g., cell velocity, area,
and/or fluorescence intensity, are calculated for each event and generated as tab-
ular data labeled with the associated index. Additionally, all numerical data is
automatically graphed in common formats such as histograms or scatter plots to
help users quickly parse the high-dimensional results output by iCLOTS. Should the
user need assistance with interpretation of these results, numerical data outputs
can be used in post-image analysis applied ML-based clustering algorithms, which
assign individual data points with cluster labels suitable for additional methods
such as Chi-square analysis.
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hypoxic conditions in order to induce sickle hemoglobin polymeriza-
tion (Supplementary Fig. 5)30,31. As oxygen tension is lowered to 0mm
HgO2, velocity of SCDRBCs in suspension approaches 0μm/s (Fig. 4a).

Case study 2: blood velocity profiles of sepsis patient blood
samples are blunted, indicating altered viscosity
Sepsis is a life-threatening infection that leads to inflammatory
damage to nearly every organ system53. Biochemical abnormalities
are known to contribute to sepsis pathophysiology, but are poorly
understood54. Here we perform a simple microfluidic assay where
whole blood samples from patients with sepsis are perfused through
a multi-channel microfluidic device at shear rates approximating
mean venous shear rates in blood vessels with similar dimensions
(Fig. 4b). We find increased overall mean and maximum velocity in
sepsis whole blood as compared to a healthy control in a repre-
sentative sample (Fig. 4c). Spatial analysis shows profile blunting in
sepsis patients that may be explained by the increase in viscosity
associated with an acute inflammatory factors like fibrinogen as well
as by increased aggregation of red cells in patients with sepsis
(Fig. 4d, e)55. Use of in vivo capillaroscopy in patients with sepsis have
shown a strong correlation between alterations in microvascular
velocity profiles and risk of mortality56.The temporospatial resolu-
tion of these velocity profiles, however, are much less than what
iCLOTS provides. Additionally, these alterations measured by in vivo
techniques correlate with evidence of endothelial dysfunction57. The
ability to measure these changes in a tightly controlled in vitro
microfluidics platform using iCLOTS permits the exploration for new
mechanisms and blood-based biomarkers of endothelial dysfunction
in sepsis diagnosis and management.

Cell adhesion workflows
Experiments in which individual cells adhere to biologically-activated
surfaces provide useful information about cellular morphology and
physiology (e.g., in platelets25,26, red blood cells58, and mixtures of cell
types designed to investigate cell-cell interactions59). These same cel-
lular morphological and functional metrics form the backbone of
digital pathology of blood smears60–62. Isolated cells were adhered to
coated surfaces25,58. For all single-cell applications, users choose mini-
mum and maximum cell size parameters to reduce noise and exclude
cell aggregates, respectively. Individual cells within brightfield micro-
scopy images are located as particles represented by image regions
with Gaussian-like distributions of pixel brightness10. Size and circu-
larity metrics are generated as outputs, demonstrated here with het-
erogenous cell populations, including small/dense platelets (Fig. 5a)
and biconcave-shapedRBCs (Fig. 5b, Supplementary Fig. 6). A separate
application for fluorescently stained cells returns additional features
including intensity of a secondary stain and texture, a membrane
property. Fluorescence images in all iCLOTS applications are seg-
mented with a user-chosen binary threshold, a numerical value of
arbitrary units where any pixel intensity value above or below the
threshold is considered signal to be further quantified or background,
respectively. Region property analysis provides morphology metrics
of each interconnected region of signal15. This application can also
distinguish intracellular features such as individual nuclei lobes of
neutrophils using signal peak-finding algorithms15 (Fig. 5c). iCLOTS
includes a single cell-resolution protrusion-counting tool (Fig. 5d)
based upon Harris corner detection14,22, demonstrated here to count
filopodia-like protrusions within platelets from healthy and clinical
samples. Using this application, researchers can objectively apply cri-
teria for protrusion detection (Supplementary Fig. 7). Utility of a spe-
cialized application to analyze adhesion under flow is demonstrated
with neutrophils perfused through a fibronectin-coated microfluidic
device (Fig. 5e) Users adjust parameters including a maximum inten-
sity value designed to reduce the contribution of debris and a mini-
mum number of frames the cell must be present to reduce the
contribution of noise. Detected particles representing cells are
linked into trajectories used to calculate an adhesion time10,21. iCLOTS
adhesion assays produce accurate, repeatable, and robust cell
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Fig. 2 | All iCLOTS applications follow a common, easy-to-use interactive
format. a Analysis windows are designed to be intuitively followed from left (inputs)
to right (outputs), with the image processing steps as applied displayed in the center.
Here, the microchannel analysis application from iCLOTS’ suite of multiscale micro-
fluidic accumulation tools is shown with whole blood perfused through an in vitro
microvasculature-on-a-chip microfluidic model. b The user uploads the desired
number of microscopy images, time course microscopy series, or videomicroscopy
files as inputs. Thesefiles are then automatically displayedon the screen. cDepending
on the application and file type, users are guided through a series of windows facil-
itating the analyses of their data, such as choosing a region of interest (ROI, shown) or
indicating immunofluorescence staining color channels present in a file. iCLOTS
applications designed for fluorescence microscopy can accommodate up to three
stains in separate channels: here, red indicatesCD41+platelets, green indicatesCD45+
white blood cells, and blue indicates the endothelial cell layer. Data in this example is
taken at ×100 magnification, scale bars represent 50 μm (left) and 10 μm (right).
d Parameters, numerical factors that define how image processing algorithms should
be applied, are typically simple, e.g., minimum and maximum cell area, or fluores-
cencesignal threshold, as shownhere.All parameters are adjusted interactively froma
default value tobestmatch the researcher’s specificdataset. In iCLOTS, pixel intensity
values are understood to be arbitrary units. Effects of changing parameters are shown
in real time to assist in gauging the appropriateness of selected values. e A button
initiates thefinalized analysiswith algorithms customizedby the selectedparameters.
Upon completion, graphical results appropriate for the application are automatically
displayed, such as line graphs representing quantitative accumulation and occlusion
values at each time point for each channel of interest, as seen in this example. fUsers
may export any of the outputs generated by iCLOTS, including tabular data as an
Excel file, graphical results as .png images, or the initial imaging dataset as trans-
formed by the image processing algorithms and/or labeled with indices.
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measurements in a fraction of the time required for manual analysis
(Supplementary Figs. 6–8).

Case study 3: platelet morphology and adhesion on collagen is
altered in FLI-1 mutations and Hermansky-Pudlak syndrome
Adhesion is the first phase of platelet activation after exposure to
subendothelial collagen as a result of vascular trauma, and as such,
patients with impaired platelet adhesion are at high risk of
bleeding63. Dysfunction in platelet disorders typically cannot be
evaluated with current lab tests due to associated low platelet

count. Specialized adhesion assays assess disorders of primary
hemostasis caused by abnormal platelet properties, including in
patients with inherited platelet disorders such as FLI-1 mutations
and Hermansky-Pudlak syndrome (HPS). FLI-1 mutations are com-
mon in patients suffering from platelet dense granule storage pool
defects64. Additionally, pathological heterozygous mutations in
the FLI-1 gene have been commonly shown to also cause
macrothrombocytes65. HPS is a hereditary disorder that results in
platelet dysfunction with prolonged bleeding, among other char-
acteristics. An absence of platelet dense granules has been well
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Fig. 3 | iCLOTS single-cell tracking applications provide high-resolution mea-
surements of velocity relative to cell size and fluorescence intensity. iCLOTS
measures velocity of one or many single cells transiting in any direction(s). We
demonstrate use of this application with a specialized microfluidic assay where
velocity of a cell transiting a microchannel indicates relative cell stiffness. In all
applications, users are guided to adjust input parameters via interactive entry
fields. Microscopy data is automatically labeled with image feature (e.g., an indi-
vidual cell) indices that correspond to a line within an output tabular data sheet.
Quantitative velocity, cell size, and optional fluorescence intensity values are cal-
culated for each cell. Histograms of single metrics and scatter plots of multiple
metrics are generated. Sample video frames shown taken at ×20 magnification,
scale bar represents 100 μm. aDense/dark sickle cell disease patient RBCs (n = 2561
RBCs) travel more slowly and thus are less deformable than healthy control RBCs
(n = 1519 RBCs), including a stiff subpopulation of sickle cell disease patient RBCs
with a velocity ranging from0 to 100μm/sec.b IrondeficiencyanemiapatientRBCs

(n = 7585 RBCs) are stiffer and smaller than healthy control RBCs (n = 3745 RBCs).
*Indicates difference from control (p <0.001 by Mann–Whitney). c Heterogenous-
intensity cells such as WBCs or leukemia cell lines including Jurkat (n = 57 Jurkat
cells) and HL-60 cell lines (n = 14 HL-60 cells), may also be analyzed using iCLOTS.
dOptionalfluorescencemicroscopy setting sums the totalfluorescence intensity of
individual cells, shown here with CD71+ sickle cell disease patient reticulocytes
(n = 14 reticulocytes). Sample data taken at ×20magnification, scale bar represents
50 μm. e K-means ML clustering algorithms automatically optimize groupings
formed from combined SCD and healthy control RBCs into two mathematically
definedhigh- and low-velocity clusters. A scatter plot of chosenmetricswith cluster
boundaries indicated is generated. f Differences between event frequencies within
clusters show that more SCD RBCs exist in the low-velocity cluster (p <0.0001 via
Chi-squared test). A mosaic plot, a stacked bar chart that shows the percentages of
each population within each cluster, is generated. Source data are provided as a
Source data file.
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described in HPS66. Using iCLOTS applications, we find differences
in adhesion to collagen-coated surfaces, platelet morphology, and
phosphatidylserine (PS) exposure in platelet samples from patients
with an FLI-1 mutation and HPS as compared to healthy controls
(Fig. 5f, Supplementary Fig. 9A). McKneown et al. observed
collagen-induced aggregation in patients with HPS67. We similarly
observed increased spreading and adhesion in platelets obtained
from patients with HPS on collagen-coated surfaces. PS on the
surface of activated platelets confers a procoagulant surface
necessary for hemostasis68. Platelets that adhere to collagen trans-
form into rounded structures that expose PS on their surface via
Annexin V labeling. ML clustering using k-means algorithms sepa-
rates all single-platelet data points into optimized clusters
describing low and high PS-exposure groupings (Fig. 5g, Supple-
mentary Fig. 9). We find a greater proportion of HPS platelets in the
high-PS-exposure cluster as compared to healthy control platelets
(Fig. 5h). The single-cell resolution metrics automatically calculated
by iCLOTS enable the translational application of platelet function
assays designed to provide a deeper understanding of platelet
adhesion, with clear implications for new methods of investigation
of primary hemostasis in a clinical setting.

Multiscale microfluidic accumulation workflows
Accumulation, the aggregation or adhesion of cells/biomolecules on
biological substrates and/or microvessels, has important implications
for multiple diseases33–35. Up to three fluorescence microscopy selec-
ted image color channels (red, green, and/or blue) from a single image
or a time series image sequence are binarized using user-defined
thresholds14. Pixel values above this threshold are treated as areas of
signal to be further quantified into occlusion and accumulation values.
iCLOTS’ suite of multiscale microfluidic accumulation applications
allows users to investigate occlusion on surfaces (Fig. 6a), in poten-
tially complicated microfluidic vessel or channel geometries
(Fig. 6b–d), or in small microvessels (Fig. 6e–h). For microfluidic and
microvessel applications, a map of potentially complex channel
dimensions is created by summing pixel values from images with
threshold applied from all channels from all time points. Pixels with an
intensity value greater than 0 are considered region(s) of a device.
Percent occlusion for each selected color channel is calculated as the
signal area divided by total area of a region of the device. Accumula-
tion of cell components on a surface is calculated as the change in
signal area measurements between timepoints. In disorders such as
atherosclerosis, spatial patterns of accumulation formed in response
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Fig. 4 | iCLOTS adapts feature finding and tracking algorithms to calculate cell
suspension velocity measurements in microfluidic devices. a Cell suspension
velocity applications rely on algorithms that find patterns within images, typically a
cluster of cells, and algorithms that track these detected patterns from one frame
to the next. To quantify cell suspension velocity, users must adjust window size (a
region of interest in which a detected pattern is searched for in the subsequent
frame), a minimum distance traveled, and an approximate feature/cell size for best
quantification. Trajectories of individual cell patterns are labeled on the provided
video data, seen here as cyan lines. Data generated includes a velocity measure-
ment for each cell pattern tracked andmean andmaximumvelocity for each frame.
Mean and maximum velocity measurements of sickle cell patient RBCs in suspen-
sion approach zero as oxygen tension is lowered from physiologic oxygen con-
centrations of 160mm Hg O2 to deoxygenated conditions of 0mm Hg O2 (n = 1
experiment). Data taken at ×40 magnification, all scale bars represent 10 μm.

b Users may also indicate a bin size for automatic generation of channel-wise
velocity profiles (representative data from n = 1 experiment). taken at ×20 magni-
fication, all scale bars represent 50 μm. c Representative time course data shows a
consistent mean and maximum velocity over the time course of videos of sepsis
patient andhealthy control wholeblood samples at a shear rate of 350 s−1, chosen to
recapitulate venous shear rate of a vessel of similar dimensions. d Representative
profile data shows a blunted velocity profile in sepsis patient whole blood as
compared to healthy control whole blood at a shear rate of 350 s−1 indicating
changes in blood viscosity. e Sepsis patient whole blood (n = 6 experiments) had a
higher ratio of mean wall velocity to frame maximum velocity values as compared
to healthy control whole blood (n = 3 experiments), indicating a blunted velocity
profile, at a shear rate of 350 s−1 (*p =0.047 via two-sidedMann–Whitney test). Error
bars = standard deviation. Source data are provided as a Source data file.
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to shear forces generatedbychanges in vessel geometry takeon added
significance33. In microchannel applications, a spatial percent occlu-
sion is provided at each pixel x-coordinate along the length of the
microchannel. These values are additionally summarized into a per-
channel occlusion or accumulation (not shown) for each time point.
Patterns of occlusion and accumulationpersist at a range of thresholds
(Supplementary Fig. 10).

Case study 4: crizanlizumab alters degree and spatial
distribution of white blood cell-mediated microvascular
occlusion in SCD
Microvascular obstruction in SCD contributes to potentially life-
threatening complications including pain crises, organ dysfunction,
and stroke45,69. P-selectinmediates binding of RBCs andWBCs to the
endothelial vessel wall activated by inflammation of trauma, which
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in proinflammatory states such as SCD leads to adherent RBC/WBC
clusters70. Crizanlizumab, a P-selectin inhibitor, has been shown to
mitigate microvascular vaso-occlusion in SCD, thereby reducing
pain crises71,72. Whole blood samples from patients with SCD were
perfused through an endothelialized microvasculature-on-a-chip
device prepared as described previously73. The iCLOTS accumula-
tion application automatically generates a map of complex micro-
fluidic device dimensions (Fig. 6b). We expectedly observed that
both CD41+ platelets and CD45+ WBCs within whole SCD blood
treated with crizanlizumab occlude microfluidic channels less than
untreated SCD blood samples (Fig. 6c) at a lowered percentage rate
similar to completed clinical trials (Supplementary Fig. 11)70. How-
ever, we also observed that the occlusion process is unstable and
that accumulation patterns of CD41+ platelets and CD45+ WBCs
change over time (Fig. 6d). ML analysis quantifies differences in
spatial relationships of occlusion signal within microfluidic micro-
vessels (Fig. 6g, h, Supplementary Fig. 12). WBCs have long been
understood to contribute to SCD pathophysiology74,75. We find that
in SCDwhole blood samples not treated with crizanlizumab, at early
timepoints CD45+ WBCs primarily occlude ends of channels, but
this effect is reversed when SCD blood is treated with crizanlizumab
(Fig. 6i, Supplementary Fig. 12). Here, iCLOTS’ ability to simulta-
neously monitor multiple components of a cell suspension with
high spatial resolution facilitates greater understanding of SCD
pharmacological mechanisms via observed changes in the con-
tribution of WBCs to microvessel occlusion.

iCLOTS applications are designed to close the existing gap
between experimental and analytical microfluidic methods by trans-
lating information-rich microscopy data into a series of detailed,
quantitative results describing a range of cell characteristics and
behaviors (Table 1).

Discussion
Microfluidic technology has progressed significantly in the last several
decades, but there has not been a concurrent push to develop auto-
mated imaging and analytical techniques for those new experimental
methods. ImageJ5, CellProfiler6,7, Icy8, and Ilastik9 provide excellent,
user-friendly implementations of image segmentation, applied com-
puter vision, and/or cellular morphology quantification but do not fill
the gap for time-dependent, fluid flow-based and microfluidics-based,
experimentally-driven applications. Other specialized open-source
tools10–13 and industry-based proprietary software typically require
additional software, onerous complex calculations and/or coding/
scripting on the user’s part, or are specific to a certain microfluidic
device, which excludes many researchers and clinical laboratories
from accessing and using those tools. Conversely, iCLOTS algorithms
and applications have all been designed to adapt to any microfluidic
device or static system, independent of channel number, size, or

dimensions, and is available as a standalone, easy-to-use product to
any and all biomedical researchers. iCLOTS is a free software specia-
lized for fluid flow-based cellular microscopy experiments performed
using any microfluidic that guides users end-to-end through data
analysis and interpretation in one simple, standalone package via a
unique combination of validated image processing, feature quantifi-
cation, andMLalgorithms. Shouldusers needmore advancedAI-based
feature classification from software such as Ilastik, themodular design
of iCLOTS permits users to upload segmentation outputs as an initial
dataset for further quantification. Thus, instead of being a competing
software to established bioimage analysis tools, we see iCLOTS as a
complementary solution that focuses on the needs of specific users
and experiment types.

As the prototypical biofluid biospecimen, we have found blood
cells and related cell suspensions to be the most useful test case to
benchmark iCLOTS for dense numbers of different cellular sub-
populations, potentially under physiological flow conditions. As
such, clearing a high bar with blood samples indicates that iCLOTS
is also compatible with other biofluid/cell samples, which typically
will be simpler than blood. iCLOTS was designed around large data
sets from multiple research groups and has been used to recreate
key findings from previously published studies76–79 (Supplementary
Fig. 13) in order to verify that the algorithms applied work con-
sistently for a variety of experimental set ups, imaging parameters,
and additional cell or multicellular structure types. However, ana-
lysis success depends on the quality of imaging data presented
(Supplementary Fig. 14). Some level of noise or spurious features is
to be expected with all high-throughput data analysis. iCLOTS is
designed to label all analyzed imaging data with single-cell indices
corresponding to numerical data, allowing users to assess if outliers
are valid data points. If data is unacceptably noisy, it may still be less
labor-intensive to correct computationally produced data than to
perform manual analysis, which may be error-prone itself. Manual
analysis is also prone to bias that may contribute to reproducibility
issues, especially if data is analyzed in an unblinded fashion, in a way
that iCLOTS results are not. This potential to reduce bias and apply
algorithms without need for computational expertise makes
iCLOTS especially well-suited for use in clinical laboratories, where
making key medical treatment decisions relies on robust, repro-
ducible results. In this way, iCLOTS enables a semblance of stan-
dardization of data analysis for cellular microscopy data which is
needed if these assays are to be used as clinical diagnostics and the
regulatory processes thereof. Clustering techniques are well-suited
to exploring distinguishing features between known populations
and to finding new, previously imperceptible groupings within a
single population. However, metrics describing populations of cells
typically follow Gaussian distributions which may have significant
overlap. In an effort to guide users through the analysis and

Fig. 5 | iCLOTS cell adhesion applications provide indexed single-cell mea-
surements of biological functionality. After adjustment of relevant parameters,
iCLOTS calculates numerical area and circularity values for individual cells within
brightfield microscopy images, including a dark/dense platelets adhered on
fibrinogen-coated surfaces (n = 231 platelets) and collagen-coated surfaces (n = 47
platelets) and b biconcave RBCs from patients with sickle cell trait (AS) genotypes
(n = 134 RBCs) and sickle cell disease (SS) genotypes (n = 110 RBCs). Platelets
adhered to fibrinogen surfaces spread less than those adhered to collagen
(*p <0.0001 via two-sided Mann–Whitney test). Data taken at ×30 magnification,
scale bars represent 10 μm (a and b). To analyze fluorescencemicroscopy imaging
data the user indicates pixel value thresholds for membrane and optional sec-
ondary stains and additional texture and staining intensity metrics are calculated
per-cell. cUsers may count regions of a secondary stain, here the number of nuclei
lobes in neutrophils (n = 207 neutrophils). Data taken at ×20 magnification, scale
bar represents 10 μm. d A cell protrusion characterization application calculates
the number of filopodia-like protrusions present in an individual cell using

additional application-specific parameters designed to apply objective require-
ment criteria. Data taken at ×20 magnification, scale bars represent 10 μm.
e Transient adhesion time of individual cells to a biochemically-coated surface is
calculated from videomicroscopy data, shown here with neutrophils (n = 1 experi-
ment, n = 185 neutrophils) in a fibronectin-coated channel. Users adjust additional
parameters designed to ensure veracity of returned data points. Data taken at ×20
magnification, scale bar represents 50 μm. f Analysis of fluorescence microscopy
data of platelets reveals differences in the density of adhered platelets, the
spreading area of individual platelets, and phosphatidylserine exposure in indivi-
dual platelets from healthy controls and a Hermansky-Pudlak Syndrome patient.
Data taken at ×40 magnification, scale bars represent 200 μm. g K-means ML
analysis separates combinedhealthy (n = 1112) andHPS (n = 2674)platelets into two
groups representing low- and high-PS exposure (n = 1 experiment). h The propor-
tion of cells in cluster 2, the high-PS cluster, is greater in HPS samples than in
healthy controls (**p <0.0001, Chi-squared test). Source data are provided as a
Source data file.
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Fig. 6 | iCLOTS multiscale microfluidic cell accumulation applications char-
acterize cell aggregation in a variety of experimental devices, including those
that are commercially available. Designed for use with fluorescence microscopy
images such that multiple components of a cell suspension can be simultaneously
monitored, users adjust threshold values for any image color channel(s) where
immunofluorescence signal is present. a Line graphs representing occlusion and
accumulation over time are automatically generated. Here, CD41+ platelets and
CD45+white blood cells from sickle cell disease patientwholebloodaccumulate on
an ibidi chamber device coated with collagen at a faster rate than healthy control
whole blood (n = 3 replicates).Data taken at ×20magnification, scale bar represents
50 μm. b The application is designed to automatically generate a map of all signals
present, e.g., the dimensions of a microfluidic device, shown here with a
microvasculature-on-a-chip device designed to investigate the effect of crizanli-
zumab on sickle cell disease whole blood samples (n = 1 experiment). Data taken at
×20, scale bar represents 200 μm. Percent occlusion (c) and accumulation rate (d)
changes over the course of an experiment, showing microvascular occlusion

instability. e A microchannel-specific application is available for spatial analysis of
one ormany straight microchannel portions of a microfluidic device. Data taken at
×20, scale bar represents 50μm. f Spatial quantification ofmicrovascular occlusion
is automatically performed by calculating an occlusion percentage for each pixel
point along the length of eachmicrochannel. ML algorithms enable further analysis
in microchannels by treating each x-coordinate and corresponding occlusion
measurement from each channel as a data point. At the initial time course time-
point, t = 7min, CD45+ white blood cells in SCD whole blood (g) and CD45+ white
blood cells in SCD whole blood treated with drug crizanlizumab (h) occlude
endothelialized microchannels to variable degrees at each point along the 32
analyzed microchannels. i CD45+ white blood cells in SCD whole blood pre-
dominantly occlude distal ends of microchannels at early timepoints, while CD45+
WBCs in SCD whole blood treated with crizanlizumab occlude proximal entry
points of microchannels at early timepoints. Source data are provided as a Source
data file.
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interpretation process, the authors have prepared extensive
application-specific help documentation, available within the soft-
ware and at https://www.iCLOTS.org/.

In summary, we present iCLOTS, an interactive, freely-available
software that addresses the clear need for widely-accessible, auto-
mated, and adaptable analytical tools for microfluidic-centric micro-
scopy data. Designed to address the unique set of requirements
presented by the heterogenous, dynamic nature of cells under flow,
this implementation of well-validated image processing capabilities
transforms microscopy data into quantitative, high-dimensional reso-
lution datasets which may be further assessed by ML algorithms. No
longer limited by time-consuming and error-pronemanual analysis, we
report key scientific and clinically-relevant findingsmade possible only
through high-throughput, detailed quantitative analysis. Using
iCLOTS, we observe (1) stiff subpopulations of RBCs in SCD, showing
potential for subpopulation quantification within larger samples,
(2) blunted blood flow profiles in sepsis, suggesting a role for new
clinical biomarkers, (3) changes in cell behavior in HPS that could form
the basis for a new diagnostic, and (4) changes in SCD blood accu-
mulation in microfluidics that provide mechanistic insight into new
pharmacological therapies.

iCLOTS is shared with the greater research community with
dedicated channels for feedback such that over time, as researchers
contribute their own needs and workflows, the software will continue
to develop and improve. With iCLOTS, the field-wide effort to develop
innovativemicrofluidic assays ismetwith commensurate analysis tools
accessible to researchers who need it most, thereby enabling the
generation of novel hypotheses in biomedical science and clinical
medicine.

Methods
Ethical statement
Consent for all healthy human blood samples was obtained according
to Georgia Institute of Technology IRB H15258. All SCD patient whole
blood samples used for cell deformability experiments, all HPS patient
whole blood samples used for adhesion experiments, and all SCD
patient whole blood samples used for accumulation and occlusion
experiments were drawn after informed consent was obtained in
accordance with a corresponding Emory University IRB protocol. SCD
whole blood sample for the rheological measurement was collected at
Children’s Minnesota Hospital in Minneapolis, MN under approved
protocol by the Institutional Review Boards at the University of Min-
nesota and Children’s Minnesota.

Computational methods
All computational methods and software features were written in
Python version 3.7 (python, https://www.python.org/). All Python
packages used to implement image processing and machine learning
methods are freely available open source projects and are described
within individual assaymethods. Manual analysis to assess accuracy of
iCLOTS anddetermine comparative analysis timeswas performedwith
measurement tools available in Fiji distribution of ImageJ version 2.1.0
(ImageJ, https://imagej.net/software/fiji/)80.

Microfluidic device preparation for all assays
Soft lithography molds were created using SU-8 series photoresists
(Microchem), adhering to all manufacturer’s suggestions. Poly-
dimethylsiloxane (PDMS; Ellsworth Adhesives) was poured into molds
and allowed to cure at 60 °C for at least 2 h. The PDMS devices were
removed from the mold and device-appropriate inlet and outlet ports
were created by punching holes ranging from 0.75 to 1.5mm through
the inlet and outlet channels of the device. PDMS was then bonded to
#1.5 coverslips (Fisher), or to thin cured PDMS for endothelialized
experiments, described below, using a plasma cleaner (Harrick
Plasma).

Single-cell tracking workflows
Deformability assay microfluidic device preparation. The cell
deformability microfluidic device consists of a series of branching
microfluidic channels surrounded by two large bypass channels
designed to reduce potential for changes in pressure caused by
microchannel clogging via slow-moving cells. Therefore, a range of cell
velocities is indicative of a range of size and deformability phenotypes
alone. Microchannel height was chosen such that cells must necessa-
rily deform to transit the device.

Brightfield red blood cell deformability assay. RBCs from SCD
patients, IDA patients, or healthy time-matched controls were isolated
from whole blood and diluted in PBS, then perfused into the cell
deformability microfluidic devices using a syringe pump (Harvard
Apparatus). Videomicroscopy was acquired at a rate of 25 FPS (20x,
Nikon Eclipse TE2000-U).

Brightfield white cell line deformability assay. Acute T-cell lym-
phoblastic (Jurkat) cell lines and acute promyelocytic leukemia (HL-
60) cell lines were suspended in PBS and perfused into the cell
deformability microfluidic devices using a syringe pump (Harvard
Apparatus). Videomicroscopy was acquired at a rate of 25 FPS (20x,
Nikon Eclipse TE2000-U).

Fluorescent CD71+ reticulocyte deformability assay. Reticulocytes
were isolated using a series of gradient methods81 and resuspended in
PBS. A 1:100 ratio of CD71+ anti-human antibody (Miltenyi Biotec) was
added and the sample was incubated for 15min at room temperature.
A 1:500 ratio of Alexa Fluor-568 goat anti-mouse secondary antibody
(Invitrogen) was then added and sample was perfused into the cell
deformability microfluidic devices using a syringe pump (Harvard
Apparatus). Videomicroscopy was acquired at a rate of 25 FPS (20x,
Nikon Eclipse TE2000-U).

Single-cell tracking computational analysis methods. Image back-
ground containing channel walls was removed using background
subtraction algorithms implemented using Python package OpenCV
version 4.5.3 (OpenCV, https://opencv.org/)82 Python package Trackpy
version 0.5.0 (trackpy, http://soft-matter.github.io/trackpy/v0.5.0/)21

algorithms are used to detect and track cells. Trackpy detects particles
represented by small image regions with a 2-D Gaussian-like distribu-
tion of pixel brightness. Particle-linking methods connect cells into
trajectories from which velocity values are calculated. Software users
interactively choose parameters specific to their microscopy data
includingmaximumcell diameter andminimum total pixel intensity to
reduce contributions of cell clusters and noise, respectively. iCLOTS
retains the highest-quality data points by imposing requirements for
the number of frames a cell is detected and aminimum total observed
distance traveled. Single-cell velocity is calculated using cell displace-
ment and the rate of imaging. A specialized x-direction channel flow
single-cell tracking application, which was used for deformability
velocity measurements, is also offered. Average fluorescence intensity
of individual cells was calculated by taking the mean sum of pixel
intensity of the indicated cell region from all frames the cell was
detected.

Cell suspension velocity workflows
Deoxygenation cell suspension velocity assay. RBCs were isolated
and suspended in Dulbecco’s phosphate-buffered saline (DPBS) at a
final hematocrit of ~25%. The resuspended RBC sample was subse-
quently loaded into a 3-layered microfluidic device designed for pre-
cise control of oxygen tension30,31. A pressure controller (Alicat
Scientific) maintained a constant driving pressure through the device
during video acquisition. Videos were recorded at ×40 magnification
and 296 FPS on a Zeiss Axio Vert.A1 (Carl Zeiss) with a FLIR
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Grsshopper3 camera (FLIR Systems) using the Image Acquisition
Toolbox in Matlab (MathWorks). During video recording, the gas
supplied to the device was switched from super-physiologic oxygen
levels (21% O2, 5% CO2, 74% N2) to anoxic conditions (95% N2, 5% CO2)
to induce HbS polymerization.

Cell suspension in sepsis velocity assay. A microfluidic device with a
straight channel portion (10 µmtall, 70 µmwide)was incubatedwith 1%
(g/mL) BSA in PBS to coat the exterior and minimize interactions
between the device wall and blood components. The presented
microfluidic dimensions were chosen to approximate sheet flow for
investigation of cell aggregation, but underlying computational
methods also work for iso-symmetric flow83. The samples were then
perfused using a syringe pump (Harvard Apparatus) under flow-
controlled conditions to achieve target shear rates of 350 s−1 and 175 s−1

based on an analytical solution to laminar flow in a microfluidic
channel.

KLT velocity tracking computational analysismethods. OpenCVwas
used to detect image features based on spatial intensity differences
using Shi-Tomasi corner detection23. Movement between detected
image features was calculated using OpenCV implementation of
Kanade-Lucas-Tomasi optical flow24. Velocity of each feature is calcu-
lated using cell displacement and the rate of imaging. Profiles are
generated by binning individual feature velocities according to their
initial distance from the channel center using a user-set bin width.

Cell adhesion workflows
Brightfield microscopy platelet adhesion assay. Isolated platelets
were diluted in Tyrode’s buffer. Platelet suspension concentration was
optimized to ensure the measurement of single platelets and not pla-
telet aggregates. Platelet suspension was incubated on coverslips
(Fisher) that had been previously incubated with 100 µg/mL of human
fibrinogen (Enzyme Research Laboratory) or Type 1 rat tail collagen
(VWR)25. Platelets were allowed to adhere for 2 h at room temperature.

Brightfield microscopy red blood cell adhesion assay. Microfluidic
devices with four separate channels (46 µm tall, 100 µm wide, 4mm
long) were coated with laminin derived from human placenta (Sigma)
for 2 h at room temperature58. RBCs were isolated and resuspended in
PBS to 0.2% hematocrit. Devices were perfused with RBC suspension
via syringe pump (Harvard Apparatus). Images were acquired using a
Keyence BZ-X810 microscope with a 20x/0.8 objective.

Brightfield microscopy adhesion computational analysis methods.
Individual cells are located as particles using Trackpy as described for
previous iCLOTS methods. Calculated values for eccentricity and
radius of gyration of each cell particle are reported as circularity
and radius, respectively. Radius of gyration is approximately equal to
radius for red blood cells and platelets in brightfield microscopy
images.

Neutrophil isolation for all assays. Neutrophils were isolated from
whole blood collected in EDTA using a whole blood human neutrophil
isolation kit (Miltenyi MACSxpress) and resuspended in PBS.

Transient neutrophil adhesion assay. 0.1 M N-Formylmethionyl-
leucyl-phenylalanine (fMLP; Sigma) was added to neutrophil solution,
which was then perfused through a straight channel microfluidic
device (38 µm tall, 100 µm wide). Videomicroscopy was acquired at a
rate of 25 FPS (10x, Nikon Eclipse TE2000-U).

Transient adhesion cell tracking computational analysis methods.
Individual cells within each image are located as particles as described
for previous iCLOTS computational analysis methods. A Trackpy

linking algorithm connects individual particles detected across dif-
ferent frames into pathways representingmovement across the length
of the device21. Transit time is calculated using cell displacement and
the rate of imaging.

Fluorescence microscopy neutrophil adhesion assay. Isolated neu-
trophils were suspended in PBS and incubatedwith 10μg/mLCellMask
Deep Red plasma membrane stain (Invitrogen) and 5 µM SYTO 13
Green nucleic acid stain (Invitrogen) for 15min at 37 °C, then fixedwith
paraformaldehyde (Sigma) for 10min at room temperature. The cells
were added to a non-coated glass chamber. Image data was acquired
using Zeiss LSM 700 with a 40x/1.4NA Plan Apochromat objective.

Fluorescence microscopy platelet adhesion assay. Platelets were
diluted to ensure the measurement of single platelets and not platelet
aggregates and were incubated on coverslips prepared with the coat-
ing specified as the experimental condition84. Platelets were imaged on
either Zeiss LSM 780/ELYRA PS1 confocal microscope using a 100x/
1.46NA Plan Apochromat lens or an Eclipse Ti2 inverted microscope
using a 40x/1.30NA Plan Fluor lens.

Fluorescence microscopy adhesion computational analysis meth-
ods. Selected red, green, and blue (RGB) image channels are binarized
usingOpenCVwith a threshold value provided by the software user for
each channel as an interactive input. Python package scikit-image
version 0.18.3 (scikit-image, https://scikit-image.org/)15 is used to cal-
culate characteristics of each region that represents an individual cell
within the binary image, including location of region centroid, area,
and circularity. Summed functional stain fluorescence pixel intensity
of the region above the threshold is determined using indexing
methods and texture is calculated as the standard deviation of pixel
intensity of the region. Individual regions of intensity, such as nuclei
lobes or RNA SPOT signal, are calculated as local maxima of color
channel intensity within the cell region using scikit-image.

Fluorescence microscopy adhesion protrusion-counting compu-
tational analysis methods. Images are binarized using a threshold
value provided by the software user and regions representing cells are
identified as described for previous iCLOTS computational analysis
methods. OpenCV corner detection algorithms based upon the work
of Harris and Stephens22 are used to detect sharp points along the
circumference of the convex region that represent filopodia-like pro-
trusions using sharpness andminimumprotrusion separationdistance
parameter values provided by the software user. iCLOTS reports
minimum, mean, and maximum length of protrusion ends from the
centroid of the region.

Multiscale microfluidic accumulation workflows
Commercial microfluidic device occlusion and accumulation
assay. Ibidi 0.2mm µ-Slide I Luer with ibitreat devices were coated
with collagen IV (VWR) and. In order to facilitate perfusion, syringes
were loaded with whole blood treated with 40 µg/ml corn trypsin
inhibitor (CTI; Haematologic Technologies), Anti-CD45 Mouse Mono-
clonal Antibody (VWR) at a ratio of 1:100, Integrin alpha 2b/CD41
Antibody (VWR) at a ratio of 1:200, and 6mM CaCl2. Blood was per-
fused using constant flowvia a syringe pump (Harvard Apparatus) into
devices for a period 10min. A Keyence BZ-X810 Fluorescence Micro-
scope and a 10× 0.8 NA lens was used to take a tile scan spanning the
width of the microfluidic device was captured every 1.5min.

Microvasculature-on-a-chip device occlusion and accumulation
assay. Endothelialized branching microfluidic devices with 32 micro-
channels (30 µm wide, 30 µm tall, 200 µm long) were prepared by
growing a confluent layer of human umbilical vein endothelial cells
(HUVECs, Lonza, cat. # cc-2519) on the surfaces of the channels of the
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microfluidic device73. Once devices reached endothelial cell con-
fluency, CellMask Deep Red Plasma Membrane Stain (Fisher) was
added to the culture media. In order to facilitate perfusion, syringes
were loaded with whole blood treated with 40 µg/ml corn trypsin
inhibitor (CTI; Haematologic Technologies), Anti-CD45 Mouse Mono-
clonal Antibody (VWR) at a ratio of 1:100, Integrin alpha 2b/CD41
Antibody (VWR) at a ratio of 1:200, and 6mM CaCl2. Blood was per-
fused using constant flow via a syringe pump (PhD Ultra, Harvard
Apparatus) into devices for 28min. Using a Zeiss LSM 700-405 con-
focal microscope and a 10x/0.8NA lens, a tile scan of the entire
microfluidic device was captured every 7min.

Occlusion and accumulation computational analysis methods.
Selected RGB image channels are binarized using Open-CV with
threshold values provided by the software user for each color channel
as an interactive input. To generate a map of the experimental device
channels, eachRGB imagewith threshold applied is summed into aone
layer image and an additional set threshold is applied. Inmicrochannel
experiments, a left-right indexing operation is performed on each
individual channel as detected by scikit-image to smooth coordinates
of channel walls. Percent occlusion of a full device or an individual
microchannel was calculated from ratio of area of the device with
signal to the total area of the device. Accumulation from sequential
images is calculated as the change in signal area over time.

Validating computational methods
iCLOTS has been designed to produce accurate, robust quantitative
results in a fraction of the time required for manual analyses. To vali-
date iCLOTS, when possible, we have performed a statistical compar-
ison of iCLOTS application results to manual analysis performed by
one or several expert hematologists (Supplementary Figs. 3, 7 and 8).
For all applications, we have performed sensitivity analysis (Supple-
mentary Figs. 3, 5, 7 and 8). Sensitivity analysis is a type of computa-
tional analysis where an algorithm is applied to the same dataset
multiple times, each time with different parameter values. In the
context of the iCLOTS software, parameters are numerical factor(s)
that set the conditions of the algorithm’s operation. Sensitivity analysis
is designed to show that algorithm results are robust, i.e., reasonable
changes in parameters do not result in substantially different inter-
pretation of results.

Reporting of numerical and graphical results
Python package pandas version 1.3.3 (NumFOCUS, https://pandas.
pydata.org/)18 was used to prepare and export numerical data as an
excel file. Large datasetsmay be exported as a comma-separated value
(CSV)file. Python packagematplotlib version 3.4.3 (Matplotlib, https://
matplotlib.org/)19 was used to prepare and save graphical data. Python
package Seaborn version 0.11.2 (seaborn, https://seaborn.pydata.org/
index.html) was used to prepare specialized pairplot data20. Pairplots
are a specialized set of graphs where each graph compares two vari-
ables using a scatter plot labeled with condition. Graphs on the diag-
onal of the pairplot are histograms of a single metric.

Machine learning interpretation
All applied machine learning algorithms were implemented using
scikit-learn version 1.0.2 (scikit, https://scikit-learn.org/)16. iCLOTS
presents tools to implement K-means clustering algorithms41. The
software user has the option to upload one or several iCLOTS-
generated excel output files, each of which comprises a sample label.
The software user then chooses features, or numerical descriptors of
individual cells or events, from columnswithin the excel document. All
data points from all sample labels are combined, and a scree plot is
generated to provide a suggested optimal number of mathematically
defined clusters43. All data points are clustered into a software user-
provided nclusters and all sample label data points are returned with a

corresponding cluster label for further statistical interpretation. Sta-
tistics including silhouette score44 are returned to assess relative
goodness of clustering, with values approaching 1 indicating most
distinct cell populations (Supplementary Fig. 2).

Statistics and reproducibility
The primary scientific value and purpose of our manuscript is to
introduce a tool to a series of users by introducing each application
and providing an experimental case study that demonstrates inputs,
parameters, outputs, and potential use cases. The major innovation of
this paper is a standalone, free-to-use, interactive image analysis and
machine learning software. As such, our case studies in thismanuscript
are primarily designed to give readers a sense of how the software can
enable their experiments. Experimental data was excluded only when
imaging quality was not sufficient for computational analysis. Authors
responsible for computational analysis were blinded to experimental
sample classification, if any. No statistical method was used to pre-
determine sample sizes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The imaging data generated for this study sufficient to recreate the
results of this manuscript and demonstrate all software functionality
to users is included as test data at https://www.iCLOTS.org/, however,
the full imaging dataset is available within five working days, without
restriction, from the corresponding author Wilbur A. Lam upon
request. All numerical sourcedata generated in this study are provided
in the Source data file. Source data are provided with this paper.

Code availability
All current and past versions of standalone software are available at
https://www.iCLOTS.org/software. All software source code is avail-
able at https://www.github.com/iCLOTS. All methods as standalone
scripts are available at https://www.github.com/LamLabEmory.
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