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Diastereo- and atroposelective synthesis of
N-arylpyrroles enabled by light-induced
phosphoric acid catalysis

Lei Dai 1, Xueting Zhou 1,2, Jiami Guo1,2, Xuan Dai1, Qingqin Huang1,2 &
Yixin Lu 1,2

The C−N axially chiral N-arylpyrrole motifs are privileged scaffolds in numer-
ous biologically active molecules and natural products, as well as in chiral
ligands/catalysts. Asymmetric synthesis of N-arylpyrroles, however, is still
challenging, and the simultaneous creation of contiguous C−N axial and cen-
tral chirality remains unknown. Herein, a diastereo- and atroposelective
synthesis of N-arylpyrroles enabled by light-induced phosphoric acid catalysis
has been developed. The key transformation is a one-pot, three-component
oxo-diarylation reaction, which simultaneously creates a C−N axial chirality
and a central quaternary stereogenic center. A broad range of unactivated
alkynes were readily employed as a reaction partner in this transformation,
and the N-arylpyrrole products are obtained in good yields, with excellent
enantioselectivities and very good diastereoselectivities. Notably, the N-aryl-
pyrrole skeletons represent interesting structural motifs that could be used as
chiral ligands and catalysts in asymmetric catalysis.

Axially chiral structural motifs are commonly present in bioactive
compounds, and they are alsowidely used as chiral ligands or catalysts
in asymmetric catalysis1–8. Therefore, atroposelective synthesis of
axially chiral molecules has become one of the most-investigated
research areas in recent years9–16. As part of our ongoing research
efforts, we recently became interested in atroposelectively con-
structing an axially chiral axis between a five-membered heterocycle
and an aryl ring17, since these molecules are valuable, yet their asym-
metric synthesis is inherently challenging and has not been well
studied18,19. In this context, N-arylpyrrole skeletons are often found in
natural products, chiral ligands, and catalysts20–25 (Fig. 1a), therefore,
catalytic asymmetric synthetic methods to access this type of mole-
cules would be of great significance and highly appealing. There are
only a handful of reports describing catalytic asymmetric synthesis of
N-arylpyrroles up to date. Utilizing catalytic asymmetric Paal−Knorr
reaction, Tan and co-workers achieved highly atroposelective synth-
esis of arylpyrroles26. Through remote control, the same group con-
structed axially chiral N-arylpyrroles via a desymmetrization or kinetic
resolution strategy27. Through a chiral-at-metal rhodium Lewis acid-

catalyzed atroposelective electrophilic aromatic substitution, Houk,
Meggers, and co-workers achieved atroposelective synthesis of axially
chiral N-arylpyrroles28. Very recently, Szpilman et al. reported a cop-
per- and chiral nitroxide-catalyzed kinetic resolution of axially chiralN-
arylpyrroles29. Given the importance of N-arylpyrrole compounds, and
the scarcity ofmethods for their atroposelective synthesis, wedecided
to devise an efficient asymmetric synthetic approach to access these
molecules.

In devising a catalytic atroposelective synthetic method to pre-
pare N-arylpyrroles, we opted to make use of unactivated alkyne sub-
strates, as alkynes are a family of pivotal and sustainable feedstocks for
pharmaceutical and agrochemical industries30–39. When the asym-
metric construction of axially chiral molecules is concerned, there are
numerous examples that alkynyl substrates were synthetically
manipulated for the creation of atropoisomers40. In 2004, Shibata and
co-workers reported the first asymmetric synthesis of axially chiral
compounds via an iridium-catalyzed [2 + 2 + 2] cycloaddition41. Sub-
sequently, the constructionof axial chirality fromalkynes via transition
metal catalysis has been extensively investigated42–53. On the other
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hand, the examples on organocatalytic atroposelective functionaliza-
tion of alkynes are much less. In general, the alkynyl moieties in the
substrates are subjected to two types of transformations; through a
catalytic addition reaction to form axially chiral styrenes54–59 (Fig. 1b),
or undergoing an annulation reaction to yield biaryl atropisomers60–67

(Fig. 1c). Apparently, the employment of alkynes as one of reaction
partners for the construction of axial chirality would be more desir-
able, as simple and unactivated alkyne substrates are readily available,
while the alkynyl substrates are not, and their preparation often
requires extra synthetic steps. In our projected reaction of utilizing
alkyne substrates for the creation of axial chirality, we envisioned that
light-induced Paternò-Büchi [2 + 2] reaction68–71 between an alkyne
and a quinone would generate the crucial spiro-oxetene intermediate
(Int-A). Under phosphoric acid catalysis and in the presence of
pyrrole substrates, the ring-opening of oxetane to form p-quinone
methide (p-QM) intermediate72–77 and the subsequent nucleophilic
addition with N-arylpyrroles are anticipated to deliver axially chiral N-
arylpyrrole products (Fig. 1d). Herein, we report an asymmetric pre-
paration of axially chiral N-arylpyrroles, via an atroposelective oxo-
diarylation of unactivated alkynes enabled by light-induced phos-
phoric acid catalysis.

Results
Optimization of the reaction conditions
We initiated our investigation by running a three-component reaction
involving alkyne 1a, benzoquinone 2a and N-arylpyrrole 3a in the pre-
sence of different chiral phosphoric acid (CPA) catalysts under 440nm
Kessil LEDs irradiation (Table 1). With the employment of CPAs 5a−5e,
the reaction proceeded smoothly, however, the enantioselectivities

were poor (entries 1−5). When CPA 5f with a bulky triphenylsily group
was used, the reaction virtually did not take place (entry 6). We were
delighted todiscover that theutilizationofCPAs 5g&5h led todramatic
improvement on the enantioselectivity of the reaction (entries 7 and 8).
A solvent screening was then followed. Among different solvents
examined, only dichloromethane and n-butyronitrile were comparable
to acetonitrile (entries 9−12).Wenext lowered the reaction temperature
to further enhance stereoselectivities of the reaction.When the reaction
was performed in acetonitrile at −42 °C, 89% ee and 19:1 dr were
obtained (entry 13). Since the melting point of acetonitrile is at −45 °C,
we thenusedamixtureof acetonitrile andn-butyronitrile (meltingpoint
−112 °C) to run the reaction at lower temperatures. After some experi-
mentations, we established the optimal reaction conditions; when the
reaction was performed in a mixed solvent system (acetonitrile/n-
butyronitrile = 5:1) at −50 °C, the desired product was obtained in 85%
yield, with 20:1 dr and 92% ee (entry 15).

Substrate scope
The generality of the reaction was subsequently investigated (Fig. 2).
The suitability of different alkynes was evaluated first (Fig. 2a). Alkynes
bearing alkyl chains with the length ranging from one (methyl) to five
(n-pentyl) were well tolerated, and regiospecific products with excel-
lent diastereo- and enantioselectivities were obtained in good yields
(4a−4e). The alkyl moiety in the alkyne substrates possessing a benzyl
or a phenylethyl group were also found to be suitable (4f−4g). Inter-
estingly, a free hydroxyl group in the alkyne was also found applicable
(4h). Moreover, naphthyl alkynes also turned out to be good sub-
strates (4i−4j). Both terminal and diaryl alkynes turned out to be sui-
table substrates (4k & 4l). However, no product was formed with the

Fig. 1 | Background and our working hypothesis. a Representative examples
containing axially chiralN-arylpyrrole skeleton.bAtroposelective functionalization
of activated arylalkynes. c Atroposelective cyclization of ynamides. d Our working

hypothesis. Cyp cyclopentyl, Ms methanesulfonyl, CPA chiral phosphoric acid, dr
diastereomeric ratio, ee enantiomeric excess.
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Fig. 2 | Reaction scope. Reaction conditions: 1a (0.2mmol), 2a (0.1mmol), 3a
(0.1mmol) and CPA 5 (5mol%) in CH3CN/n-BuCN (v/v 5:1, 4.0mL) under irradiation
using 440 nm Kessil LEDs at −50 °C for 48h under argon; isolated yields reported.

a The scope of the alkyne substrates. b The scope of the benzoquinone substrates.
c The scope of the N-arylpyrrole substrates. ee enantiomeric excess, ND not
detected, n-BuCN n-Butyronitrile.
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employment of dialkyl alkynes, likely due to the low activity of p-QM
intermediate (4m). The benzoquinone substrates could also be varied
(Fig. 2b), and consistent good results were attainable (4n−4q). None-
theless, when 1,2-benzoquinone or 2,3-dichloro-5,6-dicyano-p-benzo-
quinone (DDQ) was used, no desired products were observed
(4r & 4s).

The generality of the reaction with regard to the N-arylpyrrole
substrates was next studied (Fig. 2c). Various N-arylpyrroles with a
mono-substituted phenyl ring possessing electronically and sterically
diverse functional groups were evaluated, and consistent high yields,
excellent diastereoselectivities, and very good enantioselectivities
were attainable (4t, 4v−4y). The reaction also worked for an N-naph-
thylpyrrole substrate (4u). Subsequently, the suitability of N-arylpyr-
roles bearing a disubstituted phenyl ring was examined. Regardless of
the substitution patterns, i.e. ortho-, meta-, or para-, and electronic
nature of the substituents, e.g. halogens, methyl/methoxyl, nitro,
cyano or ester, the desired products were obtained in high yields, with
excellent enantioselectivities and diastereoselectivities (4z−4ak). It is
noteworthy that when the N-arylpyrrole containing 2,6-disubstituted
phenyl moiety was employed, the challenging axially chiral product
bearing four substituents along the C−N axial bond, including a qua-
ternary stereogenic center, was prepared in good yield, with
good enantioselectivity and excellent diastereoselectivity (4al).
Finally, N-naphthylpyrrole and N-arylpyrroles bearing a trisubstituted
phenyl ring were suitable for the reaction, and the yields and
stereoselectivities were well-maintained (4am and 4an). We also

examined 2-aryl indole as a potential nucleophile, and the desired
product was not detected (4ao). The absolute configurations of the
products were assigned on the basis of the X-ray crystallographic
analysis of 4w (see the Supplementary Information and Supplemen-
tary Tables S1–S6).

Synthetic application
To showcase the practicability of our method, a scale-up experiment
was performed, axially chiral 4a was prepared in 80% yield with 92%
ee (Fig. 3a). We felt at the outset that the N-arylpyrroles being con-
structed herein may be used as a chiral ligand or a catalyst in
asymmetric catalysis, we thus proceeded to synthesize a chiral
phosphine (6a, 96% ee) from one of axially chiral products (4w)
(Fig. 3b). Notably, 6a has a C−N axial chirality, as well as a central
quaternary stereogenic center at the pyrrole 2-position. To our
delight, 6a was found to be a good ligand in palladium-catalyzed
allylic substitution reaction78,79, furnishing product 9a in excellent
diastereo- and enantioselectivities. Furthermore, 6a also turned out
to be an excellent chiral phosphine catalyst, promoting the [3 + 2]
annulation80 between allenoate 10a and alkene 11a in a highly ste-
reoselective manner (Fig. 3c).

Discussion
Mechanistic studies
Preliminary mechanistic studies were performed (Fig. 4). The UV−vis
spectra of alkyne 1a, benzoquinone 2a and N-arylpyrrole 3a were

Fig. 3 | Scale-up experiment and the applications of chiralN-arylpyrroles. a Scale-up experiment.b Elaboration into a chiral phosphine. cPhosphine6a as a chiral ligand
or catalyst.
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acquired, and only 2a showed strong absorption band at the visible
light region with the maximum absorption peak at around 428 nm
(Fig. 4a). The reaction between benzoquinone 2a and N-arylpyrrole 3a
under CPA catalysis did not yield the corresponding product (4a’),
indicating that there is no such background reaction (Fig. 4b). When
two molar equivalences of alkyne 1a and benzoquinone 2a were irra-
diated using 440 nm Kessil LEDs, p-QM 13a was formed in 89% yield,
the other regioisomer 13a’ and double addition product 13a”were not
observed – these results are consistent with the regioselectivity
observed in our reaction. The excellent regioselectivity observed in
our reaction is likely attributed to two factors: the higher stability of

the benzyl radical compared to the alkyl radical and the steric differ-
ence between an aryl group and an alkyl group (TS-1 vs. TS-2) (Fig. 4c).
The UV−vis spectrum of 13a was acquired, revealing a strong absorp-
tion band at the visible light regionwith themaximumabsorptionpeak
at around 407 nm.When alkyne 1a and p-QM 13awere irradiated using
410 nm Kessil LEDs, the double addition product 13a” was not
observed (Fig. 4d). If p-QM 13awas reactedwithN-arylpyrrole 3a in the
presenceof CPA 5 g, the same axially chiral product4awasobtained in
high yield with excellent dr and ee values (Fig. 4e), suggesting that
p-QM may likely be the reaction intermediate during our one-pot,
three-component catalytic process.

Fig. 4 | Mechanistic studies. a UV–Vis spectra of the substrates and the catalyst.
bThe reaction of benzoquinone 2awithN-arylpyrrole3a under CPA catalysis. cThe
reaction of alkyne 1awith benzoquinone 2a under visible light irradiation.dUV–Vis

spectrum of 13a and the reaction of alkyne 1a with 13a under visible light irradia-
tion. e CPA-catalyzed reaction of between 13a with N-arylpyrrole 3a.
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In summary, we have developed a highly atroposelective synthesis
of N-arylpyrroles through a one-pot, three-component oxo-diarylation
reaction enabled by light-induced phosphoric acid catalysis. By directly
employing unactivated alkynes as one of the substrates, a good range of
arylpyrroles were prepared in good yields, with high distereo- and
enantioselectivities. Notably, the products contain both C−N axial chir-
ality and a nearby central quaternary stereogenic center, which were
simultaneously created in a highly stereoselective manner. Moreover,
facile structural elaboration of the N-arylpyrrole product led to the
formation of a chiral ligand/an organic catalyst which have been shown
to be very useful in asymmetric catalysis. By making use of readily
available feedstocks i.e. unactivated alkynes and developing an efficient
oxo-diarylation process, we are disclosing a new strategy for the con-
struction of axially chiral N-arylpyrroles, which represent structural
motifs thatmay be used as ligands/catalysts in asymmetric catalysis. We
believe the method reported herein has a general implication for prac-
tical synthesis of novel axially chiral molecular architectures with
potential applications in asymmetric catalysis and synthesis.

Methods
General procedure for asymmetric oxo-diarylation reaction
To a dried and argon-filled 10mL screw-cap vial equipped with a mag-
netic stir bar were added alkyne 1 (0.2mmol), benzoquinone 2a
(0.1mmol, 10.8mg), N-arylpyrrole (0.1mmol), CPA 5g (5mmol%) and
CH3CN/n-butyronitrile (v/v, 5:1, 4.0mL). The mixture was then irra-
diated by 440nm Kessil LEDs at −50 °C. The reaction mixture was
concentrated under reduced pressure after 48h and the residue was
purifiedby columnchromatographyon silica gel to furnish theproduct.

Data availability
The authors declare that the data supporting the findings of this study
are available within the article and its Supplementary Information file.
For experimental details and compound characterization data, see
Supplementary Methods. For 1H NMR, 13C NMR and 31P NMR spectra,
see Supplementary Figs. 1–84. The X-ray crystallographic coordinates
for structures reported in this study have been deposited at the
Cambridge Crystallographic Data Centre (CCDC) under deposition
number 2203579 (4w). These data can be obtained free of charge from
TheCambridgeCrystallographic Data Centre viawww.ccdc.cam.ac.uk/
structures.
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