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Proteomics and constraint-based modelling
reveal enzyme kinetic properties of Chlamy-
domonas reinhardtii on a genome scale

Marius Arend 1,2,3, David Zimmer4, Rudan Xu1,2, Frederik Sommer 5,
Timo Mühlhaus4 & Zoran Nikoloski 1,2,3

Metabolic engineering of microalgae offers a promising solution for sustain-
able biofuel production, and rational design of engineering strategies can be
improved by employing metabolic models that integrate enzyme turnover
numbers. However, the coverage of turnover numbers for Chlamydomonas
reinhardtii, amodel eukaryoticmicroalga accessible tometabolic engineering,
is 17-fold smaller compared to the heterotrophic cell factory Saccharomyces
cerevisiae. Here we generate quantitative protein abundance data of Chlamy-
domonas covering 2337 to 3708 proteins in various growth conditions to
estimate in vivo maximum apparent turnover numbers. Using constrained-
based modeling we provide proxies for in vivo turnover numbers of 568
reactions, representing a 10-fold increase over the in vitro data for Chlamy-
domonas. Integration of the in vivo estimates instead of in vitro values in a
metabolic model of Chlamydomonas improved the accuracy of enzyme usage
predictions. Our results help in extending the knowledge on uncharacterized
enzymes and improve biotechnological applications of Chlamydomonas.

Microalgae can synthesize a wide range of high-value compounds1 and
biofuel precursors2,3 using industrial waste products and light energy,
rendering them a key biotechnological resource propelling the tran-
sition to a net-zero carbon economy4. However, the economic feasi-
bility of photosynthetic bioreactors requires further optimization of
desired biotechnological objectives4, including the production of
lipids5,6, pigments7, or hydrogen8. Our ability to rationally engineer
metabolism for biotechnological applications scales with our under-
standing of the metabolism of organisms used as cell factories.
Genome-scale metabolic models (GEMs), as mathematical repre-
sentations of knowledge about metabolism, along with constraint-
based modeling, have facilitated the design of metabolic engineering
strategies9. Moreover, enzyme-related constraints that rely on turn-
over numbers (kcat) have been shown to accurately predict various
phenotypes, including overflow metabolism10–12, even without the

usage of measurements of uptake fluxes12. Further, these protein-
constrained GEMs (pcGEMs) have been used to successfully identify
engineering targets for biotechnological applications, such as
increased production of lysine13 or of high-value compounds14,15 in
Escherichia coli as well as the increase of the heme protein yield in
Saccharomyces cerevisiae by 70-fold16.

The kcat data used in most pcGEM studies are obtained by labor-
ious purification of the enzyme of interest and quantifying its max-
imum catalytic efficiency in an in vitro experiment12. For organisms
with available quantitative proteomic and physiological data, it is also
possible to estimate the maximal apparent catalytic rate (kmax

app ) of an
enzyme in vivo using constraint-based modeling12. To this end, most
studies used parsimonious flux balance analysis (pFBA)17,18 to obtain
estimates of each intracellular flux and find their ratio to the abun-
dance of the corresponding enzymes; this results in condition-specific
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kapp values which are subsequently compared over the investigated
experimental conditions to identify the largest. The latter is then used
as the maximal in vivo catalytic rate for the enzymatic reaction, kmax

app .
Alternatively, fitting of kcat inmetabolicmodels that explicitly describe
protein biosynthesis has also been employed as a strategy for para-
meter estimation19,20.

While it has been shown that kcat and kmax
app values for E. coli show

high concordance17, for eukaryotic organisms like S. cerevisiae18 and
Arabidopsis thaliana21 lower correlation values between kcat and kmax

app

have been reported. This raises the question about the extent to which
in vitro data can describe in vivo enzyme properties, particularly in
eukaryotes. Nevertheless, most pcGEMs constructed to date rely on
turnover numbers compiled in the public databases, such as:
BRENDA22 and SABIO-RK23.While these databases offer comprehensive
kinetic data for E. coli, only 10% of the entries in the union of the two
databases cover enzymes of the Viridiplantae taxon. Further, the
databases contain a total of only 85 turnover numbers (0.0012% of
entries) specific to green algae. Thus, to render the powerful pcGEM
modeling framework applicable with organisms from this biotechno-
logically relevant taxon, wemust substantially increase the knowledge
of organism- and taxon-specific turnover numbers.

Here we used cutting-edge mass spectrometry techniques24,25 to
acquire a comprehensive set of protein abundance values from cul-
tures of Chlamydomonas reinhardtii wild type and mutant strains
grown under various conditions. We used this data set together with
the recently developed minimization of non-idle enzyme (NIDLE)
approach26 to estimate kmax

app values for reactions catalyzed by single
enzymes as well as decomposing the contribution of isoenzymes to
their catalyzed reactions, thus extending the state-of-the-art for esti-
mation of kmax

app values by constraint-based modeling. Due to these
improvements we achieved a higher kmax

app coverage (24% of enzymatic
reactions) than previous works17,18,21, extending the available literature
data on C. reinhardtii by ~ 10-fold. In total, we obtained kmax

app values for
568 reactions including 46 transport reactions whose transport capa-
cities arenotoriouslydifficult quantifywith current in vitro techniques.
Our subsequent analysis corroborated the low correspondence
between kcat and kmax

app values in eukaryotic organisms. In linewith these
results, we showed that the substitution of kcat values in pcGEMs of C.
reinhardtii with kmax

app estimates improved predictive accuracy of
enzyme resource allocation.

Results and discussion
High-quality protein abundancedata fromvarious experimental
set-ups enable kmax

app estimation
To obtain kmax

app values for C. reinhardtii, we generated a comprehen-
sive, high-quality proteomics data set, encompassing 27 samples
from various strains and growth conditions sampled at steady state.
The absolute protein abundance data were generated based on the
QConCATapproach24,25. QConCAT employs an isotopically labeled
artificial protein containing concatenated peptides of multiple
endogenous proteins as external standard to allow for absolute
quantification of protein abundance. Using the concatamer to obtain
a calibration curve we were able to obtain absolute protein quanti-
fication for up to 3708 (median: 3376) proteins (Supplementary
Data 1). On average, 28% of themeasured proteins were annotated as
enzymes and were included in the iCre1355 genome-scale metabolic
model (GEM) of C. reinhardtii27 (Fig. 1a). In total, 936 of the 1460
proteins (64%) included as enzymes in iCre1355 were quantified in at
least one experimental condition. In comparison, the study
employing the largest proteomics data set to date18, relied on quan-
tification of 840 of the 976 enzymes (86%) annotated in the S. cere-
visiaemodel28. The large number of enzymes present in C. reinhardtii
leads to a lower relative coverage, although we quantified the
abundance of 11% more enzymes in comparison to what has been
attained in S. cerevisiae.

Weobserved a smaller number of quantifiedproteins in theUVM4
strains compared to CC1690 (Fig. 1a). However, this strain-specific
difference is not observable in the total quantified protein amount
(Fig. 1b) or mass (Supplementary Fig. 1). While ranking of conditions
according to total amount (Fig. 1b) and mass (Supplementary Fig. 1)
differ, stress conditions show lower values thanmixotrophic standard
conditions if only model enzymes are considered (Fig. 1b, Supple-
mentary Fig. 1). Principal component analysis (PCA) of the enzymatic
proteins quantified in all samples reveals that replicates cluster toge-
ther and experiments separate according to strain and culture condi-
tions (Fig. 1c). The first PC resolves strain-specific effects and captures
the majority of variance in the data set, while the second PC captures
effects specific to the culture condition. Therefore, we concluded that
the enzymatic proteins quantified here provide a wide and non-
redundant set of C. reinhardtii’s metabolic states.

Improved coverage of kmax
app estimates for C. reinhardtii

Our main aim is to make use of the proteomics data to extend the
sparse knowledge of enzyme kinetic properties in C. reinhardtii. To
calculate apparent catalytic rates on a genomescalewe used theNIDLE
approach that minimizes the number of idle enzymes (i.e., those that
do not carry flux, but have abundance measured), representing the
principle of effective usage of cellular resources26. NIDLE does not rely
on maximizing growth as a cellular objective, but rather includes
constrains from measured specific growth rates. It is formulated as a
mixed-integer linear program (MILP) and does not enforce any pro-
portionality between the measured enzyme abundance and reaction
flux. The condition-specific flux distributions obtained by this MILP
formulation are then used together with the absolute protein quanti-
fication to calculate the apparent catalytic rates, following established
approaches12,26.

Here we expanded on the original NIDLE formulation to calculate
estimates of isoenzyme kapp values using a linear or quadratic for-
mulation (see Methods). Based on this extension we were able to
determine enzyme kinetic data for 18 and 41 reactions with multiple
expressed isozymes based on the linear and quadratic formulations,
respectively (Supplementary Fig. 2). We decided to use the kapp esti-
mates of the quadratic formulation in the following analyses due to the
higher coverage. In total, we obtained apparent catalytic rates for 568
enzyme catalyzed reactions (24%) in at least one of the experimental
conditions (Fig. 2b, c, SupplementaryData 2), which is the largest set of
organism-specific kapp estimates generated to date. The previously
published pFBA17 approach together with the QP for isoenzyme kapp
calculationonly resulted in489estimates (Supplementary Fig. 3a), that
were highly correlatedwith theNIDLE results (Spearman correlation of
log transformed values: 0.96, two-sided p-value < 0.000129, n = 483;
Supplementary Fig. 3b). Furthermore, in the NIDLE output for 52% of
reactions we were able to calculate kapp values in more than half of the
investigated conditions. We observed that the largest group (n = 189)
of kmax

app values was obtained from all nine considered conditions
(Supplementary Fig. 4a), of which most were linked to lipid or het-
erocycle synthesis (Supplementary Fig. 4b). These results gave us
confidence that the maximum over the kapp values for a reaction can
serve as a good approximation of the in vivo turnover number, since
the majority are obtained from all samples that span a range of fluxes.
Upon determining kmax

app , we observed the CC1690 and UVM4 standard
mixotrophic growth conditions contributed the largest number of
reactions operating at the maximum in vivo catalytic rate (Supple-
mentary Fig. 4c). Furthermore, there is no condition that does not
contribute information to the calculated kmax

app values. To provide an
overview of the condition- and reaction-wise distribution of kapp

values,we applied hierarchical clustering to the reaction-wise centered
kapp values and plotted a heatmap of the values (Fig. 2a). The heatmap
indicates that even closely related conditions (according to the dis-
tance employed for clustering), such as high cell density and high salt
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concentration, contain sets of strongly differing kapp values (Fig. 2a).
Since we did not scale the values, the heatmap also indicates the
marked different variance and the row-wise standard deviation (e.g.,
75% of the reactions have a standard deviation below 102 s−1 but the
distribution is skewed with a maximum of 1011.2 s−1) (Fig. 2a). This
finding indicates that while there are reactions with highly variable
catalytic rate, most reactions of primary metabolism show robust kapp

that only vary by two orders respective to their means. The distinction
between samples based on their contribution to kapp values is further
supported by the PCA using these values (Supplementary Fig. 4d). In
contrast to the PCA based on the enzyme proteomic data (Fig. 1c), the
largest difference between samples is observed between mixotrophic
and heterotrophic growth conditions, resolved by both plotted prin-
cipal components, while difference between mixotrophic samples is
mainly explained by the second principal component (Supplementary
Fig. 4d). The PCA of flux vectors obtained from NIDLE can similarly
separate samples, though mixotrophic samples show a different
separation pattern than in the PCA of kapp values (Supplementary
Fig. 4e). The differences between the flux solutions are also apparent
from the plots of the cumulative sums of the flux distributions (Sup-
plementary Fig. 4f).

The set of kmax
app values presented here includes reactions from all

major subsystems of primarymetabolism (Fig. 2c), thus extending the
current data on turnover numbers specific forC. reinhardtii available at
BRENDA22 and SABIORK23 about tenfold. Further, for 448 of the

reactions with assigned kmax
app a query to these databases did not result

in any known values in the whole Viridiplantae taxon. When we ranked
the metabolic subsystems for which our data provide new enzyme
kinetic information, we observed that the largest extension (for
Viridiplantae-specific enzymes)was obtained for glycerolipid synthesis
and mitochondrial fatty acid elongation (Fig. 2d). Aside from sub-
stantially increasing the kinetic information available for this photo-
synthetic organism, we also provide estimates of in vivo maximum
catalytic rate for enzymes that are practically inaccessible to in vitro
methods, because they are very difficult to purify and the measure-
ment of reaction rate demands advanced assays. Namely, wewere able
to determine kmax

app for 46 transport reactions (top subsystem “Trans-
port, mitochondrial”, Fig. 2d) and their respective transporter pro-
teins. Thus, our results provide valuable input for pcGEMs that
currently cannot be obtained from existing databases.

kcat values compiled by GECKO show no correspondence to the
estimated kmax

app values
Studies in S. cerevisiae18 and A. thaliana21 found that in vitro deter-
mined turnover numbers provide a rather poor proxy of in vivo turn-
over number estimates. Thus, we were interested to identify if curated
literature kcat values for C. reinhardtii correspond to the determined
in vivo kmax

app values. We used the GECKO2.0 heuristic11,30 to assign the
phylogenetically closest available kcat values from BRENDA22 to reac-
tions (Fig. 2b). For the overlap of reactions that where assigned a

Fig. 1 | Protein expression and coverage from QConCATdata. a Number of
proteins quantified in at least two of the three replicates per condition, specified in
the x-axis. b Total protein content summed over all proteins. In panels a and b, the
dark red bar illustrates the subset corresponding toenzymes present in theCre1355

model. Plotted values are available in the source data. c PCA of log-transformed
abundance values of enzymatic proteins in C. reinhardtii. All replicates in the data
set are plotted.
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maximum catalytic rate by both GECKO and NIDLE, we found that our
results corroborate the findings from the two eukaryotes. More spe-
cifically, the correspondence between log-transformed values is low
(Spearman correlation of 0.19, two-sided p-value < 0.00129, n = 405)
(Fig. 3a). The scatterplot also reveals that GECKO assigns the same kcat
value to many reactions in the lowest quality group, while NIDLE
provides specific kmax

app values that range several orders of magnitude
for the same reactions (Fig. 3a).Moreover, the determined in vivo kmax

app

values are systematically lower than the corresponding kcat values
(median log10-fold difference (LFD) of −1.4; Supplementary Fig. 5a).
Upon subdividing the LFD values according to metabolic subsystems,
we found no significant difference between the means of the sub-
systems (Kruskal Wallace, chi-squared = 7.0, p-value > 0.05); however,
“Cofactor and Modification” and “Lipid” metabolic systems terms
showed larger interquartile ranges then the other terms (Supplemen-
tary Fig. 5b). When we investigated the LFD of condition-specific kapp
to GECKO kcat values, focusing on the subset of reactions for which we
obtained a kapp in each condition, we found that the heterotrophic

sample have significantly more negative LFDs compared to all the
mixotrophic, stress-free conditions (Fig. 3b). This indicates that
enzymes in this condition operate at a generally lower rate than indi-
cated by the GECKO assigned in vitro kcat values.

Since the aim of the GECKO approach is to parameterize as many
reactions as possible, it iteratively relaxes the matching criteria when
assigning kcat values from literature. While we observed ~4-fold higher
Spearman correlation with the kcat values for the endogenous C. rein-
hardtii enzymes (0.75, two-sided p-value = 0.001929 n = 14; Supple-
mentary Fig. 5c), the systematic difference between in vivo and in vitro
turnover numbers for these enzymes is more pronounced (median
LFD: −1.6, Supplementary Fig. 5a). These observations indicate that
parameterization with phylogenetic distant enzyme data may be the
reason for the low correspondence of ranks of kcat and kmax

app ; this,
however, does not explain the systematic differences between the
compared in vivo and in vitro enzyme catalytic parameters.

It has been shown that eukaryotic pcGEMs parameterized with
literature kcat values can yield valuable insights into systemic

Fig. 2 | Characteristics of NIDLE-derived estimates of kmax
app . a Heatmap of kapp

values for reactions catalyzed by homomeric enzymes or isoenzymes; the values
are obtained by applying NIDLE with the physiological and proteomics data of the
experimental set-up used. Values were log10-transformed and reaction/row-wise
mean centred. Rows and columns were clustered (Methods). Gray fields indicate
NA values resulting from conditions where no enzyme quantification was available.
The bar on the left indicates the row-wise standard deviation. Prior to log trans-
formation, a pseudo count equal to the minimal value times 10−4 was added. Only
reactions with kapp available in at least two conditions were considered (n = 540).
Values larger than 1.5 and smaller than −1.5 were marked with the most extreme

color. Values at the top and bottom of the color legend give the maximum and
minimum values rounded to the next higher or lower integer, respectively. b Venn
diagram showing the overlap in enzyme-catalyzed reactions with maximum kapp

determined from NIDLE compared and kcat assigned based on EC Numbers by the
GECKO heuristic. c Stacked barplot indicating the number of kmax

app values that were
determined in the different major metabolic systems of iCre135527 GEM of C. rein-
hardtii. d The number of reactions with published data on kcat from the Vir-
idiplantae taxon is indicated by a black bar for each metabolic subsystem in
iCre1355. The stacked yellow bar indicates the extension of reactions forwhich kmax

app

value was determined by NIDLE. Raw values are provided in the source data.
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properties of metabolism31. Furthermore, for organisms with scarce
data on uptake rate and protein abundances, in vitro enzyme para-
meters remain important resources for developing pcGEM models32.
However, these results underline once more18,33 that kmax

app values are
highly preferrable parameters if quantitative predictions (e.g., specific
growth rate, resource uptake, enzyme usage) are to be generated,
since they correct for in vivo/in vitro effects and do not suffer from
problematic matching of organism unspecific kinetic data.

Parameterization of pcGEMs with the estimates of in vivo kmax
app

values show improved enzyme usage prediction
To investigate if the kmax

app values calculated from NIDLE result in an
improvement of the predictive performance of pcGEMs we generated
a mixotrophic and a heterotrophic pcGEM for C. reinhardtii based on
themodels published by Imam et al.27 using the GECKO toolbox30. In a
first step we used the chemostat data set of Imam et al.27 to test the
effect of the obtained kmax

app values on growth rate predictions. For each
tested condition a so-called raw GECKOmodel was built, including the
kcat values extracted from literature. The over-constraining kcat values
were then corrected using the objective control coefficient heuristic
and the average enzyme saturation coefficient, σ, was fitted according
to the measured growth rate27 (Supplementary Table 1). To obtain
pcGEMs using the NIDLE kmax

app , the kcat values in both the raw and the
corrected GECKO models were substituted with the respective kmax

app

estimates, were available.
Although the recent GECKO2.0 study30 shows that rawmodels do

not produce biological meaningful predictions, we included them in
the performance assessment since we: (i) deemed the comparison
interesting for scenarios in which pcGEMs of photosynthetic eukar-
yotes without available chemostat growth data are built, preventing
the application of the GECKO correction procedure unavailable, and
(ii) aimed to disentangle the effect of GECKO correction from the
effect of kmax

app parameterization. In line with the reports of raw model
performance in heterotrophic organisms30, we found that the raw
GECKO models of C. reinhardtii with and without usage of kmax

app

underestimate growth compared to FBA predictions (Fig. 4a). The only
exception was the heterotrophic conditions, in which NIDLE raw
pcGEM predicts higher growth then experimentally observed. In all
cases, the experimental growth rate was reached only after the kcat
correction step and refitting σ. For heterotrophic conditions, σ was
fitted to ~0.4 of the value in autotrophic in mixotrophic conditions
(SupplementaryTable 1), indicating that in heterotrophic growthmany
enzymes are expressed considerably higher than necessary to main-
tain metabolic flux (Fig. 4a). This finding recapitulates the previous
results of significantly larger negative differences to kcat values in the

independent heterotrophic growth experiment of the proteomics data
set (Fig. 3b). Comparing the performance of NIDLE pcGEMswe did not
observe a strong effect on growth rate predictions. As expected, the
prediction error was higher than in the corrected GECKO pcGEMs,
since the latter were fitted to the experimental growth rate; however,
the introduced error (RMSE 0.0163) was comparable to that of cano-
nical FBA (RMSE 0.0183) (Fig. 4a).

Since the maximum catalytic capacity used in pcGEMs quantifies
the enzymatic expenditure to support a certain reaction flux, another
important applicationof thesemodels is in predicting the allocation of
total enzyme mass into specific enzymes. Therefore, we tested the
effect of the kmax

app values obtained byNIDLE on the accuracy of enzyme
usage prediction in the standard conditions included in our pro-
teomics data set. To allow for an informative comparison, we left out

Fig. 3 | Comparison of in vitro kcat from GECKO with in vivo kmax
app from NIDLE.

a Scatterplot of the parameter values in the intersection presented in Fig. 2b. The
color code gives the matching criteria of kcat values from the GECKO heuristic in
order of decreasing stringency. SA specific activity. b Boxplot of the log10-fold
difference between condition-specific NIDLE kapp and GECKO kcat values. Only
reactions with a non-zero kapp value in all conditions were considered (n = 144).

The boxes mark the interquartile range with the bold bar giving the median. Lines
give the last data pointwithin 1.5 times the interquartile range. Points in the overlay
give the singleobservations andhavebeenbinned. Thebarson top indicatepairs of
conditions for which the adjusted p-value of Tukey’s honest significance test was
lower than 0.05. Raw values are provided in the source data.

Fig. 4 | Prediction performance of enzyme usage with different pcGEM model
parameterizations. aComparison of experimental data from chemostat cultures27

and predictions from FBA and pcGEMs parameterized with uncorrected kcat values
obtained fromBRENDA22 (GECKO raw), corrected kcat values usingGECKOheuristic
(GECKO adapted) or updated with enzyme wise kmax

app from NIDLE (+NIDLE). Mixo-
trophic and autotrophic growth wasmeasured in duplicates; heterotrophic growth
is a single measurement. b Spearman correlation of predicted enzyme usage based
on pcGEMs and observed enzyme abundance in QConCat data set in log10-scale.
The tested condition was not considered when calculating the kmax

app values from
NIDLE. Plotted values are provided in the source data.
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the NIDLE kapp values calculated in the tested condition when calcu-
lating kmax

app for the respective NIDLE pcGEMs (see Methods). We pre-
dicted enzyme usages by fixing the flux through biomass reaction to
the experimentally observed growth rate and minimizing the total
enzyme mass. Next, we calculated the Spearman correlation (Fig. 3b)
and RootMean Squared Error (RMSE) (Supplementary Fig. 6) between
the predicted and themeasured enzymeabundances. Interestingly, we
observed that models parameterized with kmax

app from independent
proteomics samples showed higher predictive performance in the
unseen condition than the canonical GECKO models. The Spearman
correlation improved for mixotrophic and heterotrophic test condi-
tions to ~0.34 (except for control UVM4, which showed a slightly lower
improvement) (Fig. 3b). The RMSE was reduced by ~30% upon the
integration of kmax

app values, although in this scenario the heterotrophic
test condition showed systematic higher errors than mixotrophic test
scenarios. This observations held irrespective of whether the raw or
corrected GECKO model was compared (we note that the corrected
GECKO model is fitted to the experimental growth rate from mixo-
trophic chemostat experiments). Thus, our results demonstrated that
the NIDLE approach successfully uses information from physiological
data to calculatemaximum catalytic capacity values which are a better
predictor of enzyme usage than widely used literature values.

Matched proteomics andmetabolic flux analysis will improve in
vivo kcat estimation
Wepresented a protein abundance data set with extensive coverage of
the proteome response to various perturbations. This data set com-
prises a valuable resource for systems biology studies in C. reinhardtii.
Here we made use of this resource to considerably expand the infor-
mation for green algae. Due to the extended NIDLE formulation we
were able to estimate 568 (24% of enzymatic reactions) kmax

app values for
enzyme catalyzed reactions, compared to 378 (14%) and 358 (10%)
previously reported kmax

app values in E. coli17 and S. cerevisiae18, respec-
tively. To our knowledge, we present here the data set with the highest
kmax
app coverage available to date. These previous studies usedmetadata

sets that assembled protein quantifications across different studies
whereas our entire data set wasmeasured on the same setup using the
QconCAT approach to obtain absolute protein abundances. While this
reduces systematic error between different experiments in the data set
it limits the number of sampled conditions due to available resources.
We aim to extend the presented QconCAT data set with further com-
plementary measurements in the future. Nevertheless, the predictions
in unseen test conditions (Fig. 4b) indicated that we are able to obtain
robust improvement of model accuracy with the estimates obtained
from the nine different conditions used in this study. The obtained
kinetic parameters allow to quantify the costs for different cellular
pathways and thus foster the application of advanced metabolic
engineering strategies13 in the biotechnologically relevant taxon of
green algae. The next step to further improve the accuracy of esti-
mated parameters is to integrate metabolic flux measurements from
isotopic labeling of the investigated culture conditions. This metho-
dical milestone has not yet been achieved in eukaryotes, where in vivo
kcat estimation studies relied solely on constrained based
modeling17,18,21. However, the feasibility of such a study has been pro-
ven in E. coli19. Recent methodical improvements in C. reinhardtii
metabolic flux analysis34 put this promising combination of experi-
mental data in reach. Future interdisciplinary efforts to improve our
understanding of photosynthetic metabolism in green algae and their
descendants will focus on achieving this milestone.

Methods
Data set assembly
Analyzed C. reinhardtii data sets included data from previously pub-
lished QConCAT studies available under PRIDE35 data set identifier
PXD018833 (Control UVM4, SDP OE1 UVM4, SDP OE2 UVM4) [https://

www.ebi.ac.uk/pride/archive/projects/PXD018833] and were further
augmented by data sets measured as part of this study and made
publicly available under the PRIDE identifier PXD037599 (Control
CC1690, Dark CC1690, High Cell CC1690, High Salt CC1690, High
Temp CC1690, No Shaking CC1690)[https://www.ebi.ac.uk/pride/
archive/projects/PXD037599]. As control cultivation conditions for
C. reinhardtiiCC1690 cells, cultureswere grown for 48 h in tris-acetate-
phosphate (TAP) medium using a rotatory shaker operating at 2 turns
per second, while being constantly illuminated at 100 µmol photons
m−2 s−1 at and held at 24 °C. Data sets differing from control conditions
were created by alteration of listed growth parameters (a detailed
description of modified factors is available in Supplementary Data 3).

QconCAT expression and protein purification
The coding sequence for the PS-Qprot protein was codon-optimized
for E. coli expression and synthesized by Biocat (Heidelberg), incor-
porating BamHI/HindIII restriction sites for subsequent cloning steps.
The synthesized PS-Qprot coding sequence was cloned into the pET-
21b expression vector (Novagen) using the BamHI and HindIII restric-
tion sites. M9 minimal medium was prepared with 9.2mM 15NH4Cl
(98%, Cambridge Isotope Laboratories) and 100 µgml−1 ampicillin.
The transformed E. coli ER2566 cells harboring pET-21b-PS-Qprotwere
inoculated into the 15N-labeled M9 minimal medium. The culture was
incubated under appropriate conditions to allow protein expression
and 15N incorporation. After sonication, supernatant was applied to a
Co-NTA column (G-Biosciences) for purification based on the His-tag
present on the PS-Qprot protein. The column was washed three times
with Urea Buffer (8M urea, 20mM Tris-HCl pH 8, 0.25M NaCl) con-
taining 5mM, 25mM, and 100mM imidazole, respectively. The eluted
proteinwas concentrated anddialyzed into phosphate buffered saline.
The concentration of the PS-Qprot protein was determined spectro-
scopically at 280 nm using a NanoDrop spectrophotometer. The con-
centrationwas calculated based on the Lambert-Beer’s law, assuming a
molecular weight of 39,945.63 g/mol for PS-Qprot and an extinction
coefficient of 86,860M−1 cm−125. The extinction coefficient values were
determined using the ExPASy ProtParam tool.

LC–MS/MS measurement and raw data analysis
After cell harvesting and protein extraction, all samples were spiked
with a master mix of Chlamydomonas-specific QConCAT proteins and
digested tryptically. Peptides were separated using a reversed phase
chromatography system consisting of a trapping column (Triart C18,
5 µm particles, 0.5mm× 5mm) and an analytical column (Triart C18,
3 µm particles, 300 µm× 150mm, YMC). The separation was per-
formed at a flow rate of 4 µl/min. The chromatographic separation was
achieved by employing a gradient elution method with HPLC buffer A
(2% acetonitrile, 0.1% formic acid) andHPLC buffer B (90% acetonitrile,
0.1% formic acid). The gradient profile ranged from 2% to 35% of buffer
B over the course of the separation. Measurement was performed via
LC–MS/MS (Eksigent nanoLC 425 coupled to a TripleTOF 6600,
ABSciex)25. Quantitative analysis of MS/MS measurements was per-
formed using ProteomIQon 0.0.736. Peptide searches were performed
upon the assembly of a peptide database basedof theChlamydomonas
proteomebasedon version JGI5.5 of theC. reinhardtii genomeblended
with the sequences of spiked-in QconCAT proteins. The search space
includedmethionine oxidation and acetylation of protein N termini as
variable modifications and was extended by 15N-labeled variants of
Chlamydomonas proteins. False discovery rate thresholds for peptide
spectrum matches and protein group identifications were set to 1%.
Following peptide spectrum matching, ion abundances were esti-
mated by integration of the areas of extracted-ion chromatograms.

QConCAT-based estimation of absolute protein abundances
To obtain absolute protein abundances, we first aggregated ion spe-
cies to themodified peptide level by summation (e.g., different charge
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states). Differently modified versions of the peptides were aggregated
to the peptide and then protein-group level by median-based aggre-
gation, yielding preliminary protein abundance estimates. Computing
the ratio between native, unlabeled peptides and 15N-labeled peptides
originating from spiked-in QConCAT proteins allowed to estimate
absolute protein abundances for a multitude of different C. reinhardtii
proteins25, as previously described37,38. With these high-quality Qcon-
CAT-based abundance measurements at hand, we were able to create
calibration curves by regressing the latter on the preliminary protein
abundance estimators, and thus to compute proteome-wide absolute
abundance estimates.

Processing of non-proteotypic peptides
A data set entry is considered to have ambiguous entries if its
quantification is based on a peptide that is non proteotypic (i.e., is
present in multiple proteins); otherwise, the protein is defined to
have an unambiguous entry. For ambiguous entries, an iterative
approach was used to remove them in each sample. If an unambig-
uous entry of one of the mapped proteins was present, the corre-
sponding concentration was subtracted from all ambiguous
entries of this protein and the protein ID was removed from the
ambiguous entries. If the cellular concentration of an ambiguous
entry was smaller than 0 after subtracting, the entry was
removed from the sample. This procedure was repeated until no
further protein IDs could be removed from ambiguous entries. The
remaining ambiguous entries were removed from the sample data.
Proteins that were only quantified in one of the three biological
replicates were removed from the data set. For the remaining data
the median over the measured replicates was used in the down-
stream analyses.

GEM used in constraint-based modeling
The most recent SBML and COBRA compatible model of Chlamydo-
monas reinhardtii “iCre1355”27 was employed. The erroneous reaction
formular of ‘CAT’ was updated to “2 h2o2[c]→ 2 h2o[c] + o2[c]”. GPR
rule syntaxwas updated to not include “… and (GENE1 or GENE2…)…”

rules. All model modifications and mathematical programs solved in
this study was carried out using the COBRA toolbox39 and GUROBI
solver40 in MATLAB41.

NIDLE
We used the iCre1355mixotrophic and heterotrophic model27 with the
respective culture conditions used in the proteomics experiments. The
NIDLE approach is formulated for positive, real valued flux variables;
therefore, the models were converted to irreversible by splitting each
reversible reaction into irreversible forward and backward reactions.
All uptake reactions were constrained by the model supplied bounds
except for acetate uptake. For mixotrophic conditions a linear
regression model was fitted based on the mixotrophic chemostat
culturemeasurements from Imam et al.27, in which acetate uptake rate
was predicted based on growth rate. The model was fitted using the R
lm function42 with default options, and the model predicted uptake
rate increasedby the standard errorof predictionwasused as anupper
bound on the acetate uptake rate for the mixotrophic culture
scenarios27. For the heterotrophic condition the maximum measured
acetate uptake rate from the Imamet al. heterotrophic chemostat data
was set as an upper bound (Supplementary Table 2). We adapted the
source code in the NIDLE repository26 to the iCre1355 model, but the
formulation of the NIDLE approach, based on a MILP, remained
unchanged.

To calculate kapp values for homomeric isoenzyme catalyzed
reactions we first determined if only one of the catalyzing isoenzymes
is quantified in the respective condition. If this was the case the kapp
was calculated in the sameway as for the homomeric enzymes, i.e., the
reaction flux of reaction i in condition j divided by the respective

enzyme abundance E gives the apparent catalytic rate,

kappi,j
=
vi,j

Ei,j
ð1Þ

To convert enzyme abundances measured in amol/cell to mmol/
gDW the literature cell dry weight of 48,000pg43 was used for a mix-
otrophic grown cell and the dry weight of other conditions was calcu-
lated frommeasured cell volumeassuming constant dryweight density.

In the case thatmultiple isoenzymes have beenmeasured bymass
spectrometry we integrated information from different conditions to
decompose the contribution of different isoenzymes to the observed
flux. We took advantage of the fact that in the mixotrophic standard
growth conditions best approximate the maximum apparent catalytic
rate for themajority of enzymes (SupplementaryFig. 4d), and assumed
equal kapp values for an isoenzyme in the different conditions. This
allowed us to formulate a quadratic problem based on the flux pre-
dictions and enzyme abundance measurements in the four mixo-
trophic standard conditions (i.e., Control CC1690, Control UVM4,
SDPOE1 UVM4, SDPOE1 UVM4, SDPOE2 UVM4), given in the following

min
X

j2Cstd

δ2
j s:t: ð2Þ

X

i

Ei,j � kappi

� �
+δj =vj ð3Þ

kapp ≥ ε ð4Þ
More specifically, we obtain kapp estimates by minimizing

the quadratic sum of residuals between flux supported by the kapp

values and obtained from NIDLE, over all conditions j. We chose ε of
10�10 � 3600 ½h�1� since both the smallest turnover number in the joint
public databases (5:8 � 10�10½s�1�)22,23 and calculated from homomeric
reactions (4:0�10�10½s�1�) were in this order of magnitude. The effec-
tive reaction-specific kapp for each conditionwas then calculated as the
average weighted by the protein abundance in the given condition,

kappj
=

P
i Ei,j � kappi

� �

P
i Ei,j

ð5Þ

We also compared the solution from minimizing the l1-norm of
the error term, δ,

min∣∣δ∣∣1 ð6Þ

subjected to the same constrains (Supplementary Fig. 2a). We did
not consider kapp values equal to the lower bound, ϵ.

pcGEM creation using the GECKO toolbox
The GECKO toolbox11,30 was used to integrate maximum catalytic
rate data into a pcGEM. Based on each of the publishedmodels (mixo-
auto-, and heteroptrophic), and the obtained chemostat experiments27

corresponding pcGEMs were created. Scripts were adapted according
to the README instructions (https://github.com/SysBioChalmers/
GECKO). For compatibility with the GECKO toolbox, the JGI gene ids
in iCre135527 were converted to Uniprot ids and introduced duplicates
where removed. The protein content used for biomass rescaling and
limiting of the enzyme pool reaction was taken from the measure-
ments of Boyle &Morgan44. For all pcGEM simulations the uptake rate
bounds of the macronutrients ammonium, phosphate, and carbon
dioxide where set to 1000 mmol

gDW�h. The average protein abundance over
all sampled conditions was used to calculate the factor f (only proteins
without missing values were used). Growth associated maintenance
was not refitted. A corrected model based on the observed chemostat
growth measurements in the model publication27 was created using
GECKOs objective control coefficient heuristic to correct over
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constraining kcat values, and the sigma factor was fitted. The NIDLE
pcGEMs were generated by substituting GECKO-assigned kcat values
for each enzyme pseudometabolite in the augmented stochiometric
matrix with the maximum of all NIDLE obtained kmax

app calculate over all
reactions this enzyme catalyzes (Supplementary Data 4). For the
comparison of growth rate predictions the respective biomass reac-
tion was used as objective function.

The pcGEM fitted with chemostat data from “Mixotrophic_Rep3”
and “Heterotrophic_Rep1” were used for the simulation of enzyme
usage in theproteomics experiments of the respective growth scheme.
In the NIDLE models used for enzyme usage comparison the sub-
stituted kmax

app values were calculated omitting the kapp values obtained
from the tested condition. The same condition specific uptake flux
constraints as in the NIDLE problems were used. Flux trough the bio-
mass reaction was fixed to 0.99 of the observed growth rates and the
flux through the “draw enzyme pool” reaction was minimized.

Querying the BRENDA and SABIO-RK database
Turnover numbers of non-mutated enzymes together with organism
and EC-number information were downloaded as text files from
BRENDA22 and SABIO-RK23 databases (status 07/2022) and joint. For
the reactions with EC-number annotation in iCre135527 the following
matching criteria for enzymes with fully matching EC-number where
tried in the given order:
1. Chlamydomonas taxon & substrate
2. Chlamydomonas taxon
3. Viridiplantae taxon & substrate
4. Viridiplantae taxon

The maximum of all kcat values in the first criteria with non-zero
number of matches was assigned as comparison kcat.

Clustering of kapp values
Apseudocount of 10−4 times the lowest estimated kapp valuewas added
to all values prior to log10-transformation. kapp values were reaction-
wise mean centered. The Euclidian distance between the kapp vectors
was calculated using the R function dist() from the stat package42. In
case two compared vectors didn’t have a single pair of comparable
entries due to NA values resulting from missing enzyme quantifica-
tions, the distance was set to 1050. Hierarchical agglomerative clus-
tering using the single linkage approach was applied as implemented
in the R stat package42.

Statistics and reproducibility
Details on the statistical approaches used are given in the figure cap-
tions and methods section. Proteomics data were acquired in tripli-
cates to assess reproducibility. For all other statistical tests sample size
is given in the text or figure caption. No statistical method was used to
predetermine sample size. Peptides that were only determined in one
replicate were excluded from the analysis. The experiments were not
randomized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Theproteomicsdataused in this studyhavebeendeposited in thePRIDE
database35 under accession codes PXD018833 (UVM4 data set) [https://
www.ebi.ac.uk/pride/archive/projects/PXD018833] and PXD037599
(CC1690 data set) [https://www.ebi.ac.uk/pride/archive/projects/
PXD037599]. The kapp estimates generated in this study are provided
in the supplementaryfiles (SupplementaryData 2 and4). Sourcedata are
provided with this paper.

Code availability
Code for theupdatedNIDLE approach andgenerationof thepresented
results is publicly available as GitHub repository45.
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