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Cell-type-specific co-expression inference
from single cell RNA-sequencing data

Chang Su 1,3, Zichun Xu1,5, Xinning Shan1, Biao Cai1,4, Hongyu Zhao 1 &
Jingfei Zhang 2

The advancement of single cell RNA-sequencing (scRNA-seq) technology has
enabled the direct inference of co-expressions in specific cell types, facilitating
our understanding of cell-type-specific biological functions. For this task, the
high sequencing depth variations and measurement errors in scRNA-seq data
present two significant challenges, and they have not been adequately
addressed by existing methods. We propose a statistical approach, CS-CORE,
for estimating and testing cell-type-specific co-expressions, that explicitly
models sequencing depth variations and measurement errors in scRNA-seq
data. Systematic evaluations show that most existing methods suffered from
inflated false positives as well as biased co-expression estimates and clustering
analysis, whereas CS-CORE gave accurate estimates in these experiments.
When applied to scRNA-seq data from postmortem brain samples from Alz-
heimer’s disease patients/controls andblood samples fromCOVID-19 patients/
controls, CS-CORE identified cell-type-specific co-expressions and differential
co-expressions that were more reproducible and/or more enriched for rele-
vant biological pathways than those inferred from existing methods.

The past two decades have seen great advances in gene co-expression
studies using microarrays and RNA-sequencing technologies, leading
to rich insights on biological processes and disease mechanisms1–3. To
date, most co-expression analyses have been performed on bulk
samples that are a mixture of different cell types. As a result, the
inferred networks are confoundedwith varying cell-type compositions
across samples and limited to an aggregated view of gene regulations
that may differ considerably across cell types4,5. To infer cell-type-
specific networks from bulk samples, cell sorting can be performed,
but the techniques are tedious and subject to technical artifacts6.

With scRNA-seq technology such as droplet-basedmethods, gene
expressions can now be measured in individual cells with annotated
cell types7, offering a great opportunity to construct cell-type-specific
co-expression networks. However, such an analytical task is challenged
by the unique characteristics of scRNA-seq data such as their high
sequencing depth variations across cells and measurement errors. For

scRNA-seq data, the expression level of a specific gene is measured
through the observed UMI (unique molecular identifier) count for this
gene, and the sequencing depth of a cell is the sum of UMI counts
across all genes. For a typical single cell experiment, there is sub-
stantial variation of sequencing depths across cells (e.g.,
400–20,000)8,9. As a result, gene co-expressions measured via corre-
lations of UMI counts across cells can be seriously confounded by
varying sequencing depths, resulting in inflated false positive findings
in detecting co-expressed gene pairs. This confounding issue cannot
be addressed using standard normalization strategies, as will be shown
later. Besides varying sequencing depths, measurement errors in the
UMI count data pose an additional challenge in inferring co-expression
levels as the errors tend to attenuate correlation estimates with dif-
ferent degrees for genes with different expression levels.

Several methods have been recently developed to better
capture co-expressions from scRNA-seq data than a simple
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normalization-based approach, including baredSC10, locCSN11, Noise
Regularization12, Normalisr13, propr14, and SpQN15. These methods
consider different associationmetrics or additional adjustments when
inferring co-expressions from scRNA-seq data. However, the proposed
procedures donot have rigorous justifications as they arenot explicitly
based on the underlying data generating mechanisms, rely on
restrictive distributional assumptions and do not appropriately
account for measurement errors and varying sequencing depths
across cells. Besides the above co-expression estimation methods,
recently proposedmethods such as sctransform8 and analytic Pearson
residuals16 estimate gene expression levels from scRNA-seq data by
removing the effect of varying sequencing depths via Pearson resi-
duals under a negative binomial model. Although these two methods
were not developed for co-expression estimation, one sensible
approach is to calculate correlations of expression levels that have
been adjusted for sequencing depths by either sctransform or analytic
Pearson residuals; we refer to these approaches as ρ-sctransform and
ρ-analytic PR, respectively, in our following discussion. As will be
demonstrated later, the sequencing depth normalization in sctrans-
form and analytic Pearson residuals, designed to infer expression
levels, are inadequate in removing biases from sequencing depth
variations and measurement errors when inferring co-expressions. In
our systematic evaluations of different methods based on simulated
and permuted real scRNA-seq data, we found that all the existing
methods, including ρ-sctransform and ρ-analytic PR, suffer from
inflated type-I errors, varying degrees of estimation biases, reduced
power in detecting co-expressions, and potentially misleading results
in downstream co-expression analysis such as clustering and principal
component analysis.

Here, we present our proposed statistical approach for estimating
and testing co-expressions from scRNA-seq data, called CS-CORE (cell-
type-specific co-expressions). Specifically, CS-CORE models the unob-
served true gene expression levels as latent variables, linked to the
observed UMI counts through a measurement model that accounts for
both sequencing depth variations and measurement errors. Under this
model, CS-CORE implements a fast and efficient iteratively re-weighted
least squares approach for estimating the true correlations between
underlying expression levels, together with a theoretically justified sta-
tistical test to assess whether two genes are independent. The proposed
model in CS-CORE does not impose any distributional assumptions on
the underlying expression levels and can flexibly accommodate single
cell data generating mechanisms such as negative binomial distributed
counts. Through systematic evaluations based on simulated and per-
muted real scRNA-seq data, we found that CS-CORE had proper type-I
error control, unbiased co-expression estimates and increased statis-
tical power compared with other methods. CS-CORE also had satisfac-
tory performance in downstream co-expression analysis.

We evaluated the utility of CS-CORE by applying it to multiple
scRNA-seq data sets including postmortem brain samples from Alz-
heimer’s disease patients and controls17 and peripheral blood mono-
nuclear cells (PBMC) of COVID-19 patients and controls18. For both
diseases, CS-CORE identified co-expressions that were more repro-
ducible across independent data sets and more enriched with known
transcription factor-target gene pairs than other methods. Clustering
analysis using results from CS-CORE extracted co-expressed and dif-
ferentially co-expressed gene modules that were more strongly enri-
ched for relevant cell-type-specific biological functions than those
inferred fromothermethods, highlighting the potential of CS-CORE in
characterizing cell-type-specific biological functions and uncovering
disease-related cell-type-specific pathways.

Results
Overview of CS-CORE
We have n cells from the same cell type with the observation for cell i,
i = 1, ..., n, denoted by a vector (xi1,…, xip) corresponding to the

observed UMI counts for p genes. We use si =
Pp

j = 1 xij to denote the
sequencing depth of cell i, which is the sum of UMI counts across all
genes in this cell. Let (zi1,…, zip) denote the underlying expression
levels from p genes in cell i, defined to be the number of molecules
from each gene relative to the total number of molecules in a cell9.
Assume that:

ðzi1, . . . ,zipÞ∼ Fpðμ,ΣÞ, xij ∣zij ∼PoissonðsizijÞ, ð1Þ

where Fp(μ, Σ) is an unknown nonnegative p-variate distribution with
mean vector μ = (μ1,…, μp),

Pp
j = 1 μj = 1, and covariance matrix

Σ = ðσjj0 Þp×p. Here, xij is the UMI count of gene j in cell i, assumed to
follow a Poisson measurement model9 depending on the underlying
expression level zij and sequencing depth si. This Poisson measure-
ment model explicitly accounts for the sequencing depths and mea-
surement errors.While amarginal expression-measurementmodel has
been considered for modeling expression levels in bulk RNA-seq19,20

and scRNA-seq data8,21,22, a joint expression-measurement model such
as Eq. (1) is needed to infer co-expressions. Under Eq. (1), if zij follows a
Gamma distribution, then xij follows a negative binomial distribution
marginally.

We measure gene co-expressions by Σp×p, which quantifies the
correlation strength between the underlying expression levels, and
Σp×p is cell-type-specific as cells fromthe samecell type are considered
(see Supplementary Discussion). This definition of co-expression is
precise and not biased by sequencing depth variations and measure-
ment errors. Specifically, for any gene pair ðj, j0Þ, we measure co-
expression via their correlation ρjj0 = σjj0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σjjσj0 j0

p
.

Given UMI counts fxi1, . . . ,xipgni = 1 and sequencing depths fsigni= 1,
estimating the covariance matrix Σp ×p is challenging. Without placing
distributional assumptions on Fp, we propose a moment-based itera-
tively reweighted least squares (IRLS) estimation procedure that is fast
to implement and statistically efficient. For eachgenepair ðj, j0Þ, we also
develop a theoretically justified hypothesis testing procedure that
evaluates the independence between their expression levels zij and zij0 .
The test statistic can be easily computed using IRLS estimates, does
not require distributional assumptions on Fp, and follows a standard
normal distribution under the null. For all statistical tests performed in
real data analyses, we applied a Benjamini-Hochberg (BH) procedure
to control for the false discovery rate.

Details of the above estimation and testing procedures are given
in Methods. In summary, CS-CORE takes UMI counts and sequencing
depths across cells as input and estimates correlations of the under-
lying expression levels as well as p values for testing independence
between gene pairs, without needing parameter tuning. The proce-
dure removes the confounding effects of varying sequencing depths
and the bias frommeasurement errors when inferring co-expressions,
is theoretically justified and fast to implement.

CS-CORE has better control of false positive rates
To evaluate the performance of CS-CORE and illustrate the con-
founding effects from sequencing depth variations on other methods
for independent gene pairs, we generated null data sets, where genes
are not co-expressed, by permuting the single nucleus RNA-seq
(snRNA-seq) data from ref. 17, while making the sequencing depths
across cells either constant or varying. Specifically, we normalized
gene expressions (UMI counts) within each cell by its sequencing
depth and, for each gene, we randomly permuted its normalized
expression levels across cells. Then, we obtained UMI counts for each
gene based on pre-specified sequencing depth of each cell (Methods).
To examine effects of sequencing depth variations, we considered two
settingswith one set toobserved sequencingdepths in real data, which
are highly variable, and one set to be constant across cells. This per-
mutation procedure de-correlated gene expressions such that the
average co-expression for each gene in the permuted data, calculated
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by averaging its co-expressions with all other genes, is expected to
center around zero, regardless of sequencing depth variations.

We comparedCS-CORE toother approaches, includingbaredSC10,
locCSN11, NoiseRegularization12, Normalisr13, Pearsoncorrelationof log
normalized data, propr14, Spearman correlation of log normalized
data, SpQN15, ρ-analytic PR16 and ρ-sctransform8 (Methods). Among
these approaches, statistical tests for co-expression are possible for
NoiseRegularization, Normalisr, Pearson correlation of log normalized
data, Spearman correlationof lognormalizeddata, ρ-analytic PR and ρ-
sctransform.

For null data with high variations in sequencing depths, we found
that co-expression estimates from most methods were biased with
estimated average gene co-expressions different from zero (Fig. 1a).
The amount of bias varied with the expression level with distinct pat-
terns for different methods. Meanwhile, in null data with no sequen-
cing depth variations, there were minimal biases for most methods
(Fig. 1a), demonstrating that co-expression estimates can be biased by
sequencing depth variations. By contrast, average co-expressions
estimated by CS-CORE were unbiased and centered around zero,
regardless of sequencing depth variations (Fig. 1a). We observed the
same qualitative patterns in our experiments with simulated data
(Supplementary Fig. 1). One main cause of bias from other methods is
no or inadequate adjustments of sequencing depth variations when
quantifying co-expressions, including the standard log transforma-
tions considered in locCSN, Pearson correlation of log normalized
data, propr and Spearman correlation of log normalized data, as illu-
strated in Fig. 2, and post hoc adjustments considered in Noise reg-
ularization and SpQN. For baredSC, the bias may be due to reasons
other than sequencing depth variations, such as violations of the

Gaussian mixture assumption on the underlying expression levels
(Supplementary Notes). While Normalisr, ρ-analytic PR and ρ-sctrans-
form are less confounded by sequencing depth variations, as they
applied marginal regressions to explicitly adjust for sequencing depth
variations, they had biases in estimating co-expressions (Fig. 3a). We
also found that these three methods had reduced power in detecting
co-expressions when compared to CS-CORE (Supplementary Fig. 2).

We also considered statistical tests for co-expressions in the
permuted data. As the null hypothesis of no co-expression is expected
to hold after permutation, p values for testing independence of gene
pairs should follow the Uniform[0,1] distribution. In null data with no
variations in sequencing depths, most methods had well-controlled
type-I errors as the Q-Q plots showed matching quantiles between
empirical distributions of p values and Uniform[0,1] (Fig. 1b). In null
data with high variations in sequencing depths, Noise Regularization,
Pearson, Spearmanand ρ-analytic PR had inflated type I errors (Fig. 1b).

Next, we further explain why standard normalization procedures,
such as scaling or log normalization, cannot remove the confounding
when inferring co-expressions and illustrate via a simple experiment.
We simulated UMI counts from an independent gene pair, each with a
high mean expression level and follows a negative binomial distribu-
tion.We computed the scaleddata as 104 × xi /si and the log normalized
data as logð104 × xi=si + 1Þ, and plotted the expression levels from gene
1 vs. gene 2 based on original, scaled and log normalized counts in
Fig. 2. It is seen that spurious co-expression patterns appearedboth for
scaled and log normalized counts. The reason is as follows. Given two
integers a and b, all cells with UMI counts a, b for these two genes,
respectively, are plotted to the point (a, b) in the original UMI counts
scatter plot. Interestingly, cells at this point, turning into

propr Spearman SpQN ρ−analytic PR ρ−sctransform CS−CORE

baredSC locCSN Noise Reg. Normalisr Pearson
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Fig. 1 | Validation of CS-CORE using permuted snRNA-seq data from ref. 17.
Results from permuted data with varying and constant sequencing depths are
colored with light red and blue, respectively. a Scatter plots with fitted curves
showingmean expression levels (x-axis) and average co-expression ( y-axis) of each
gene with co-expression estimated using baredSC, locCSN, Noise Regularization,
Normalisr, Pearson correlation of log normalized data (Pearson), propr, Spearman
correlation of log normalized data (Spearman), SpQN, ρ-analytic PR, ρ-sctransform

and CS-CORE. Average co-expressions are re-scaled by the maximum value to aid
comparison. Themean expression levels are plotted at the scale of log10μj + 3 for μj
defined in Eq. (1).bQ-Qplots comparing p values for testing co-expressions of gene
pairs against Uniform(0,1) using seven methods with statistical tests, including
Noise Regularization, Normalisr, Pearson correlation of log normalized data
(Pearson), Spearman correlation of log normalized data (Spearman), ρ-analytic PR,
ρ-sctransform and CS-CORE. Source data are provided as a Source Data file.
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(104 × a/si, 104 × b/si) after scaling, will be stretched out to form a line
with a slope b/a and an intercept 0 in the scaled data, and turning into
approximately ðlogðaÞ � logðsi=104Þ, logðbÞ � logðsi=104ÞÞ after log
normalization, forming a line with a slope 1 and an intercept logðbÞ �
logðaÞ in the lognormalizeddata (Fig. 2). These lines are artifacts of the
normalization and can seriously inflate false positives when inferring
co-expressions.

Using the UMI count data from this simulated independent gene
pair in Fig. 2, wegot the following co-expression estimates alongwithp
values (calculated for methods that offer tests) for existing methods
that use log normalized data: locCSN =0.61, Pearson correlation of log
normalized data = 0.14 (p value < 0.01), propr = 0.50, Spearman cor-
relation of log normalized data = 0.07 (p value = 0.02) and
SpQN=0.14.

CS-CORE has better co-expression estimation accuracy and
detection power
We evaluated the accuracy of CS-CORE in estimating and detecting co-
expressions and illustrated another issue often referred to as the
mean-correlation bias15,23 in co-expression estimation. The mean-
correlation bias is a separate issue from the confounding effect of
varying sequencing depths. It arises, as measuring associations of the
observed UMI counts, which profile the underlying expressions with
measurement errors, tend to yield attenuated estimates due to the
added errors. The amount of attenuation bias tends to decrease as the
expression level increases (see Methods) and correlations tend to be
more accurately estimated for highly expressed genes. As a result,
highly expressed genes can appearmore correlated as an artifact. This
attenuation bias has also been noted in analyzing bulk RNA-seq
data15,24, but it can be exacerbated by the shallow sequencing depths
frequently seen in scRNA-seq data.

To demonstrate this, we simulated expression data for gene pairs
with varying expression levels and a correlation of ρ =0.5 following
marginal negative binomial distributions (see Methods). For co-
expressed gene pairs with a true correlation of 0.5, we found that
correlation estimates from all other methods were inaccurate (Fig. 3a)
withmostmethods severely underestimating co-expressions for genes
with low ormoderate expression levels. The correlation estimates also
spuriously increased with expression levels for most methods. By
contrast, CS-CORE could accurately estimate co-expressions (Fig. 3a)
andwas not subject tomean-correlation bias. This is because CS-CORE
is based on an expression-measurement model and explicitly mea-
sures co-expressions using correlations of the underlying expression
levels, free of measurement errors. The mean-correlation bias
remained on data simulated with no variations in sequencing depths
(Supplementary Fig. 3), suggesting that the mean-correlation bias is a
separate source of bias from varying sequencing depths. We also

evaluated the variances of different estimators and found that CS-
CORE also achieved the smallest mean squared errors where both bias
and variance were considered (Supplementary Fig. 4). We further
evaluated the co-expression detection accuracy in simulations with
p = 500 where co-expressed pairs were set to those inferred from real
data (seeMethods). The precision-recall curves in Fig. 3b show that CS-
CORE achieves the highest area-under-the-curve value.

Finally, we compared the computing time of different methods
(Fig. 3c) under the simulation setting considered in Fig. 3b. It is seen
that CS-CORE is highly computationally efficient as it uses a least
squares estimation procedure. Specifically, CS-CORE was faster to
implement than the state-of-the-art method, locCSN, which is based
a local nonparametric test and ρ-sctransform, which requires fitting
marginal negative binomial regressions using likelihood-based
approaches. The computing time of CS-CORE is comparable to
simple procedures such as Pearson, Spearman and ρ-analytic PR, as
these simple procedures all include a normalization step (see
Methods).

Othermethods give biased results in downstream co-expression
analysis
Bias in estimating co-expressions can negatively impact important
downstream co-expression analyses such as clustering and principal
component analysis (PCA). To evaluate the performance of CS-CORE
and othermethods on such downstreamanalytical tasks, we simulated
n = 2000 cells for p = 100 genes with varying expression levels and a
co-expression matrix with four co-expressed gene clusters (see
Methods and Supplementary Methods). We estimated co-expression
networks using CS-CORE and other methods, and compared them to
the true co-expression network (Fig. 4a). In particular, when plotting
the results from each method, we ordered the genes by applying
hierarchical clustering to the estimated co-expression network. Esti-
mated co-expression networks with the same gene ordering are shown
in Supplementary Fig. 5. We found that CS-CORE was the only method
that could accurately estimate co-expressions and be used to recover
truly co-expressed gene clusters. The estimated co-expression net-
works and inferred cluster labels from other methods were strikingly
inaccurate. These findings were further supported by evaluating the
clustering accuracy (Fig. 4b),measuredusing adjustedRand index, and
the accuracy in estimating the top principal components (Fig. 4c),
measured using subspace distance25. As a comparison, we simulated
data with extremely high expression levels, so that measurement
errors aremuch reduced, andwith no sequencing depth variations and
found that the clustering accuracyof othermethods notably improved
(Supplementary Fig. 6).

To highlight the mean-correlation bias, we computed the corre-
lation between gene expression levels and estimated co-expression
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Fig. 2 | Expressions of a simulated independent gene pair in original UMI
counts, scaled and log normalized counts. Gene 1 and gene 2 were simulated to
have mean expression levels ranked 269 and 351 among 28,412 genes in excitatory

neurons from ref. 17. We computed the scaled data as 104 × xi /si and the log nor-
malized data as logð104 × xi=si + 1Þ. Source data are provided as a Source Data file.
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levels. As expression levels were randomly assigned independent of
correlation strengths, the true correlation between gene expression
and co-expression levels should be close to zero, as marked in Fig. 4d.
However, we found that the co-expression levels estimated from
locCSN, Normalisr, Pearson correlation of log normalized data, propr,
Spearman correlation of log normalized data, ρ-analytic PR and ρ-
sctransform were spuriously correlated with the mean expression
level. One implication of this mean-correlation bias is that, as highly
expressed genes often appear highly co-expressed with other genes as
an artifact, clustering methods tend to incorrectly cluster genes with
similar expression levels in a co-expression cluster and expression
levels become falsely predictive of the network modules (Fig. 4e). In
another data example, we demonstrated that this mean-correlation
bias could also lead to spurious clustering structures on null data
where genes are not co-expressed (Supplementary Fig. 7).

CS-CORE identified more biologically relevant co-expressions
from AD samples
We applied CS-CORE to a snRNA-seq data set collected from the pre-
frontal cortical regions of 12Alzheimer’s disease (AD) patients andnine
controls in ref. 17. We focused our comparison with ρ-sctransform, ρ-
analytic PR and SpQN, as they give better overall performance in
Figs. 1–4. First, using samples from controls, we estimated the co-
expression network among top 5000 highly expressed genes in five
major brain cell types including astrocyte (Ast), excitatory neuron (Ex),
inhibitory neuron (In), oligodendrocyte (Oli) and microglia (Mic), and
evaluated the reproducibility of identified co-expressions using two
independent snRNA-seq data sets on prefrontal cortex from refs. 26,27
(SupplementaryMethods). Figure 5a shows that the co-expressedgene
pairs inferred by CS-CORE were more reproducible in ref. 26 than
those inferred by ρ-sctransform across different p value cutoffs and
cell types, suggesting CS-CORE has greater statistical power to detect
true co-expression signals. We had similar observations for data from
ref. 27 (Supplementary Fig. 8) and for comparison with ρ-analytic PR
(Supplementary Fig. 9A, B).

Next, by evaluating the overlap of co-expressed pairs with a
database on known Transcription Factor(TF)-target gene pairs28, we
found CS-CORE recovered more known TF-target pairs than ρ-
sctransform and ρ-analytic PR from the inferred networks (Fig. 5b and
Supplementary Fig. 9C). Additionally, we extracted co-expressed gene
modules by applying WGCNA29 on significantly co-expressed gene
pairs, which were then evaluated using Gene Ontology (GO) enrich-
ment analysis30 (see Supplementary Methods). Our enrichment ana-
lysis used the 5000 highly expressed genes as the background gene
set, such that enrichment of any module is not attributed to its high
expression levels. For microglia, the innate immune brain cells with a
central role in the AD neuroinflammation mechanism31, clustering
based on CS-CORE identified four modules strongly enriched for GO
terms related to microglia’s functions, including defense response,
chemical synaptic transmission, cytoplasmic translation and protein
folding, respectively, while only two of these four functions were
found enriched formodules inferred based on ρ-sctransform, and only
one was found enriched based on SpQN and ρ-analytic PR, with less
significantp values and/or lower gene ratios (SupplementaryData 1). In
particular, Fig. 5c shows the estimated co-expression networks, with
genes ordered by hierarchical clustering, on a subset of genes from the
four GO terms. It is seen that CS-CORE accurately grouped genes into
respective biological functions, with genes in the same GO function
densely connected. By contrast, ρ-sctransformonly partially recovered
some gene modules and the estimated co-expressions are generally
much weaker, similarly for SpQN and ρ-analytic PR (Supplementary
Fig. 10). Besides microglia, CS-CORE also identified gene modules that
were enriched for cell-type-specific functions in astrocytes (synaptic
signaling, protein folding, cellular response to hypoxia), inhibitory
neurons (synaptic membrane) and oligodendrocytes (synaptic signal-
ing, cholesterol metabolic process), while these functions were either
not or much less enriched for modules inferred based on ρ-sctrans-
form and ρ-analytic PR (Supplementary Data 1). When compared to
SpQN, CS-CORE also identified more modules enriched for cell-type-
specific functions across cell types, with the exception of a few
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Fig. 3 | Validation of CS-CORE using simulated data, compared to baredSC,
locSCN, Noise Regularization, Normalisr, Pearson correlation of log normal-
ized data (Pearson), propr, Spearman correlation of log normalized data
(Spearman), SpQN, ρ-analytic PR and ρ-sctransform. a Curve-fitted co-expres-
sion estimates against geometric mean expression levels on gene pairs simulated
with a true correlation of 0.5 (5000 genes and 1000 cells). Mean expression levels
were plotted at the same scale as in Fig. 1. b Precision-recall curves evaluated using
500 genes, 5000 cells and a sparse co-expression matrix estimated from real data.
Cut-off values are based on p values for CS-CORE, Noise Regularization, Normalisr,
Pearson correlation of log normalized data, Spearman correlation of log

normalized data, ρ-analytic PR and ρ-sctransform and absolute values of co-
expression estimates for propr and SpQN, as they are not equipped with statistical
tests; baredSC and locCSN were excluded due to their extreme demand for com-
puting time. c Running times evaluated under the same setting as in (b). *locCSN is
evaluated for all gene pairs using 0.2% of the cells to reduce computing time.
**baredSC is evaluated using 0.2% of the cells and only for one gene pair. The
simulations were run on an Intel Xeon Gold 6240 @ 2.60GHz with one node and
50GB memory. The bars denote the average running times and the error bars
denote one standard deviation across 100 replications. Source data are provided as
a Source Data file.
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functions due to larger sizes of SpQNmodules (Supplementary Notes).
These results further highlight the potential of CS-CORE in uncovering
cell-type-specific biological pathways.

Finally, we constructed the differential co-expression network in
microglia between AD patients and controls from ref. 17 to investigate
the biological pathways dysregulated in AD (seeMethods). We applied
clustering analysis to the differential network to extract genemodules
that shared similar co-expression changes in AD and performed GO
enrichment analysis. Clustering based on CS-CORE identified three
differentially co-expressed gene modules enriched for cell-type-
specific functional pathways that are implied in AD disease mechan-
isms, including protein folding32, synapse signaling transduction33, and
protein kinase (toll-like receptors) signaling pathways34 (Supplemen-
taryData 2). In comparison, SpQN, ρ-analytic PR and ρ-sctransformdid
not identify any differentially co-expressedmodule enriched with cell-
type-specific biological or disease-related functions (Supplemen-
tary Data 2).

CS-CORE identified upregulated co-expressions from COVID-19
blood samples
We applied CS-CORE to a scRNA-seq data set from human peripheral
blood mononuclear cells (PBMC) of seven hospitalized patients with
SARS-CoV-2 and six controls18 to identify biological pathways differ-
entially regulated in COVID-19 patients.

Using samples from controls, we estimated cell-type-specific co-
expressions among the top 5000 highly expressed genes in five major
immune cell types, including B cells, CD4 positive T cells, CD8 positive
T cells, monocytes and natural killer (NK) cells. Using an independent
scRNA-seq data set on PBMC35, we found that CS-CORE yielded a larger
number of reproducible co-expressed gene pairs than ρ-sctransform
and ρ-analytic PR across different p value cutoffs and cell types (Sup-
plementary Figs. 11A and 12A). CS-CORE also uncovered more gene
pairs that overlapped with known TF-target gene pairs and more gene
modules with stronger cell-type-specific functional enrichment than ρ-
sctransform and ρ-analytic PR across cell types through GO enrich-
ment analysis (Supplementary Figs. 11B and 12B and Supplementary
Data 3). For example, CS-CORE identified three co-expressionmodules
enriched for the biological functions of B cells, including antigen
processing via MHC Class II, adaptive immune response and response
to inteferon-alpha (Supplementary Data 3). In contrast, only one of
these three functions was found enriched in a module inferred based
on ρ-sctransformwith a less significant p value and a lower gene ratio,
similarly for SpQN and ρ-analytic PR (Supplementary Data 3). Our
results on PBMC again show that CS-CORE can recover biologically
more meaningful co-expressions than other methods.

We next investigated cell-type-specific responses to SARS-CoV-2
viral infection inmonocytes using a differential co-expression analysis
similar to the one performed in the previous section between AD
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Fig. 4 | Evaluation of CS-CORE in recovering co-expressed gene clusters and
principal components of co-expression matrices using simulated data, com-
pared to locCSN, Noise Regularization, Normalisr, Pearson correlation of log
normalized data (Pearson), propr, Spearman correlation of log normalized
data (Spearman), SpQN, ρ-analytic PR and ρ-sctransform. a Heatmaps of true
and estimated co-expression networks from simulations. When plotting results
from each method, genes were ordered by applying hierarchical clustering to the
estimated co-expression network and color coded by their true gene cluster labels.
b Adjusted Rand index (ARI) between true co-expressed gene clusters and clusters
extracted from co-expression networks estimated using different methods. The
estimated clusterswereobtained as described in (a) with the number of clusters set
to 4. c Accuracy in recovering principal components, calculated using subspace

distance25 between the top four singular vectors of the true co-expression matrix
and those of the estimated co-expressionmatrix.d Spearmancorrelations between
the expression levels and estimated average co-expression levels of genes, with
ground truth calculated from simulation settings marked with a dashed line. e ARI
between gene clusters extracted from estimated co-expression networks and gene
clusters extracted from clustering gene expression levels, with the true ARI calcu-
lated from parameters used in simulation settings marked with a dashed line.
b–ewere evaluated with 25 replications. Data are presented as boxplots (n = 25 per
group; center line, median; box limits, upper and lower quartiles; whiskers, up to
1.5 × interquartile range; points, outliers). Source data are provided as a Source
Data file.
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patients and controls. Clustering analysis revealed gene modules that
share similar co-expression changes in monocytes in response to
SARS-CoV-2. In particular, four gene modules inferred using co-
expression estimates from CS-CORE were significantly enriched for
immune responses based on GO enrichment analysis, including virus
defense response, antigen processing, leukocyte mediated immunity
and cellular stress response (Supplementary Data 4). In contrast, ρ-
sctransform modules missed the functions of antigen processing and
leukocyte mediated immunity and SpQN and ρ-analytic PR did not
identify any gene module associated with immune responses (Sup-
plementary Data 4). In Fig. 6, we highlight a module identified by CS-
CORE, which is enriched for the interferon signaling pathway (Sup-
plementary Table 1), a key immune signature in COVID-19 patients that
has been demonstrated in multiple studies36–38. While it is known that
the expression levels of interferon-stimulated genes are upregulated in
monocytes from COVID-19 patients, by comparing the CS-CORE esti-
mates in monocytes between COVID-19 patients and controls, we
identified upregulated co-expressions among interferon-stimulated
genes, suggesting increased gene coordination in the interferon sig-
naling pathway upon viral infection. We also found stronger co-
expressions between genes in the interferon signaling and antigen
presentation pathways among COVID-19 patients, suggesting stronger
concerted immune responses between these two pathways. Finally, we
note that this gene module also contains multiple known genes in the
SARS-CoV-2 infection Reactome pathway, revealing cell-type-specific
changes in co-expressions among known disease-related genes.

Discussion
We developed a comprehensive statistical approach, CS-CORE, for
estimating and testing cell-type-specific co-expressions based on
scRNA-seq data. CS-CORE adopts a multivariate expression-
measurement model for the observed UMI counts and a pair-wise
IRLSmethod for estimation and testing. It does not place distributional
assumptions on the underlying expression levels and can be imple-
mented very efficiently to estimate and test co-expressions in a large
network. We demonstrated the better performance of CS-CORE than
other methods through both simulations and real data analyses.

Our work pointed to two potential sources of biases when infer-
ring co-expressions from UMI counts. The first one is the varying
sequencingdepths across cells,whichcan lead to inflated falsepositive
findings in detecting co-expressions, as a pair of independent genes
may appear co-expressed as a result of the sequencing depth varia-
tions across cells. The second one is the error from the measurement
process, causing the observed UMI counts to deviate from the
underlying expression levels. Under the Poisson measurement model,
this deviation is a function of both the expression level and the
sequencing depth. When estimating the underlying co-expression
level for a pair of genes, correlations between UMI counts tend to be
biased toward zero as a result of the measurement errors. In our
experiments, we observed such an attenuation bias in most methods
we compared to, leading to inaccuracy and reduced power in esti-
mating and detecting co-expressions. These two distinct sources of
biases, when combined, cause serious issues in estimating and testing

Fig. 5 | Co-expression analysis using AD brain samples in ref. 17. We used the
cells in fivemajor brain cell types from control subjects from ref. 17 to estimate cell-
type-specific co-expression networks. a Ratio of the numbers of gene pairs that
were identified as significant in both refs. 17,26 at specified p value cutoffs between
CS-CORE and ρ-sctransform. b Ratio of the numbers of gene pairs that were iden-
tified as significant and overlapped with known TF-target gene pairs in the TRRUST

database28 between CS-CORE and ρ-sctransform. c Heatmaps of microglia-specific
co-expression network estimates on genes from four GO terms on microglia’s
functions with genes ordered by hierarchical clustering. In (a, b), p values were
evaluated based on two-sided tests described inMethods and nominal p values not
adjusted formultiple testingwere used to determine statistical significance. Source
data are provided as a Source Data file.
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for co-expressions. As demonstrated in our analysis, no othermethods
can adequately address both. Our approach CS-CORE addresses them
by explicitly modeling the measurement process, accounting for both
varying sequencingdepths andmeasurement errors, and estimates the
first and second moments of the underlying multivariate expression
model to produce estimates of co-expressions, without any specific
distributional assumptions.

There has been recent work that makes cell-type-specific infer-
ences from bulk samples leveraging cell-type deconvolution
techniques39,40. These work often aims to estimate cell-type-specific
expressions and compositions in bulk samples41–44. In particular, a
recent method CSNet5 focuses on estimating cell-type-specific co-
expressions from bulk sample data. The rich bulk samples collected
over past decades and the increasingly available scRNA-seq data
together offer a great opportunity to integrate bulk samples and single
cell data to draw cell-type-specific inferences of co-expressions. The
proposed method CS-CORE provides a useful tool in developing
methods for such integrative analyses.

In CS-CORE, we use Poisson distribution for the measurement
model in CS-CORE, as it agrees with the existing literature8,9,16 that a
Poisson distribution is usually sufficient to characterize the variations
introducedby the sequencing experiment. It can be useful to adaptCS-
CORE tomodel xij∣zij using other distributions thatmodel nonnegative
integers such as the negative binomial distribution and we leave it to
future work.

In CS-CORE, we have assumed that gene expressions from cells
of the same cell type follow the same distribution. This assumption
may not hold when the cells are collected from individuals with dif-
ferent genetic, demographic and clinical characteristics. For exam-
ple, there is a growing interest in studying the genetic basis of cell-
type-specific gene expression and co-expression differences across
individuals using single cell data, and such population level single
cell data are becoming increasingly available45,46. As an important
next step, we plan to extend the CS-CORE framework to infer indi-
vidualized cell-type-specific co-expression networks and to study the
differences in gene co-expressions across genotypes and conditions,
shedding light on individualized and context-specific biological
functions and pathways.

In summary, the CS-CORE method introduced in this article is
statistically sound and computationally efficient. Compared to the
other methods, it generates more reproducible and biologically more

relevant cell-type-specific co-expression networks across multiple
scRNA-seq data sets. With the rapid increase of scRNA-seq studies, we
believe that CS-CORE offers a powerful and robust statistical tool to
infer cell-type-specific co-expression networks to characterize biolo-
gical pathways and molecular mechanisms at the cell type level.

Methods
CS-CORE method
Under the expression-measurement model defined in Eq. (1), it holds
that EðxijÞ= siμj, VarðxijÞ= siμj + s

2
i σjj, and E½ðxij � siμjÞðxij0 � siμj0 Þ�=

s2i σjj0 . This motivates us to estimate μj’s and ðσjj0 Þp×p via the following
set of regression equations:

xij = siμj + ϵij ,

ðxij � siμjÞ2 = siμj + s
2
i σjj +ηij ,

ðxij � siμjÞðxij0 � siμj0 Þ= s2i σjj0 + ξ ijj0 ,

ð2Þ

where ϵij, ηij, and ξ ijj0 are independent andmean-zero error variables for
all i, j, j0. Specifically, given UMI counts xij’s and sequencing depths si’s,
the mean parameter μj is estimated via minμ

Pn
i= 1 wijðxij � siμÞ2, where

wij is the weight for cell i to be determined. Given the estimates μ̂j ’s,

we estimate σjj and σjj0 with minσ

Pn
i= 1 hij ½ðxij � siμ̂jÞ2 � siμ̂j � s2i σ�

2

andminσ

Pn
i = 1 gijj0 ½ðxij � siμ̂jÞðxij0 � siμ̂j0 Þ � s2i σ�

2
, respectively, where hij

and gijj0 are weights to be determined. These weighted least squares can
be computed very efficiently.

In CS-CORE, we carefully select and update theweights via an IRLS
procedure, such that the weighted least squares estimators are sta-
tistically efficient. The most ideal weights, in terms of minimizing the
variance of the IRLS estimator, should be the reciprocal of the var-
iances of the error variables in Eq. (2)47. Hence, we set
wij = 1=VarðϵijÞ= 1=ðsiμj + s

2
i σjjÞ, which is updated in each step of the

IRLS estimation. The analytical forms of Var(ηij) and Varðξ ijj0 Þ are dif-
ficult to derive as we do not place distributional assumptions on zij.
Given weights wij’s for the mean parameter estimation, we set weights
for variance and covariance estimation as hij =w

2
ij and gijj0 =wijwij0 ,

respectively, which yield good performance in our experiments
(Supplementary Notes) and the IRLS procedure typically converges
within five iterations. In practice, we add a regularization step to the
variance parameters σjj’s used in calculating the weights, as their

Fig. 6 | CS-CORE estimates in monocytes from control subjects and COVID-19
patients.Known interferon-stimulated genes are colored in red. Genes in the SARS-
CoV-2 infection Reactome pathway are colored in brown. * is used to mark genes
that belong to both gene sets. We performed a differential co-expression analysis
on top 1000 highly expressed genes in monocytes and obtainedmodules of genes
that shared similar changes in co-expressions between cells fromCOVID-19patients

and controls. For a differentially co-expressed gene module enriched for the
interferon signaling pathway, we focused on genes that had strong differential
signals (sum of absolute differential co-expressions greater than the median) and
visualized the co-expression network estimates in control subjects and COVID-19
patients. Source data are provided as a Source Data file.
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estimates can be variable, leading to highly variable weights. Speci-
fically, we wrote σjj =μ

2
j ×θj and regularized the over-dispersion

parameter θj across genes, inspired by a similar idea in DESeq220 and
sctransform8. We found that such a simple regularization step leads
to stable weight estimates and a reduced variance of the weighted
least squares estimator. The detailed procedure for parameter esti-
mation is presented in Algorithm 1, where IRLS formulas
f μj
ð�Þ,f σ jj

ð�Þ,f σjj0
ð�Þ for estimating μj, σjj and σjj0 can be found in Sup-

plementary Methods.
Next, we develop a statistical test to assess whether a gene pair

have independent expression levels. Under the model in Eq. (1) and
when zij and zij0 are independent, Varðξ ijj0 Þ= ðsiμj + s

2
i σjjÞðsiμj0 + s

2
i σj0 j0 Þ=

1=gijj0 . Letting σ̂jj0 be estimatedwith true μj’s, wedefine the test statistic

Tjj0 = σ̂jj0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðσ̂jj0 Þ

q
, which can be calculated as:

Tjj0 =

P
i s

2
i ðxij � siμjÞðxij0 � siμj0 Þgijj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i s
4
i ðsiμj + s

2
i σjjÞðsiμj0 + s

2
i σj0 j0 Þg2

ijj0

q :

It then follows that Tjj0 ∼Nð0,1Þ under the null hypothesis that zij and
zij0 are independent. This result allows us to directly compute p values
by plugging in IRLS estimated μj’s and σjj’s, all of which are consistent
weighted least squares estimators.

Algorithm 1. CS-CORE estimation
1: Input: UMI counts X = ðxijÞn×p

with n cells and p genes,
sequencing depths fsigni = 1
2: Set Δ(0) = 1. Set t =0.
3: // Estimate μj’s and σjj’s
4: // Initialize with ordinary least sqaures
5: for j = 1,…, p do
6: μ̂ðtÞj  f μj

ð1Þ, ðσ̂jjÞðtÞ  f σ jj
ðμ̂ðtÞj ,1Þ.

7: end for
8: // Iteratively reweighted least squares
9: while Δ(t)≥0.05 do
10: t← t + 1
11: // Regularize θj estimates for weighting
12: θ̂

ðtÞ  medianjfðσ̂jjÞðt�1Þ=ðμ̂ðt�1Þj Þ2g
13: // Update μj, σjj estimates
14: for j = 1,…, p do
15: wðtÞij  1=½siμ̂ðt�1Þj + s2i ðμ̂

ðt�1Þ
j Þ2 × θ̂ðtÞ�

16: μ̂ðtÞj  f μj
ðwðtÞij Þ

17: hðtÞij  1=½siμ̂ðtÞj + s2i ðμ̂
ðtÞ
j Þ

2
× θ̂
ðtÞ�

2

18: ðσ̂jjÞðtÞ  f σjj
ðμ̂ðtÞj ,hðtÞij Þ

19: end for
20: // Assess convergence
21: ΔðtÞ  max

j
∣ log ðσ̂jjÞðtÞ � log ðσ̂jjÞðt�1Þ∣

22: end while
23: // Estimate σjj0 ’s
24: Let θ̂= θ̂

ðtÞ
, μ̂j = μ̂

ðtÞ
j ,σ̂jj = ðσ̂jjÞðtÞ for j, j0 = 1, . . . ,p.

25: for j, j0 = 1, . . . ,p,j≠j0 do
26: gijj0 = 1=f½siμ̂j + s

2
i ðμ̂jÞ2 × θ̂�½siμ̂j0 + s

2
i ðμ̂j0 Þ2 × θ̂�g

27: σ̂jj0 = f σjj0
ðμ̂j,μ̂j0 ,gijj0 Þ

28: ρ̂jj0 = σ̂jj0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂jjσ̂j0 j0

q
29: end for
30: Output: μ̂j ,σ̂jj ,σ̂jj0 for j, j

0 = 1, . . . ,p

Other co-expression estimation and testing methods using
scRNA-seq data
We compared CS-CORE with ten other methods for inferring gene co-
expression from single cell data, including baredSC10, locCSN11, Noise
Regularization12, Normalisr13, Pearson correlation of log normalized
data, propr14, Spearman correlation of log normalized data, SpQN15, ρ-

analytic PR16 and ρ-sctransform8. The method baredSC was evaluated
with the implementation provided at https://baredsc.readthedocs.io/
en/latest/ with default parameters. Themethod locCSN was applied on
log normalized data logð104 × xij=si + 1Þ and computed with the Python
implementation provided at https://github.com/xuranw/locCSN.While
locCSN estimates one network per cell, we followed the authors’
instructions to aggregate cell-specific co-expressions into cell-type-
specific co-expressions, as stated in Wang et al.11 that averaging pro-
vides stable estimates of the network structure. The method propr
refers to ρp in ref. 14 and was calculated with the R package “propR”
(v.4.2.6). For ρ-analytic PR, we computed the analytic Pearson residuals
as described in ref. 16 and evaluated Pearson correlations between the
residuals. For ρ-sctransform,we computed the residuals of sctransform
using R package Seurat (v.4.0.3) and evaluated Pearson correlations
between the residuals. The Spearman (Pearson) correlation was calcu-
lated on log normalized expression data logð104 × xij=si + 1Þ using the R
package “stats” (v.4.1.3). Noise Regularization12 was implemented from
https://github.com/RuoyuZhang/NoiseRegularization, Normalisr13 was
computed with the Python implementation from https://github.com/
lingfeiwang/normalisr (v.1.0.0) and SpQN15 was computed with R
package “SpQN” (v.1.6.0).

Among the above ten methods, statistical tests for co-
expressions are available for Noise Regularization, Normalisr, Pear-
son correlation of log normalized data, Spearman correlation of log
normalized data, ρ-analytic PR and ρ-sctransform. Specifically, the p
values for Normalisr were computed using the online code provided
for its implementation. Test statistics for all other methods with
statistical tests were calculated as t = r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þ=ð1� r2Þ

p
given the

correlation estimate r, and two-sided p values were evaluated under
the standard normal distribution. For methods that do not offer
statistical tests or suffer from inflated type-I errors, we evaluated
empirical p values using a simulation-based approach (Supplemen-
tary Methods).

Experiments with permuted scRNA-seq data
To generate null data sets from a given scRNA-seq data set with co-
expression levels at or close to zero among all gene pairs while pre-
serving gene expression levels, we adopt the following approach that
combines permutation with Poisson sampling. First, we calculated
normalized expression level for each gene j in cell i, written as yij = xij/si.
Then, for each gene j, we randomly permuted the normalized
expressions ðyijÞi= 1,...,n across n cells. After permutation, gene expres-
sions were decorrelated and no gene pairs were expected to co-
express. Finally, the UMI count of gene j from cell i in the permuted
data was calculated by sampling from Poissonðti yp

ij Þ, where yp
ij is the

normalized expression level after permutation and ti is the desired
sequencing depth in cell i. For the varying and constant sequencing
depth settings in Fig. 1, we set ti to the observed sequencing depth si
and median(s1,…, sn), respectively.

For numerical results in Fig. 1 and Supplementary Fig. 1, we
used the snRNA-seq data from ref. 17 and selected excitatory
neurons from control subjects. The distribution of sequencing
depths is long-tailed with a median of 5833 (Supplementary
Fig. 13). We randomly sampled 1000 cells and their corresponding
sequencing depths. For all methods except for baredSC and
locCSN, we focused on 500 genes randomly sampled from the top
5000 highly expressed genes with probabilities proportional to
the inverse density of expression levels. This ensures that the
sampled genes could cover the range of expression levels. For
baredSC and locCSN, we focused on 20 and 100 genes randomly
sampled from the top 5000 highly expressed genes in a similar way
respectively due to their extreme computational costs (Fig. 3c).
For numerical results in Fig. 1b, we further repeated permutations
for 100 times, randomly selected 100 gene pairs and used their p
values from all replicates to make Q-Q plots.
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A simple illustration of the expression-level-dependent
attenuation bias
To illustrate how errors from the Poisson measurement model in Eq.
(1) can bias co-expression estimates, we conduct a short analysis under
a much simplified case that directly calculates Pearson correlations of
UMI counts. The analysis is similar to that in ref. 15, though si was not
considered there. From Eq. (1) and for genes j, j0, we have:

E ½ xij�Eðxij Þð �½xij0 �Eðxij0 Þ�ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðxij ÞVarðxij0 Þ
p =ρjj0 ×aijaij0 ,

aij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i Varðzij Þ
Varðxij Þ

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
siCV

2
j

1=μj + siCV
2
j

r
,

ð3Þ

whereCVj is the coefficient of variation of gene j defined as
ffiffiffiffiffiffi
σjj

p
=μj . To

measure the true correlation ρjj0 , the correlation based on UMI counts
xij and xij0 is always biased toward zero, as aijaij0<1 when μj ,μ

0
j>0. We

refer to aij, derived under the Poissonmeasurementmodel in Eq. (1), as
the attenuation factor in this analysis.

When CVj’s are fixed, the attenuation factor aij is closer to 1 for
highly expressed genes with a larger μj. Correspondingly, correlations
are more accurately estimated for highly expressed genes and more
attenuated for lowly expressed genes, assuming si’s do not vary across
cells. Based on a real snRNA-seq data set from ref. 17, we indeed
observed that the estimated aij approached 1 as the gene expression
level increased (Supplementary Fig. 14). With si’s varying across cells,
the UMI counts for a pair of genes across cells are not identically
distributed. In this case, it is difficult to analytically demonstrate the
combined effect of the attenuation bias and the varying sequencing
depths on co-expression estimation.

Simulating from the multivariate expression-
measurement model
To simulate gene expression data from themodel in (1), we combine a
marginal negative binomial model and a copula-based approach that
can simulate multivariate count data following a pre-specified co-
expression matrix. All simulation experiments were designed to
simulate cells from the same cell type.

We specified the distribution of true expression level zij to be
Gamma(αj,βj) where μj =αjβj and σjj =αjβ

2
j correspond to the marginal

mean and variance in Eq. (1). Conditional on zij, we simulated counts xij
from Poisson(sizij) independently for cell i and gene j. Marginally, this
Poisson-Gamma mixture is equivalent to a negative binomial model on
xij, which is commonly used to model droplet-based single cell
data8,48–50. In our simulations, μj, σjj and si are estimatedor sampled from
real data (see Supplementary Methods). Next, given a p ×p correlation
matrix R, we adopted a Gaussian copula to simulate correlated Gamma
randomvariables51,52. In particular,wefirst simulated samples (vi1,…, vip)
from a multivariate normal distribution with mean 0 and correlation R
and then computed zij = F

�1
j ðΦðvijÞÞ, where Φ( ⋅ ) is the cumulative dis-

tribution function (CDF) of a standard normal distribution and Fj( ⋅ ) is
the CDF of Gamma(αj, βj). In Fig. 3b, the matrix R was estimated from
ref. 17 and in Fig. 4a, the modular matrix R was generated from a net-
work model. These details can be found in Supplementary Methods.

Differential co-expression analysis
For differential co-expression analysis, we first estimated co-
expression networks from the disease and control groups sepa-
rately. For the group with more cells, we randomly sampled a subset
of cells such that the two groups had the same number of cells when
estimating co-expressions. For each gene pair, we calculated the
difference between co-expression estimates and assessed the sta-
tistical significance using a permutation test, where we randomly
permuted the group labels 100 times and built a null distribution of
differences in co-expressions. We then applied WGCNA29 to the sig-
nificantly differentially co-expressed pairs (BH-adjusted p values <

0.05) with the soft-thresholding power set to 1 and extracted dif-
ferentially co-expressed modules.

Data summary and pre-processing
A summary of the data sets analyzed in our work is given in Table 1. For
cell-type labels of the cells, we used the cell-type labels provided by
authors of refs. 26,27,18,35. Cell-type labels were not provided for the
data set from ref. 17 and we annotated the cell types following the
procedure described in ref. 17.

To conduct the reproduciblity analysis in five major immune cell
types between ref. 18 and ref. 35, we combined the Naive B cells and
Memory B cells from ref. 35 to compare with B cells from ref. 18; we
combined the CD14 Monocytes and CD16 Monocytes from ref. 18 to
compare with the combination of classical monocytes and NC and IM
monocytes from ref. 35; we combined theNaive CD4T,Memory CD4T
and Memory CD4 and MAI T cells from ref. 35 to compare with CD4
T cells from ref. 18; we combined the Memory CD8 T, Naive CD8 T,
Effector T and IFN-activated CD8 T cells from ref. 35 to compare with
CD8 T cells from ref. 18; we combined the NK CD56dim and NK
CD56bright cells from ref. 35 to compare with the NK cells from ref. 18.

Statistics and reproducibility
This study used data from published studies and details on the study
design can be found in the original publications listed in Table 1. The
statistical analysis of the data was described in Methods. The results
can be reproduced followingMethods. No statisticalmethodwas used
to predetermine sample size. No data were excluded from the ana-
lyses. The experiments were not randomized. The investigators were
not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this work are publicly available, including GSE157827,
syn21261143, syn22079621, COVID-19 Peripheral Blood Mononuclear
Cells (PBMCs) (https://www.covid19cellatlas.org/index.patient.html),
and GSE155224. More details on these data are included in Table 1. For
functional enrichment analysis, we used the Gene Ontology Database
provided by R package clusterProfiler (v.4.2.2)30 and the Reactome
Pathway Database provided by R package ReactomePA (v.1.38.0)53.

Table 1 | Summary of single cell (nucleus) RNA-seq data used
in analyses

Data sets 17 26 27 18 35

Tissue Brain Brain Brain PBMC PBMC

Data snRNA-seq snRNA-seq snRNA-seq scRNA-
seq

scRNA-seq

#cells/
nuclei

169,500 70,634 61,472 44,721 153,554

#cell types 6 8 7 13 29

Median
seq depth

2600 1474 6382 1946 3618

#genes 28,412 17,926 36,114 26,361 33,538

#samples 21 48 18 14 31

Accession
codes

GSE157827 syn21261143 syn22079621 PBMCs
from
Blish
lab

GSE155224

The following information is provided for each data set: reference, tissue, data type (scRNA-seq/
snRNA-seq), number of cells/nuclei, number of cell types, median sequencing depths, number
of genes, number of samples and accession codes.
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Additional raw data for producing figures have been deposited in
Zenodo under accession code 798355954. Source data are provided
with this paper.

Code availability
Codes that implement CS-CORE are covered by the MIT License and
are available on GitHub (https://github.com/ChangSuBiostats/CS-
CORE), (https://github.com/ChangSuBiostats/CS-CORE_python) and
Zenodo (https://doi.org/10.5281/zenodo.7983426)55. Tutorials on
usage are also provided (https://changsubiostats.github.io/CS-CORE/).
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