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Subtle adversarial image manipulations
influence both human and machine
perception

Vijay Veerabadran1,3, Josh Goldman1, Shreya Shankar1,4, Brian Cheung1,5,
Nicolas Papernot2, Alexey Kurakin2, Ian Goodfellow2, Jonathon Shlens 2,
Jascha Sohl-Dickstein2, Michael C. Mozer 2 & Gamaleldin F. Elsayed 2

Although artificial neural networks (ANNs) were inspired by the brain, ANNs
exhibit a brittleness not generally observed in human perception. One short-
coming of ANNs is their susceptibility to adversarial perturbations—subtle
modulations of natural images that result in changes to classification deci-
sions, such as confidently mislabelling an image of an elephant, initially clas-
sified correctly, as a clock. In contrast, a human observer might well dismiss
the perturbations as an innocuous imaging artifact. This phenomenon may
point to a fundamental difference between human and machine perception,
but it drives one to ask whether human sensitivity to adversarial perturbations
might be revealed with appropriate behavioral measures. Here, we find that
adversarial perturbations that fool ANNs similarly bias human choice. We
further show that the effect is more likely driven by higher-order statistics of
natural images to which both humans and ANNs are sensitive, rather than by
the detailed architecture of the ANN.

Artificial neural networks (ANNs) have produced revolutionary
advances in machine intelligence, from image recognition1 to natural
language understanding2 to robotics3. The inspiration for ANNs was
provided by biological neural networks (BNNs)4. For instance, con-
volutionalANNs adopt key characteristics of theprimate visual system,
including its hierarchical organization, local spatial connectivity, and
approximate translation equivariance5,6. The historical relationship
between ANNs and BNNs has also led to ANNs being considered as a
framework for understanding biological information processing.
Visual representations in ANNs are strikingly similar to neural activa-
tion patterns in primate neocortex7–12, and ANNs have been successful
in accounting for a range of behavioral phenomena in human per-
ception, learning, and memory13–19.

However, qualitative differences exist between human and
machine perception. Architecturally, human perception has capacity
limitations generally avoided in machine vision systems, such as
bottlenecks due to spatial attention and the drop off in visual acuity

with retinal eccentricity20. In terms of training environments, human
perception is immersed in a rich multi-sensory, dynamical, three-
dimensional experience, whereas standard training sets for ANNs
consist of static images curated by human photographers20. While
these differences in architecture, environment, and learning proce-
dures seem stark, they may not reflect differences in underlying
knowledge and capacities, but instead constraints in manifesting the
knowledge (i.e., the performance-competence distinction raised by
Firestone21). Nonetheless, these differences may have behavioral
consequences. ANNs are found to be brittle relative to human per-
ception in handling various forms of image corruption22. One possi-
ble explanation for this finding is that machine perception is heavily
influenced by texture whereas human perception is guided by
shape23. The robustness gap between machine and human percep-
tion is narrowing as ANNs and training data set increase in scale,
reaching the point where machines surpass human robustness on
some forms of input noise24. Nonetheless, even as the robustness gap
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narrows, humans make systematically different classification errors
than machines24.

One particular class of ANN errors has attracted significant
interest in the machine-learning community because the errors seem
incongruous with human perception. These errors are produced by
adversarial image perturbations, subtle image-specific modulations of
individual pixels that are designed to alter ANN categorization to dif-
ferent coarse image classes25–27, as illustrated in Fig. 1a. This adversarial
effect often transfers to ANN models trained on a different data set25,
with a different algorithm28, or even to machine learning algorithms
with fundamentally different architectures25 (e.g., adversarial exam-
ples designed to fool a convolution neural network may also fool a
decision tree). What makes these perturbations so remarkable is that
to casual human observers, the image category is unchanged and the
adversarial perturbations are interpreted—to the extent they are even
noticed—as irrelevant noise.

The standard procedure for generating adversarial perturbations
starts with a pretrained ANN classifier that maps RGB images to a
probability distribution over a fixed set of classes25. When presented
with an uncorrupted image, the ANN will typically assign a high
probability to the correct class. Any change to the image, such as
increasing the red intensity of a particular pixel, will yield a slight
change to the output probability distribution. Adversarial images are
obtained by searching—via gradient descent—for a perturbation of the
original image that causes the ANN to reduce the probability assigned
to the correct class (an untargeted attack) or to assign a high prob-
ability to some specified alternative class (a targeted attack). To ensure
that the perturbations do not wander too far from the original image,
an L∞-norm constraint is often applied in the adversarial machine-
learning literature; this constraint specifies that no pixel can deviate
from its original value by more than ±ϵ, with ϵ usually much smaller
than the [0–255] pixel intensity range27. The constraint applies to pixels
in each of the RGB color planes. Although this restriction does not
prevent individuals from detecting changes to the image, with an
appropriate choice of ϵ the predominant signal indicating the original

image class in the perturbed images is mostly intact. Yet ANNs largely
change their predictions in response to adversarial perturbations.

These errors seem to point to a troubling fragility of ANNs, which
makes thembehave in amanner that is counter intuitive andostensibly
different than human perception, suggesting fundamental flaws in
their design. Ilyas et al.29 propose that the existence of adversarial
examples is due to ANNs exploiting features that are predictive but not
causal, and perhaps ANNs are farmore sensitive to these features than
humans. Kim et al.30 further argued that neural mechanisms in the
human visual pathwaymay filter out the signal contained in adversarial
perturbations. However, Ford et al.31 make a theoretical claim that any
classifier, human or machine, will be susceptible to adversarial exam-
ples in high dimensional input spaces if the classifier achieves less than
perfect generalization to more standard types of corruption (e.g.,
Gaussian noise) or to naturally occurring variation in the input. As
humans sometimes make classification mistakes, it may be inevitable
that they also suffer from adversarial examples. However, it is not
inevitable that ANNs and BNNs are susceptible to the same adversarial
examples.

Although the fascination with adversarial perturbations stems
from the assumption that ANNs are fooled by a manipulation to which
humans are believed to be impervious, some evidence has arisen
contradicting this assumption. Han et al.32 used fMRI to probe neural
representations of adversarial perturbations and found that the early
visual cortex represents adversarial perturbations differently than
Gaussian noise. This difference is a necessary condition for human
behavioral sensitivity to adversarial perturbations. Several research
teams have shown that primate forced-choice classification decisions
ofmodulatedor synthetic images can bepredictedby the responses of
ANNs. First, Zhou and Firestone33 performed a series of experiments
on a variety of fooling images (Fig. 1c) that ranged from synthetic
shapes and textures to images having perceptually salient modula-
tions. Although human-ANN agreement is found, Dujmović et al.34

argue that the agreement is weak and dependent on the choice of
adversarial images and the design of the experiment. Second, Yuan
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Fig. 1 | Examples of adversarial images used as stimuli in past research. a A
subtle perturbation added to a bear image that causes an ANN to switch its clas-
sificationdecision frombear to truck, similar to those first demonstrated in Figure 5
of Szegedy et al., 201325. Original image shown here was obtained from MS-COCO
dataset62. In this and subsequent figures, perturbations are scaled up for better
visualization. b An adversarial attack that causes face-selective neurons in the
macaque inferotemporal cortex to predict a perturbed human face image as
monkey not human, obtained with permission from Yuan et al. 202035. c Various

adversarial imagesused in humanbehavioral studies by Zhouand Firestone, 201933.
This paper presents studies that go beyond the work in (b) and (c) by using per-
turbations more closely resembling those illustrated in Figure 5 of Szegedy et al.25,
which seem relatively subtle and innocuous, the key properties of adversarial
examples that made them `intriguing' in earlier work25. Illustration images in panel
(c) were obtained with permission from Papernot et al.70, Nguyen et al.71, and
Athalye et al.72, left to right respectively.
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et al.35 trained anANN tomatch the responses of face-selective neurons
in the macaque inferotemporal cortex and then used this model to
modulate images toward a target category (Fig. 1b). Both human par-
ticipants and monkey subjects showed the predicted sensitivity to the
modulations. In eachof these twoexperiments, the imagemodulations
were not subtle and a human observer could make an educated guess
about how another observer would respond in a forced-choice judg-
ment. As such, it remains an open question whether people are influ-
enced by images that possess the intriguing property25 that first drew
machine-learning researchers to adversarial examples—that they are
corruptions to natural images that are relatively subtle and might
easily be perceived as innocuous noise.

In this work, we investigate whether adversarial perturbations—a
subordinate signal in the image—influence individuals in the same way
as they influence ANNs. We are not exploring here whether pre-
dominant and subordinate signals may have separation in human
cognition, but rather that both signals may influence human percep-
tion. The challenge in making this assessment is that under ordinary
viewing conditions, individuals are so strongly driven by the pre-
dominant signal that categorization responses ignore the subordinate
signal. In contrast, ANNs clearly have a different balance of influence
from the predominant and subordinate signals such that the sub-
ordinate signal dominates the decision of ANNs. Setting aside this
notable and well-appreciated difference, which is a key reason for the
interest in adversarial attacks, the question remains whether the sub-
ordinate signal reflects some high-order statistical regularity to which
both ANNs and BNNs are sensitive. If so, we obtain even more com-
pelling evidence for ANNs as a model of human perception; and if not,
we can point to a brittleness of ANNs that should be rectified before
trust is placed in them to make perceptual decisions. We conduct
behavioral experiments in which participants performed forced-
choice classification of a briefly presented perturbed image, or

participants inspected pairs of perturbed images with no time con-
straint and selected the one that better represented anobject class.We
find converging evidence from these experiments suggesting that
subordinate adversarial signals that heavily influence ANNs can also
influence humans in the same direction. We further find the ANN
properties that underlie this perceptual influence and identify reliance
on shape cues as an important characteristic enhancing alignmentwith
human perception.

Results
Adversarial perturbations increase human classification errors
with brief presentations
In an initial experiment, we examined human classification responses
to brief, masked presentations of adversarial images. By restricting
exposure time to increase classification errors, the experiment aimed
to increase individuals’ sensitivity to aspects of the stimuli that might
otherwise not have influenced a classification decision. We created
adversarial perturbations to images of a true class T by optimizing the
perturbation such that an ensemble of ANNs (prepended with an
artificial retinal blurring layer, see Supplementary Note 1) produces a
classification preference for an adversarial class, A. We refer to the
perturbed image as A↑. Participants were asked to make a forced
choicebetweenT andA (Fig. 2a).Wealso testedparticipants on control
images formed by top-down flipping adversarial perturbations
obtained in the A↑ condition. This simple transformation breaks the
pixel-to-pixel correspondence between the adversarial perturbation
and the image and largely obliterates the adversarial effect on ANNs
while preserving norms and other statistics of the perturbation. Our
results show that participants aremore likely to choose the adversarial
class A with A↑ images than with control images (Fig. 2b).

The increase in error rate appears to demonstrate a consistent
influence of adversarial perturbations on both ANNs and BNNs.
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Fig. 2 | Experiment 1: Adversarial perturbations increase errors when partici-
pants are asked to classify briefly presented images. a Following fixation, a
stimulus image is presented briefly followed by a dynamic, high contrast mask.
Participants chose between two classes, the target class T (dog in the example) and
an adversarial class A (cat in the example). Images used in the experiment are
obtained from ImageNet dataset61, but the image used here as an illustration is
obtained fromMS-COCOdataset62.bBox-and-whisker plots show the human error-
rate distribution obtained from a pool of n = 38 independent participants who
performed amax of three discrimination conditions (spider vs. snack n = 24, cat vs.

dog n = 35, broccoli vs. cabbage n = 32). We use Tukey conventions: box lower
border, middle line, and upper border show 25th percentile, median, and 75th
percentile, respectively, and whiskers show the lowest and highest points within
1.5 × the interquartile range. Themean error rate across conditions is reliably higher
for adversarial versus control stimuli (t(91) = 4.463, p <0.001, Cohen’s d =0.66, 95%
CI of difference between means = [0.04, 0.09], one-tailed t-test). Red error bars
indicate ± 1 standard error of the mean (SE). The black dashed line is the baseline
error rate (±1 SE) for unperturbed images.
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Fig. 3 | Experiments 2–4: Adversarial examples systematically bias choice.
a Participants are shown two perturbations of the same image, of true class T, and
are asked to select the image which is more like an instance of some adversarial
class A. The image pair remains visible until a choice is made. b One of the two
choices is an adversarial perturbation that increases the probability of classifying
the image as A, denoted A↑. Experiment 2: T =A; the second image is perturbed to
be less A-like, denoted A↓. Experiment 3: T ≠A; the second image is formed by
adding a right-left flipped version of the adversarial perturbation, which controls
for the magnitude of the perturbation while removing the image-to-perturbation
correspondence. Experiment 4: T ≠A; the second image is an adversarial pertur-
bation toward a third class A0, denoted A0 ". c We show examples of adversarial
images which empirically yielded human responses consistent with those of the
ANN (indicated by the red box) for ϵ = 2 and 16, corresponding to the lowest and

largest perturbation magnitudes used in these experiments. Example images in
(a–c) are obtained from the Microsoft COCO dataset62 and OpenImages dataset63;
images in (a,b, and c) left are used for illustration outside of our stimulus set due to
license limitations. d Box plots (same convention as Fig. 2c) quantifying participant
bias toward A↑ (whereA = T for Experiment 2 and A ≠ T for Experiments 3 and 4), as
a function of ϵ for four different conditions (each a different adversarial class A)
collected from n=389 participants for Experiment 2 (cat n = 100, dog n = 100, bird
n = 90, bottlen = 99),n = 396 participants for Experiment 3 (catn = 96, dog n = 100,
bird n = 101, bottle n = 99) and n = 389 independent participants for Experiment 4
(sheep vs chair n = 97, dog vs bottle n = 99, cat vs truck n = 98, elephant vs clock
n = 94). The red points (with ± 1 SE bars) indicate the mean across conditions. The
black dashed line indicates the performance of a random strategy that is insensitive
to the adversarial perturbations.
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However, one can raise three concerns with this experiment. First, the
specificity of the attack observed in ANNs—where targeting class A
results in higher probability specifically for class A—has not been
established by the current experimental paradigm. Forced choice
precludes the possibility that participants perceive images to be of a
third class. Participants may be sensitive only to the fact that images
are less clean examples of class T in the A↑ condition. Second, the
perturbation magnitude we used (ϵ = 32), is larger than is typical in
generating adversarial examples for ANNs. With lower magnitudes,
measuring reliable effects on human classificationmay be challenging.
Third, with large perturbations, it is possible that the increased error
rate is due to the perturbations obscuring image regions critical to
discriminating classes T and A in the A↑ condition, but not in the
control condition, which lacks the pixel-to-pixel correspondence
between perturbation and source image. Indeed, in a time-unlimited
variant of the cat versus dog discrimination of Experiment 1 (Experi-
ment SI-5), error rates are slightly higher in the A↑ condition (0.135 vs.
0.089; t(50) = 3.19, p <0.001, Cohen’s d =0.45, 95% CI of difference in
means is greater than 0.02, right-tailed), admitting the possibility that
some of the effect observed in Experiment 1 is due to obfuscation.

Adversarial perturbations bias human choice in extended
viewing
Experiment 1 used brief, masked presentations to limit the influence of
the original-image class (the predominant signal) on responses, and
thereby to reveal sensitivity to adversarial perturbations (the sub-
ordinate signal). We designed three additional experiments that had
the samegoal but avoided the need for large-magnitude perturbations
and limited-exposure viewing. In these experiments, the predominant
signal in an image could not systematically guide response choice,
allowing the influence of the subordinate signal to be revealed. In each
of these experiments, a pair of unmasked nearly-identical stimuli are
presented and remain visible until a response is chosen (Fig. 3a). The
pair of stimuli share the same predominant signal, i.e., they are both
modulations of the same underlying image, but they have different
subordinate signals (Fig. 3b). Participants are asked to select the image
that is more like an instance of a target class (Fig. 3c). In Experiment 2,
the two stimuli are modulations of an image of class T, one perturbed
such that ANNs predict it to be more T-like and one perturbed to be
less T-like (T↑ and T↓, respectively). In Experiment 3, the stimuli are
modulations of an image belonging to a true class T, one perturbed to
alter ANN classification toward a target adversarial class A (A↑) and the
other using the same perturbation except flipped right-left as a control
condition (control); this control serves to preserve norms and other
statistics of the perturbation, but ismore conservative than the control
in Experiment 1 because left and right sides of an imagemayhavemore
similar statistics than the upper and lower parts of an image. In
Experiment 4, the pair are also modulations of an image of a true class
T, oneperturbed tobemoreA-like andone tobemore like a third class,
A0 (A↑ and A0 ", respectively). Trial blocks alternated between parti-
cipants being asked to choose the more A-like image and the more
A0-like (See also Supplementary Fig. 1 for analogous experiments using
brief and masked presentations).

In each experiment, the ANN has higher confidence in the target
class for one stimulus of the pair over the other because of the dif-
ferential effect of the subordinate signal (Fig. 3b); neither choice
conflicts with the true class of the original image. And in each experi-
ment, human perception is consistently biased by the adversarial
perturbation in the direction predicted by the ANN (Fig. 3d; E2:
Fð1,385Þ= 156:7,p<:001,η2

p =0:29, 95% CI of perceptual bias = [0.03,
0.05], E3: Fð1,392Þ= 140:6,p<:001,η2

p =0:26, 95% CI of perceptual
bias = [0.05, 0.07], E4: Fð1,385Þ= 126:7,p<:001,η2

p =0:25, 95% CI of
perceptual bias = [0.05, 0.07]; see also Supplementary Table 9 for a
nonparametricWilcoxin test of significance). Human perceptual bias is
robust across target classes and grows with ϵ. Conducting a two factor

ANOVA, we observe a main effect for the target class, indicating that
participants are more sensitive to some classes than others (E2: F(3,
385) = 12.94, p < 0.001, η2

p =0:09, E3: F(3, 392) = 19.86, p <0.001,
η2
p =0:13, E4: F(3, 385) = 16.84, p <0.001, η2

p =0:12). We also observe a
main effect for perturbation magnitude, with the perceptual bias
growing with ϵ (E2: F(3, 1155) = 10.73, p <0.001, η2

p =0:03, E3: F(3,
1176) = 22.08, p <0.001, η2

p =0:05, E4: F(3, 1155) = 17.48, p <0.001,
η2
p =0:04). A reliable interaction occurs between the target class and

perturbation magnitude for E3 and E4, reflecting a larger slope with ϵ
for some classes than others (E2: F(9, 1155) = 1.78, p = 0.067, η2

p =0:01;
E3: F(9, 1176) = 2.55, p < 0.01, η2

p =0:02, E4: F(9, 1155) = 4.25, p <0.001,
η2
p =0:03). See Supplementary Tables 1 and 12 for a summary of sta-

tistics from Experiments 1–5. Nonetheless, performing separate ANO-
VAs for each adversarial target class, every one of the four conditions
in each of the three experiments yields a reliable above-chance bias
(see Supplementary Note 2).

Across Experiments 2–4, the per-image human perceptual bias is
significantly positively correlatedwith the bias of a black box ANN i.e., a
model that was not used in generating perturbations. (E2: Spearman’s
ρ(1534) =0.13,p <0.001, E3:ρ(1534) =0.29,p <0.001, E4:ρ(1534) =0.18,
p <0.001). Perturbation magnitudes varied from 2 to 16, smaller than
has previously been studied with human participants, and similar in
magnitude to perturbations used in adversarial machine learning
research. Surprisingly, even a perturbation of 2 pixel intensity levels (on
a 0-255 scale) is sufficient to reliably bias human perception (With
Bonferoni corrected p values, E2: t(388) = 3.54, p =0.002, Cohen’s
d =0.18,two-tailed; E3: t(395) = 3.95, p <0.001, Cohen’s d =0.2,two-
tailed; E4: t(388) = 3.45, p =0.002, Cohen’s d =0.18, two-tailed).

We further tested whether there exists a simpler explanation for
observing the effect in our main experiment. First, we investigate
whether the effect in experiment 4 is driven by a fewoutlier stimuli; we
analyzed the distribution of per-stimulus perceptual bias (averaged
across subject responses to a given stimulus) for all conditions in this
experiment by performing the Shapiro-Wilk test for normality and
found no credible evidence to reject the hypothesis that the distribu-
tion of perceptual bias across stimuli is normal for almost all the
conditions (see Supplementary Table 6). Second, we find no credible
evidence that participants are more sensitive to perturbations that are
highly salient (e.g., textures painted into a uniformbackground suchas
the sky) than to ones that are less salient, asmeasured by the structural
similarity index, MS-SSIM36 (Supplementary Note 2). Third, partici-
pantsmake relatively few errors in a direct classification task involving
single adversarial images, even with ϵ = 16, indicating that the pertur-
bations are not altering the ostensible image class (Supplementary
Note 3). Fourth, we conducted shuffling analyses, where the shuffling
procedure eliminated all the effects, suggesting that the effects thatwe
observed are robust and highly unlikely to occur by chance (Supple-
mentary Note 4).

Each of Experiments 2–4 has a particular strength, but on its own,
each has a potential confound. The strength of Experiment 2 is that
participants are asked to make an intuitive judgment (e.g., which of
two perturbed cat images is more cat-like); however, Experiment 2
allows the possibility that adversarial perturbations cause an image to
be more or less cat-like simply by sharpening or blurring the image.
The strength of Experiment 3 is that we match all statistics of the
perturbations being compared, not just the maximum magnitude of
the perturbations. However, matching perturbation statistics does not
ensure that the perturbations are equally perceptible when added to
the image; consequently, participants might have chosen on the basis
of image distortion. In Supplementary Fig. 10, we present a control
experiment showing that indeed the A↑ images are more perceptually
distorted, but we further show that judgments in Experiment 3 are not
based on perceived distortion. The strength of Experiment 4 is that it
proves that participants are sensitive to the question being asked
because the same image pair (A↑ and A0 ") yields systematically
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different responses depending on the question asked (‘more A-like’ or
‘more A0-like’). However, Experiment 4 requires participants to answer
a seemingly nonsensical question (e.g., which of two omelet images
looks more cat-like?), leading to potential variability in how the ques-
tion is interpreted.

Taken together, Experiments 2–4 provide converging evidence
that the subordinate adversarial signals that strongly influence ANNs
also bias humans in the same direction, even when the perturbation
magnitudes are very small and when viewing times are unconstrained.
Small perturbations were intriguing to the researchers who first
explored the adversarial examples phenomenon on ANNs because of
the dramatic impact they had on machine decision and the presump-
tion that they would be imperceptible to humans25. Further, extended
viewing times—the circumstances of natural perception—are key to the
existence of practical consequences of adversarial perturbations.

What properties of the ANN are critical to perturbation
effectiveness?
Having shown human susceptibility to adversarial examples, we turn
to investigate the particular ANN properties that influence this sus-
ceptibility. We utilize two model classes, convolutional and self-
attention architectures. Convolutional networks5,37 are the dominant
architecture used in computer vision and in modeling the human
visual system38; they incorporate strong inductive biases such as local
receptive fields and approximate translation equivariance. Con-
volutional models apply static local filters across the visual field and
build a hierarchy of representations by repeating this operation
multiple times,mimicking the hierarchy in the ventral pathway of the
visual cortex39. Convolutional networks are inspired by the primate
visual system5,6 with convolution and pooling operations connecting
to the simple and complex cells in the visual system40. Recently, a
new class of architectures has arisen for computer vision that
incorporates mechanisms of self attention41–44. Originally, these
mechanisms were designed to tackle problems in natural-language
processing e.g., transformers45; and thus received no explicit

architectural inspiration from the visual system. The self-attention
operation determines a weighting for embeddings of different
tokens or words to obtain the next level of representation in the
network hierarchy. To adapt these models to image processing, the
image is typically divided into non-overlapping patches and then
these patches are processed as if they are a sequence of words in a
sentence43,44. Themain operation in self-attentionmodels is nonlocal,
allowing for global communication across the entire image space.
Self-attention models achieve state-of-the-art performance and have
some intriguing differences from convolutional models, including
the fact that self-attention models have a relatively greater bias
toward shape features than texture features as compared to con-
volutional models46,47, consistent with human vision. The errors
produced by self-attention models better match human error pat-
terns than errors produced by convolutional models46, possibly due
to their ability to extract shape features.

We constructed two alternative models, one convolutional and
one based on self attention, trained on the same data. Both models
achieve comparable top-1 and near state-of-the-art classification
accuracy on ImageNet (86.3% and 86.6%, respectively). We conducted
a version of Experiment 4 using perturbations generated by either
convolutional or self-attention models. Human perception is biased in
the predicted direction in both conditions (convolutional:
t(380) = 3.91, p <0.001, Cohen’s d =0.2, 95% CI of difference between
means = [0.01, 0.02], two-tailed; self attention: t(380) = 5.98, p <0.001,
Cohen’s d =0.31, 95% CI of difference between means = [0.02, 0.03],
two-tailed), indicating that both models are aligned with human per-
ception.We also observed the presence of stimuli that affected human
perception collectively across groups of non-overlapping participant
pools with varied degrees of effectiveness (See Supplementary Fig. 4).
Because structural differences between convolutional and self-
attention models lead to somewhat different image
representations48, we ask whether one or the other is better aligned.
We find little credible evidence for a difference between the bias in the
two conditions (0.515 versus 0.525, t(379) = 1.87, p =0.062, Cohen’s
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Fig. 4 | Experiment 5: Participants are more sensitive to adversarial images
produced by self-attention ANNs than convolutional ANNs. a Adversarial per-
turbations (ϵ = 16) of an imageof true classT areobtained fromeither self-attention
or convolutional ANNs that increase the model’s confidence in adversarial class
A,A ≠ T. Participants are asked to judge which of the two adversarial images are
more like an instance of class A. b Examples of original images and corresponding
perturbations produced by the twomodels toward specific adversarial classes. The
perturbations produced by the self-attention model have a more apparent struc-
ture. Example images in a and b are obtained from the Microsoft COCO dataset62

and OpenImages dataset63. c Box plots (same convention as Fig. 2c) indicating the
probability that n = 396 independent participants (cat n = 100, dog n = 98, bird
n = 100, bottle n = 98) prefer adversarial images produced by self-attention over
convolutional ANNs for each of four classes. Participants reliably prefer adversarial
images produced by self-attention over convolutional ANNs (t(396) = 18.25,
p <0.001, Cohen’s d =0.91, 95% CI of difference between means = [0.1, 0.13], two-
tailed test). Mean across conditions is shown as a red point with ±1 SE errorbar.
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d =0.13, 95% CI of difference between means = [0.0, 0.02], two-tailed;
see Supplementary Fig. 5).

As a stronger assessment of the relative effectiveness of the two
representations, we conducted a further experiment requiring parti-
cipants to select between adversarial images generated by the two
models. Using each of the models, we generated adversarial examples
from an image of a true class T and perturbed toward adversarial class
A, denoted A↑conv and A↑attn. We presented matched pairs of adver-
sarial images—A↑conv and A↑attn—to participants and asked which of
the two images is more A-class like (Fig. 4a). Participants are more
likely to choose adversarial images from the self-attention model than
the convolution model being A-class like (t(396) = 18.25, p <0.001,
Cohen’s d =0.91, 95%CI of difference betweenmeans = [0.1, 0.13], two-
tailed); see Fig. 4c. To rule out a trivial low-level explanation for the
preference, we verified that no credible evidence exists of a difference
in the luminance and contrast distributions of convolution and self-
attention stimuli (Supplementary Fig. 2).

The more interesting hypothesis for the selection preference,
suggested by the literature46,47, is that image representations in human
perception better match representations obtained by self-attention
models. We conducted further analyses to understand the nature of
the representational differences between self-attention and convolu-
tionalmodels.We quantified the shape bias of the twomodels we used
in this experiment using the Stylized-ImageNet dataset23 and found
that indeed the self-attention model shows more shape bias (46.9%)
than the convolution model (41.7%) (Supplementart Tables 14 and 15).
Further, the self-attention model is more robust to image noise cor-
ruptions (Supplementary Tables 16 and 17) presumably as a result of
its greater reliance on shape features.

Inspecting the perturbations produced by self-attention models,
they appear to have more structure in that the perturbations are
alignedwith edges in the original image (e.g., see Fig. 4b). To formalize
a measure of edge strength, we use an automatic procedure to extract
edges from the adversarial perturbations and sum the evidence for
edges across image space. Perturbations generated by the self-
attention model contained significantly more evidence for edges
than those generated by the convolutional model (t(415) = 9.8,
p <0.001, Cohen’s d = 0.68, 95% CI of difference between means =
[0.01, 0.02], two-tailed). Further, on an individual trial basis, human
preference for one image of a pair is correlated with the difference in
edge strengths of the perturbations forming the pair (Spearman’s
ρ(413) = 0.16, p =0.001, 95% CI of ρ = [0.06, 0.25]; see Supplementary
Fig. 3). This correlation indicates that participants are in fact sensitive
to structural changes made to images, even when those structural
changes are subtle (see, for example, Fig. 4a).

Discussion
In this work, we showed that subtle adversarial perturbations,
designed to alter the classification decisions of artificial neural net-
works, also influence human perception. This influence is revealed
when experimental participants perform forced-choice classification
tasks, whether image exposures are brief or extended (Figs. 2 and 3,
respectively). Reliable effects of adversarial perturbations are
observed even when the perturbation magnitudes are so tiny that
there is little possibility of overtly transforming the image to be a true
instance of the adversarial class. Adversarial perturbations have intri-
gued the academic community—as well as the broader population—
because the perturbations appear perceptually indistinguishable from
noise, in that one might expect them to degrade human perceptual
accuracy but not bias perception systematically in the same direction
as neural networks are biased.

Even though our adversarial manipulations induced a reliable
change in human perception, this change is not nearly as dramatic as
what is found in artificial neural nets, which completely switch their
classification decisions in response to adversarial perturbations. For

example, in Experiment 4, whereas our participants chose the
response consistent with the adversarial perturbation on 52% of trials
(for epsilon = 2), a black-box attack on a neural net showed a two-
alternative choice preference consistent with the adversarial pertur-
bation on 85.3% of trials. (A black-box attack refers to the fact that the
neural net used for testing is different than themodel used to generate
the adversarial perturbation in the first place.)

Oneminor factor for the weak human response is that on any trial
where participants are inattentive to the stimulus, the choice prob-
ability will regress to the chance rate of 50%. The more substantive
factors reflect fundamental differences between humans and the type
of neural networks that are used toobtain adversarial images.Whilewe
cannot claim to enumerate all such differences, four points stand out
in the literature: (1) Even with millions of training examples, the data
that neural network classifiers are exposed to do not reflect the rich-
ness of naturalistic learning environments. Consequently, image sta-
tistics learned by neural nets are likely deficient. Bhojanapalli et al.49

and Sun et al.50 found that as training corpus size increases, neural
networks do show improved robustness to adversarial attacks; this
robustness is observed for both convolutional and self-attention
models and for a variety of attacks. (2) Themodels used for generating
adversarial perturbations are trained only to classify, whereas human
vision is used in the service of a variety of goals. Mao et al., 202051

indeed found that when models are trained on multiple tasks simul-
taneously, they become more robust to adversarial attacks on the
individual tasks. (3) Typical neural networks trained to classify images
have at best an implicit representation of the three-dimensional
structure and of the objects composing a visual scene. Recent vision
ANN models have considered explicit figure-ground segmentation,
depth representation, and separate encoding of individual objects in a
scene. Evidence points to these factors increasing adversarial and
other forms of robustness52–54. (4) Common ANN architectures for
vision are feedforward,whereas a striking feature of the visual cortex is
the omnipresence of recurrent connectivity. Several recent investiga-
tions have found improvements in adversarial robustness for models
with lateral recurrent connectivity55 and reciprocal connectivity
between layers56.

What is the explanation for the alignment found between human
and machine perception? Because both convolutional and self-
attention ANNs—models with quite different architectural details—
are able topredicthumanchoice (SupplementaryFig. 5), the alignment
cannot primarily be due to ANNs having coarse structural similarities
to the neuroanatomy of the visual cortex. Indeed, if anything, self-
attention models—whose global spatial operations are unlike those in
the visual system—are better predictors, though this trend was not
statistically reliable. Nonetheless, in a direct comparison between
adversarial stimuli designed for the two models, experimental parti-
cipants strongly choose images that fool self-attention models over
images that fool convolutional models (Fig. 4). Self-attention models
have a greater tendency to be fooled by images that are perturbed
along contours or edges, and we found a reliable correlation between
the presence of contour or edge perturbations and the preference for
that adversarial image. An interesting topic for future research would
be to explore other techniques that better align human and machine
representations57,58 and to utilize human susceptibility to adversarial
perturbations as a diagnostic of that alignment. This study did not
include data on sex and age, which may be contributing factors to the
susceptibility of humans to adversarial perturbations. Future studies
may address this limitation and explore the impact of sex and age.

Taken together, our results suggest that the alignment between
human and machine perception is due to the fact that both are
exquisitely sensitive to subtle, higher-order statistics of natural images.
This further supports the importance of higher order image statistics
to neural representations59. Progress in ANN research has resulted in
powerful statistical models that capture correlation structures
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inherent in an image data set. Our work demonstrates that these
models can not only be exploited to reveal previously unnoticed sta-
tistical structure in images beyond low-order statistics but that human
perception is influenced by this structure.

Broader impact
In this work, we study the human classification of images that have
been adversarially perturbed using ML models. A stark difference
between human and machine perception highlighted in this work is
that adversarial perturbations affect the identification of image class
far more in machines than in humans. This observation encourages
research in machine learning to look closely at potential solutions for
improving the brittleness of models, along the lines wemention in the
previous section. Further, our discovery of shared sensitivities
between humans andmachinesmay encourage human vision research
to explore different classes of architectures for modeling the visual
system (e.g., self-attention architectures), andmaydrive further efforts
to identify shared sensitivities. These activities may provide insight
into mechanisms and theories of the human visual system and may
lead away from the use of CNNs as the primary functional model of
biological vision. Ourwork also cautions the computer vision anddeep
learning communities on the value of formal experimental studies in
addition to relying on intuition and self reflection.

In terms of potential future implications of this work, it is con-
cerning that human perception can be altered by ANN-generated
adversarial perturbations. Although we did not directly test the prac-
tical implications of these shared sensitivities between humans and
machines, one may imagine that these could be exploited in natural,
daily settings to bias perception or modulate choice behavior. Even if
the effect on any individual is weak, the effect at a population level can
be reliable, as our experimentsmay suggest. The priming literature has
long suggested that various stimuli in the environment can influence
subsequent cognition without individuals being able to attribute the
cause to the effect60. The phenomenon we have discovered is dis-
tinguished from most of the past literature in two respects. First, the
stimulus itself—the adversarial perturbation—may be interpreted sim-
ply as noise. Second, and more importantly, the adversarial attack—
which uses ANNs to automatically generate a perturbed image—can be
targeted to achieve a specific intended effect. While the effects are
small in magnitude, the automaticity potentially allows them to be
achieved on a very large scale. The degree of concern herewill depend
on the ways in which adversarial perturbations can influence impres-
sions. Our research suggests that, for instance, an adversarial attack
mightmake aphotoof a politician appearmore cat-like or dog-like, but
the question remains whether attacks can target non-physical or
affective categories to elicit a specific response, e.g., to increase per-
ceived trustworthiness. Our results highlight a potential risk that sti-
muli may be subtly modified in ways that may modulate human
perception and thus human decisionmaking, thereby highlighting the
importance of ongoing research focusing on AI safety and security.

Methods
Stimuli
Adversarial images used as stimuli in all experiments were generated
using an ensemble of ANN models which are listed along with their
ImageNet classification performance in Supplementary Tables. 19
and 20. Our stimuli were created to alter the ANN ensemble prediction
score for sets of ImageNet classes that we refer to as coarse classes.
Methods Section “Coarsening of object categories” describes the
coarsification procedure and adversarial classes used in our experi-
ments. Images are separately generated for each level (ϵ) of pertur-
bation. For Experiment 1, we generated adversarial perturbations with
ϵ = 32 (out of 256 pixel intensity levels). For experiments 2–5, we
generated adversarial stimuli at four perturbation magnitudes,
ϵ∈ {2, 4, 8, 16}. For experiment 1, we added adversarial perturbations

to images from the ImageNet dataset61. For Experiments 2–5, adver-
sarial perturbations were added to a collection of images obtained
from theMicrosoft COCOdataset62 andOpenImagesdataset63. Our use
of the above-mentioned imagedatasets to create our stimuli was in line
with their terms of use. The image resolution used for Experiments 1–4
was 256× 256 pixels and 384 × 384 pixels for Experiment 5.

Participants
Experiment 1 included 38 participants with normal or corrected vision.
Participants gave informed consent and were awarded reasonable
compensation for their time and effort. Participants were recruited
from our institute but were not involved in any projects with the
research team. Experiment 1 control (i.e., Experiment SI-5) included 50
participants recruited from an online rating platform64. For Experi-
ments 2–5, we performed psychophysics experiments using an online
rating platform. In each experimental condition, approximately 100
participants were recruited to participate in the task (see Supple-
mentary Table 18 for the exact number). No statistical method was
used to predetermine the number of participants, but the sample size
was decided to be comparable to that used in previous similar
studies14,33. Participants received compensation in the range of $8–$15
per hour based on the expected difficulty of the task. No sex or age
informationwas gathered from the participants for all our studies. Our
participants were all located in North America and were financially
compensated for their participation. We excluded participants if they
were not engaged in the task, as assessed using randomly placed catch
trials with an unambiguous answer (e.g., pairing an unperturbed dog
image with a cat image and asking which image is more cat-like). If a
participant failed one catch trial for Experiments 2, 3, and 5, or two
catch trials for Experiment 4, the task automatically terminated and
their data was not analyzed.

Experiment structure
For Experiment 1, participants sat on a fixed chair 61 cm away from a
high refresh-rate computer screen (ViewSonic XG2530) in a roomwith
dimmed light to classify brief, masked presentations of adversarial
images. Participants classified images that appeared on the screen into
one of two classes by pressing buttons on a response time box (LOBES
v5/6:USTC) using two fingers on their right hand. The assignment of
classes to buttons was randomized for each experiment session. Each
trial started with a fixation cross displayed in the middle of the screen
for 500 − 1000ms. After the fixation period, an image of fixed size
15.24 cm× 15.24 cm (14. 2° visual angles) was presented briefly at the
center of the screen for a period of 63ms (71ms for some sessions).
The image was followed by a sequence of ten high contrast binary
random masks, each displayed for 20 ms (see example in Fig. 2a).
Participants pressed one of two buttons to classify the object present
in the image. The waiting period to start the next trial was of the same
duration whether participants responded quickly or slowly. Each par-
ticipant’s response time was recorded by the response time box rela-
tive to the image presentation time (monitored by a photodiode). In
the case where a participant pressed more than one button in a trial,
only the class corresponding to their first choice was considered. Each
participant completed between 140 and 950 trials.

For Experiments 2–5, Participants performed anextended viewing
two-alternative forced-choice taskwhere they sawa pair of images that
appeared on the screen and chose the one that looked more like it
belonged to a queried target class. In each experiment trial, partici-
pants were shown a question above the stimuli which read, “Which
image looks more target-like?”, where the target was a cat, bottle, etc.
(The complete set of categories is presented in Fig. 3a). Two buttons
labeled ‘left’ and ‘right’ were placed below the stimulus pair. Partici-
pants used the keyboard keys F and J to select the left and right
responses, respectively. (Participants were required to use a computer
and not amobile device to participate.) After a responsewasmade, the
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images andbuttons disappeared followedby an inter-trial-interval (ITI)
screen. This ITI screen contained a ‘next trial’buttonwith the following
text: “Press SPACEBAR to move to the next trial.” Participants
advanced in the task at their own pace. Individuals were asked to use
their own perceptual judgment to make this decision and were
informed that their responseswill be compared to amachine doing the
same task. Each participant completed 104 experiment trials. 8 out of
these 104 trials were catch trials with a clear solution placed randomly
to measure user engagement. We include a snapshot of the exact
experiment description used in our tasks in Supplementary Figs. 6–9.

ANN models used to create adversarial perturbations
We created adversarial attacks on ANN models trained on a large
collection of natural images to classify images into objects. We
describe here the specific models used along with training strategies
and datasets.

For experiment 1, we used an ensemble of 10 ANN models
trained on the ImageNet dataset61 to create adversarial perturba-
tions; these models are listed in Supplementary Table 19. For
experiments 2–4, we used an ensemble of 6 highly accurate ANNs
trained, and calibrated (See Supplementary Table 22 for calibration
temperature of these ANNs) on the ImageNet dataset to create
adversarial perturbations; these models are listed in Supplementary
Table 20. In order to match the initial visual processing of ANN
models with human vision, we added an artificial ‘retinal blurring’
layer described in Supplementary Note 1 and Supplementary Algo-
rithm 1 that mimics processing done by primates fovea. However,
that choice was not essential and we could not detect a reliably
strong increase in human perceptual bias from adding the retinal
blurring layer. For experiment 5, we constructed two alternative ANN
models (one based on convolution and one based on the self-
attention operation) with which adversarial attacks were created.
These ANNs were trained on the same data from the in-house JFT-
300M44 dataset and finetuned on ImageNet. For the former, we used
an ensemble of theResNet-101 andResNet-200networks (BiTmodels
described in44) and for the latter, we used an ensemble of the ViT-L16
and ViT-B32 networks44 respectively. We show in Supplementary
Table 21 the accuracy of thesemodels on the ImageNet validation set.

Ensembling predictions from a set of ANN models refers to the
process of mathematically combining predictions of an input image
from more than one ANN model. This is a common practice used in
adversarial machine learning to generate adversarial attacks that
transfer across ANN models65. We perform a simple aggregation of
prediction scores from the ensemble’s individual models by taking an
average of the unnormalized predictions (aka logits) across the ANN
models. This aggregation is related to the geometric mean of the ANN
prediction probability.

Coarsening of object categories
The ImageNet dataset consists of 1000 fine object categories such as
breeds of dogs that a typical human participant may not be familiar
with. For this reason, we compute predictions corresponding to
groups of the fine object categories that may be more familiar to the
experiment participants.We group a subset of the fine classes into one
of nine common object categories (sheep, dog, cat, elephant, bird,
chair, bottle, truck, and clock) we refer to as coarse categories (coarse
categories used in our experiments along with ImageNet support can
be found in SupplementaryTable 24). For example, we aggregate
predictions from all 120 ImageNet classes that correspond to various
dog breeds into a single ‘dog’ coarse category. These coarse categories
were chosen arbitrarily by Geirhos et al.23 in order to roughly balance
natural and human-made categories. Let Si be the score assigned by
our ensemble to a fine ImageNet category i (i.e., the value of the ith

unnormalized prediction score; aka logit) and c be a coarse category.
We compute the unnormalized prediction score to a coarse category c

as:

Sc = log
X

i2c
exp Si

 !
� log

X

j=2c
exp Sj

0

@

1

A ð1Þ

This score reflects the logit of the binary classification model that
defines the probability of the existence of the coarse category c.

Perturbation generation algorithm
We use the iterative Fast Gradient Sign Method (iFGSM)
technique66, an iterative adversarial attack method, to create tar-
geted or untargeted adversarial attacks on the ANN ensemble.
iFGSM optimizes a small perturbation to the input image by itera-
tively perturbing the image using information from the image gra-
dient corresponding to minimizing an adversarial objective
function.

The adversarial objective function corresponding to a targeted
attack towards target class y on input X is the binary cross entropy loss
with label y:

JtargetedðX, yÞ= � logðPensðyjXÞÞ ð2Þ

Similarly, the adversarial objective function corresponding to an
untargeted adversarial attack reducing the prediction confidence of
class y for input X is the binary cross entropy loss with label �y:

JuntargetedðX, yÞ= � logðPensð�yjXÞÞ= � logð1� PensðyjXÞÞ ð3Þ

The following equation then outlines the iterative procedure used in
combination with Jtargeted or Juntargeted to create an adversarial attack
that increases or decreases prediction confidence on a target class y
respectively.

~Xi = ~Xi�1 +α × sgnð∇Xð�JðX, yÞÞÞ ð4Þ

We constrained adversarial perturbations created with iFGSM using
the L∞ norm of the perturbation (∣∣Xadv −X∣∣∞≤ϵ); we restrict the
adversarial perturbations by clipping all perturbed image pixels with
intensity less than X − ϵ, and greater than X + ϵ as follows:

Xi = clipð~Xi,X� ϵ,X+ ϵÞ ð5Þ

The above procedure is performed iteratively from i∈ {1,…, n} until
the final adversarial image Xn is computed.

Viewing conditions for human raters could vary significantly (e.g.,
raters could be viewing images fromdifferent angles, onmonitors that
have different sizes, or while sitting at various distances away from the
monitor), which may interfere with the experiment. To address this
problem,we created adversarial images that are largely invariant to the
change in these viewing conditions. To achieve this invariance, we
modeled the change in viewing condition as the geometric transfor-
mation of the image (e.g., different rotation, scale, and translation).We
compute adversarial examples that are robust to image transforma-
tions by sampling random geometric transformations applied to the
original image at each step of the perturbation algorithm (rotation
θ ~ U(0, π/6), scale sx, sy ~ U(0.5*L, L), and translation tx, ty ~ U(-L/4, L/4))
where L represents the image width in pixels (same as height as we use
square images) of our stimuli. Let t∈ T be an identity-preserving
geometric image transformation that is differentiable and X be the
input image to be perturbed to be classified as ytarget. We have the
following optimization problem to solve to compute an adversarial
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image with invariance to geometric transformations.

argmax
X 0

E
t2T

½logðPðytarget jtðX0ÞÞÞ� s:t: jjX0 � Xjj1 ≤ ϵ ð6Þ

Class subsampling for experiment 4 and 5 stimuli
Experiments 4 and 5 are different in nature than the rest of the
experiments in that we explicitly ask humans to choose an image
from a pair of adversarial perturbations towards two different tar-
get classes. In this case, there exists a significant difference in
ImageNet support corresponding to each individual coarse class in
the pair, e.g. there are 120 ‘dog’ classes vs 7 ‘bottle’ classes in Ima-
geNet. In order to prevent such differences from causing a hidden
bias in human response, we randomly sampled a subset of the
classes to compute coarse target class score for the class that had
larger ImageNet support. Let nA and nA0 be the number of ImageNet
classes corresponding to target classes A and A0 that are paired in an
experiment. For each image, we randomly subsample minðnA,nA0 Þ
fine ImageNet classes corresponding to target class A (and third
class A0); these fine classes are then used to for computing the
coarse score for target class A (or class A0) using Eq. (1), which is
used in the adversarial objective function that is optimized by the
algorithm.

Edge feature analysis
In order to test whether adversarial perturbations from self-attention
ANN ensemble contain more shape information compared to those
from the convolutional ANN ensemble, we conducted an edge feature
analysis by comparing the number of active edge features in image
pairs that appeared in Experiment 5. We apply Bilateral filtering – a
non-linearfiltering technique known toblur an image and reducenoise
while respecting strong edges67 – to the adversarial perturbations
corresponding to adversarial images generated by the twomodels.We
detected strong edges by applying a Canny edge detector algorithm to
the output of Bilateral filtering, resulting in a binarymap of unit-length
edge elements in this perturbation. We use the absolute count of the
number of these edge elements as the “edge strength” corresponding
to this adversarial perturbation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For our experiments’ stimuli, we reused images from ImageNet61,
Microsoft COCO62, and OpenImages63. Images displayed in this
manuscript are covered by Creative Commons BY 2.0 Attributions
license (CC-BY2.0).We list the source images in SupplementaryNote 5.
The human participant responses generated and/or analysed during
the current study are available at https://osf.io/dnmkw/68. Experiment 1
was originally presented in Elsayed et al., 201869.

Code availability
Code packages for generating experiments in HTML, Javascript, and
jQuery are available at https://osf.io/dnmkw/68. We adapted helper
packages made publicly available by Zhou & Firestone, 201933. Python
notebooks for generating results are also included in https://osf.io/
dnmkw/.
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