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Thermodynamic principle to enhance
enzymatic activity using the substrate
affinity

Hideshi Ooka 1 , Yoko Chiba 1,2 & Ryuhei Nakamura 1,3

Understanding how to tune enzymatic activity is important not only for bio-
technological applications, but also to elucidate the basic principles guiding
the design and optimization of biological systems in nature. So far, the
Michaelis-Menten equation has provided a fundamental framework of enzy-
matic activity. However, there is still no concrete guideline on how the para-
meters should be optimized towards higher activity. Here, we demonstrate
that tuning theMichaelis-Menten constant (Km) to the substrate concentration
(½S�) enhances enzymatic activity. This guideline (Km = ½S�) was obtained
mathematically by assuming that thermodynamically favorable reactions have
higher rate constants, and that the total driving force is fixed. Due to the
generality of these thermodynamic considerations, we propose Km = ½S� as a
general concept to enhance enzymatic activity. Our bioinformatic analysis
reveals that theKm and in vivo substrate concentrations are consistent across a
dataset of approximately 1000 enzymes, suggesting that even natural selec-
tion follows the principle Km = ½S�.

Enzymes are responsible for catalysis in virtually all biological
systems1,2, and a rational framework to improve their activity is critical
to promote biotechnological applications. Since the early 20th century,
a reaction mechanism where the enzyme first binds to the substrate
(E + S → ES) before releasing the product (ES → E + P) has been used as
the conceptual basis to understand enzyme catalysis (Fig. 1)3–6. The
reaction rate of this mechanism is given by the Michaelis-Menten
equation:

v =
k2½S�

Km + ½S� ET
� �

: ð1Þ

Here, the reaction rate (v) is expressed as a function of a rate
constant ðk2Þ, the Michaelis-Menten constant ðKmÞ, and the con-
centrations of the substrate (½S�) and enzyme (½ET�). Km can be inter-
preted as a quasi-equilibrium constant for the formation of the

enzyme-substrate complex, defined as:

Km � k1r + k2

k1
, ð2Þ

with rate constants defined based on themechanismshown in Fig. 1. k2

is the rate constant for releasing the product from the enzyme-
substrate complex (ES → E + P), routinely expressed as kcat in the
enzymology literature. These parameters are experimentally accessi-
ble by fitting the theoretical rate law (Eq. (1)) with experimental data7–10

and are subsequently registered in databases such as BRENDA11 and
Sabio-RK12. The accumulated data may help rationalize and improve
the activity of existing enzymes.

However, rational improvement of enzymatic activity is difficult,
because a quantitative understanding on how the kinetic parameters
influence enzymatic activity is missing. For example, increasing k2

will enhance activity according to Eq. (1) if no other parameters are
changed. However, changing k2 will increase Km according to Eq. (2),
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which is unfavorable for activity13. Furthermore, if k2 is increased by
making the second step (ES → E + P) more thermodynamically
favorable, this would come at the expense of the first step (E + S→ ES)
because the free energy available for the entire reaction (S → P)
is fixed. In such a case, k1 would decrease, which is unfavorable
for activity. Thus, the mutual dependence between k2, Km, and
other kinetic parameters complicates their influence on the enzy-
matic activity v. Understanding how to optimize these parameters
under thermodynamic restrictions would clarify the physical
limits achievable in enzyme catalysis, and would lead to the rational
design of enzymes towards biotechnological applications such
as the synthesis of commodity chemicals14, antibiotics15, or
pharmaceuticals16, increasing the nutritional content of crops17, and
restoring the environment18.

In this study, we analyzed the Michaelis-Menten equation under
basic thermodynamic constraints to clarify the relationship between
the enzyme-substrate affinity (Km) and the activity (v). The main
consideration is that the free energy difference between the sub-
strate and the product (ΔGT ) is fixed, while the enzyme is allowed to
optimize the free energy difference between the substrate and the
enzyme-substrate complex (ΔG1). To bridge thermodynamics with
kinetic parameters such as k2 or Km, we have used the Brønsted
(Bell)-Evans-Polanyi (BEP) relationship19–23, which models the activa-
tion barrier as a function of the driving force. This is a well-known
concept in heterogeneous catalysis, and in conjunction with the
Arrhenius equation24, can be used to evaluate the mutual depen-
dence between k2 and Km to quantitatively. This allowed us to cal-
culate the optimum value of Km required to maximize enzymatic
activity (v), afindingwhich is supportedbyour bioinformatic analysis
of approximately 1000 wild-type enzymes.

Results
Construction of the thermodynamic model
In principle, an ideal enzymewith low Km and large k2 can be realized
if both k1 and k2 are increased simultaneously. However, this
is physically unrealistic, because the driving force which can be
allocated to k1 and k2 is limited by the free energy change of
the entire reaction. Within this thermodynamic context, maximum
activity is realized by optimizing the distribution of the total
driving force between the first (E + S → ES) and second (ES → P)
steps shown in Fig. 1. To quantitatively evaluate the relationship
between the driving force and the activity, we have used the BEP
relationship19–23 to convert driving forces (ΔG) into activationbarriers
(Ea), and the Arrhenius24 equation to convert activation barriers to
rate constants.

The thermodynamic model which served as the basis of our cal-
culations is shown in Fig. 2. In a classical Michaelis-Menten reaction,
the enzyme and substrate first form an enzyme-substrate complex
(E + S → ES) before producing the product in the second step (ES →
E + P). This mechanism is conceptually similar to reactions that occur
on a heterogeneous catalyst surface, where the substrate molecule
first binds to the catalyst surface before being converted into the
product19–23. The Gibbs free energies for the formation of the enzyme-
substrate complex and the product are denoted as ΔG1 and ΔG2,
respectively. By definition, their sum must equal the total free energy

change of the reaction ΔGT :

ΔGT =ΔG1 +ΔG2: ð3Þ

To evaluate the reaction rate under this thermodynamic restric-
tion, a method to convert thermodynamics (ΔG1, ΔGT ) to kinetics and
rate constants is necessary. One possibility is to use the BEP relation-
ship, which is a well-known empirical rule in heterogeneous
catalysis19–23. This relationship suggests that a thermodynamically
unfavorable elementary reaction will have a larger activation
barrier19–23. For example, the activation barrier corresponding to k1 can
be expressed mathematically as:

Ea1 = Ea
0
1 +α1ΔG1, ð4Þ

where E0
a1 represent the activation barriers when the elementary

reaction is in equilibrium (ΔG1 = 0), and α1 expresses how sensitive
the activation barrier is with respect to the driving force. The
applicability of the BEP relationship to enzymes is supported by the
bioinformatic analysis by Sousa et al.25, who found a linear relation-
ship between activation barriers and driving forces of 339 wild type
hydrolases. Similar linear relationships have also been reported
experimentally for cellulases26 and computationally for cytochrome
P-45027, suggesting that the BEP relationship may be applicable to a
wide variety of enzymes.

Next, activation barriers can be converted to rate constants based
on the Arrhenius equation24 as follows:

k1 =A1exp
�Ea1

RT
: ð5Þ

Here, A1 is a pre-exponential factor, and R and T are the gas
constant and absolute temperature, respectively. Using Eqs. (4) and
(5), k1 can be expressed as:

k1 = k
0
1 exp

�α1ΔG1

RT
= k0

1 g
�α1
1 ,

ð6Þ

where k0
1 � A1exp

�E0
a1

RT and g1 � exp ΔG1
RT were used to aggregate factors

independent and dependent on the driving force, respectively (see
Supplementary Note 1, Appendix 1 for details). k1r and k2 can also be

E+S ES E+P
k1

k1r

k2 (kcat)

Fig. 1 | Mechanism of a standard enzymatic reaction. The enzyme (E) and sub-
strate (S) form a complex (ES) which then releases the product (P). Symbols above
the arrows indicate rate constants.

ΔG2

E+S

ES
E+P

ΔG

ΔG1

Ea2

Ea1 Ea1r

Reaction Coordinates
Fig. 2 | The free energy landscape corresponding to the mechanism shown in
Fig. 1. The free energy changes (ΔG1,ΔG2) and activation barriers (Ea1,Ea1r ,Ea2) in
the mathematical analysis are defined as indicated in the figure.
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written similarly as:

k1r = k
0
1 g

α1r
1 = k0

1 g
1�α1
1 , ð7Þ

k2 = k
0
2g

�α2
2 = k0

2
g1

gT

� �α2

: ð8Þ

using notations similar to those defined for k1 (See Appendices 2 and 3
for details). Substituting these rate constants into Eq. (2) yields the
following expression for Km:

Km � k1r + k2

k1

= g1 1 +Kð Þ,
ð9Þ

whereK was defined as K � k0
2 g

α1 +α2�1
1

k0
1 g

α2
T

. Finally, based on Eqs. (8) and (9),

the enzymatic activity (v) can be expressed as:

v=
k2½S�

Km + ½S� ½ET�

=
k0
2g

α2
1 g�α2

T ½S�
g1 1 +Kð Þ+ ½S� ½ET�:

ð10Þ

To illustrate how Eq. (10) captures the tradeoff relationship
between k2 and Km, numerical simulations were performed (Fig. 3A).
Three possible thermodynamic landscapes for a reaction with a total
driving force of ΔGT = � 40 kJ/mol are shown. This parameter was
chosen as a representative value based on the fact that the ΔGT of
typical biochemical reactions is between −80 and +40 kJ/mol28,29.
Similar calculations with different values of ΔGT can be found
in Supplementary Notes 2 (Supplementary Figs. 1–3). When the first
reaction is thermodynamically favorable compared to the second
(ΔG1 <ΔG2; Fig. 3A, black lines), the activity increases rapidly from
low substrate concentrations (Fig. 3B, solid black line), consistent
with the small Km value. However, an enzyme with a small Km suffers
from a small k2 value, which is evident from the saturating behavior
at ½S�> 1 µM. Increasing the driving force of the second step (blue and
red lines) leads to a larger k2 and thus higher activity at large [S] (>1
µM) compared to the enzyme shown in black. However, in this case,
the activity at low [S] (>1 µM) is suppressed due to the larger Km.

The influence of the substrate concentration in Fig. 3. can be
rationalized by considering the rate-limiting step. At low substrate
concentrations, the rate of the first step (E + S→ ES: k1 E½ �½S�) would be
diminished due to the small ½S�. This suggests that spending more
driving force on the first step (Fig. 3, black line) such that it is no longer
rate-limitingwould be favorable for overall activity. On the other hand,
at high substrate concentrations (Fig. 3, red line), the first step is
already kinetically favored, and it becomes more beneficial to spend
more driving force on the second step.The boundary condition is
when the rates of the two forward reactions are equal
(k1 E½ � � ½S�= k2½ES� $ ½S�= k2 ½ES�

k1 ½E� . This boundary is valid as long as ½S� can
be assumed to be constant. In a batch reactor system, this would
require ET

� �
to be small relative to S½ �30: However, in a flow reactor or

under in-vivo conditions, the boundary holds for larger values of ET
� �

as long as the external supply of the substrate is sufficient to maintain
S½ � constant. Under these conditions, the optimum values of k1 and k2

are dependent on the substrate concentration, and thus, the Km value
necessary to maximize the activity must also be dependent on ½S�.

Analysis of the activity–driving force relationship
To directly illustrate the influence of driving force (ΔG1 and ΔGT ) on
enzymatic activity, we performed numerical simulations using Eq. (10)
at various fixed substrate concentrations (Fig. 4). At a substrate con-
centration of 0.1 µM (Fig. 4a), the region of highest enzymatic activity
(orange) was observed in the bottom left region. It is reasonable for
activity to be higher in the lower half of the panel, due to the more
negative ΔGT . A negative ΔG1 is also beneficial for activity at a low
substrate concentration ( S½ �=0:1 µM), leading to enzymatic activity
being higher in the left half of the panel. At higher substrate con-
centrations, the overall color within each panel changed from blue to
red, because a higher substrate concentration increases activity
(Fig. 4b–d). At the same time, the ΔG1 corresponding to maximum
activity gradually shifted positively (black dashed lines). This finding is
consistentwith Fig. 3 which shows that amore positiveΔG1 is desirable
when the substrate concentration is increased. In all panels, the loca-
tion with the highest activity at a given ΔGT value is shown as a dashed
black line. Notably, when the Km value was calculated at the (ΔG1,ΔGT )
values under the dashed line using Eq. (9), the obtained value was
always equal to the substrate concentration ½S� in each panel. In other
words, the dashed line is not only the ridge of the volcano plot, but is
also the contour line showingKm = ½S�. This suggests that the condition
for maximizing enzymatic activity can be represented by Km = ½S�. The

Fig. 3 | Relationship between thermodynamic landscapes and enzymatic
activity. Three thermodynamic landscapes are shown in A. Their corresponding
Michaelis-Menten plots are shown in B. The Km values are indicated as vertical
dashed lines inB. Increasing the driving force of the first step increases the activity
at low substrate concentrations but lowers the activity at high substrate con-
centrations. Therefore, the thermodynamic landscape of an optimum enzyme

depends on the substrate concentration ([S]). The free energies of the enzyme-
substrate complex (ΔG1) were −25, −20, and −15 kJ/mol for the black, blue, and red
lines, respectively, and that of the total reaction (ΔGT ) was −40 kJ/mol. All
numerical simulations in this study were performed at ½ET� =0.01 µM, k0

1 = k
0
2 = 1

(1/µM/s and 1/sunits, respectively), andα1 =α2 =0:5 unless otherwise noted. See the
python code in Supplementary Data 2 for details.
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fact that Km = ½S� yields high activity is valid even if the BEP coefficients
deviate from 0.5 (Supplementary Note 4, see also below).

To examine why Km = ½S� leads to maximum activity, Eq. (10) was
rearranged to give the following expression for the activity (v):

v=
k0
2g

�α2
T ½S�

½S�g�α2
1 + g1�α2

1 +
k0
2 g

α1
1

k0
1 g

α2
T

½ET�, ð11Þ

where g1 is only in the denominator. The derivative of the denomi-
nator, denoted as f is:

df
dg1

= � α2g
� α2 + 1ð Þ
1 S½ �+ 1� α2

� �
g�α2
1 +

k0
2α1

k0
1 g

α2
T

gα1�1
1 : ð12Þ

Tomaximize the activity (v), f must be minimized which is realized at:

df
dg1

= 0 $ S½ �= g1
1� α2

α2
+
α1

α2
K

� �
: ð13Þ

Using standard notation, the condition for the optimum thermo-
dynamic landscape is given by:

ΔG1 =RT ln½S� � ln
1� α2

α2
+
α1

α2
K

� �� �
: ð14Þ

In the specific case of α1 =α2 = 0:5, Eq. (14) reduces to:

ΔG1 =RT ln½S� � ln 1 +Kð Þð Þ: ð15Þ

The condition α1 =α2 =0:5 corresponds to a scenario where the
activation barriers in the forward and backward directions change
equally with respect to the driving force. In general, if the BEP coeffi-
cient is large (α >0:5), the forward direction is more sensitive, while if
α <0:5, the backward reaction is more sensitive. For reversible
enzymes31,32, large deviations from α =0:5 would hinder their ability to

catalyze the reaction in both directions. Furthermore, typical experi-
mental values of α range between 0.3 and 0.7 for artificial catalysts33–35,
and the experimental value reported for cellulases is 0.7426. Therefore,
we expect the unbiased scenario (α =0:5) to be a reasonable repre-
sentation for the median value of enzymes in general. Setting BEP
coefficients to 0.5 is also a common technique used to understand
general trends in heterogeneous catalysis22,36–38.

Under this condition, substitutingK in Eq. (13) using the definition
ofKm (Km � g1ð1 +KÞ, Eq. (10)), yields a surprisingly simple formula for
the condition of maximum activity:

Km = ½S� ð16Þ

This equation shows that the combinationof (ΔG1,ΔGT ) necessary
to maximize the activity guarantees Km = ½S�. This finding is further
illustrated in Fig. 5, where the activity (v) is plotted as a function of Km

at different substrate concentrations. In all cases,maximumactivity (v)
is observed when the binding affinity (Km) is equal to the substrate
concentration (½S�). Kari et al. have reported that the activity of
cellulases26,39 and PET hydrolases40, are maximized at a specific Km.
However, the physical origin of this trend was unclear, due to the
difficulty in obtaining raw ΔG values from experiments. As Km is a
composite parameter which depends on multiple rate constants, only
relative values of the free energy (ΔΔG) have been discussed so far. In
this study, we have started from the thermodynamic landscape and
have shown that as long as the enzyme kinetics can be expressed using
the Michaelis-Menten equation (Eq. (1)), and the rate constants follow
the BEP relationshipwith α1 =α2 =0:5, tuning theKm value equal to the
substrate concentration ½S� guarantees maximal enzymatic activity.
The existence of an optimum Km close to the substrate concentration
is valid even under mechanistic deviations as will be shown below.

Robustness of the theoretical model
To confirm the robustness of our finding, we have performed
numerical simulations by loosening each of the theoretical require-
ments. Deviation from the Michaelis-Menten mechanism (Fig. 1) are

Fig. 4 | Enzymatic activity (v) plotted againstΔG1 andΔGTbasedonEq. (10).The
substrate concentration (½S�) in each panel was a 10−1, b 1, c 10, and d 102 μM, as

indicated in the bottom right of each panel. In all panels, the black dashed line
corresponding to Km = ½S� overlaps with the region of highest enzyme activity.
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shown in Fig. 6a–c, and deviation of α values from 0.5 are shown in
Fig. 6d. The possibility of reverse reactions (P → S) or inhibition (E +
I→ EI or ES + I→ ESI) are common deviations from Michaelis-Menten
kinetics41. The net rate in the presence of a reverse reaction when the
substrate and product are in equal concentrations ( S½ �= P½ �= 10 µM) is
shown in Fig. 6a. In terms of maximizing the activity in the forward
direction (S → P), the physically meaningful region is (ΔGT <0), where
the net reaction proceeds in the forward direction. Under this condi-
tion, the dashed line corresponding to Km = ½S� and the solid line cor-
responding to the true maximum activity (forward minus reverse
reaction rates) overlap almost completely, indicating that Km = ½S� is a
good guideline to enhance activity even in the presence of reverse
reactions (P → S).

Similar calculations for competitive and uncompetitive inhibition,
where the inhibitor binds to either the free enzyme or the enzyme-
substrate complex, are shown in Fig. 6b, c. The degree of inhibition
(γ � ½I�

Ki
), is determined by the inhibitor concentration (½I�) and the

equilibrium constant of inhibition (Ki)
41. Based on the experimental

data of Park et al.42, γ can range from 10-4 to 104. As γ was less than 10 in
approximately 80% of their data, γ = 10 was used here for the numer-
ical simulations. Again, the optimal Km (solid line) deviates only
slightly from the dashed line (Km = ½S�), and both lines pass through the
region of high activity (orange). The Km values are approximately 1
order of magnitude apart between dashed and solid lines, yet there is
only a 57 % difference in activity at a specific ΔGT . This is much smaller
than the scale of the entire diagram (10 orders of magnitude), sug-
gesting that adjusting Km to the substrate concentration ½S� is a robust
strategy to enhance the activity, even in the presence of inhibition.
A detailed discussion on the parameter dependence (γ, ½S�), as well
as for other mechanisms such as substrate inhibition or allostericity

Fig. 6 | Influence of mechanistic deviations on the optimum Km. a Reverse
reactions, b Competitive inhibition, c Uncompetitive inhibition, and d BEP coeffi-
cient (α). The dashed line corresponds to Km = ½S�, with ½S� = 10 µM. The true
optimum Km for each mechanism is shown as a solid line along with its analytical
equation (refer to Supplementary Note 5 for the derivations). In a, the product
concentration (½P�) was set to 10 µM. The top half of a was colored at an arbitrarily

low activity because the reverse reaction is more favorable in this region. The large
discrepancy between the dashed and solid lines at ΔGT >0 is physically irrelevant,
because the activity of the forward reaction cannot be discussed when the net
reaction proceeds in the reverse direction. In b and c, the degree of inhibition
ðγ � I=KiÞ was set to 10. In d, the BEP coefficients were set to α1 =α2 =0:2. No
analytical solution was obtained for d.

Fig. 5 | Volcano plots showing how the activity is expected to change with
respect to the Michaelis-Menten constant (Km). As the substrate concentration
was increased from 10-1 μM (black) to 102 μM (red), the volcano plot shifted to the
upper right. The apex is located atKm = ½S�, as indicated by the vertical dashed lines
of the corresponding color.Changing the valuesofΔGT , k

0
1 ork

0
2 doesnot influence

the conclusion that the activity is maximized when Km = ½S�, as shown in Supple-
mentary Note 3.
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can be found in Section 5 of the supporting information. The deriva-
tions for the equations of the true optimal Km can also be found in the
same section.

The influence of the assumption α1 =α1r =α2 = 0:5 is shown in
Fig. 6d. As physical constraints require α1r = 1� α1 (Appendix 2), only
α1 and α2 are independent. In an extreme case of α1 =α2 = 0:2, the
activity is diminished because rate constants hardly change even if
their driving force is increased. However, the dashed line still passes
through the region of high activity, and the activity is still less than an
order of magnitude away from the true optimum (solid line). The fact
that Km = S½ � yields high activity is valid even for other values of α1 and
α2 (Supplementary Figure 5). This dashed line was obtained through
numerical optimization, because no analytical solution for the opti-
mumKm was obtained for general values ofα1 andα2.Wenote that the
optimality obtained by Kari et al.26 ( α2

1�α2
½S�) is a special case of Eq. (13),

which can be obtained under the assumption α1 +α2 = 1. Further
assuming α1 =α2 =0:5 yields Km = ½S�. Taken together, the simulations
confirm that Km = ½S� is a robust theoretical guideline to enhance
enzymatic activity.

Validation based on experimental data
Finally, to evaluate whether Km = ½S� can rationalize enzymatic proper-
ties in nature, we have analyzed their relationship based on the
experimental data from Park et al42. The original data (Supplementary
Data 1) consisted of Km values of wild-type enzymes obtained from
BRENDA, and intracellular ½S� values obtained from Escherichia coli,Mus
musculus, and Saccharomyces cerevisiae cells, yielding a total of 1703
Km–½S� combinations. This dataset was then classified by the number of
entries for each substrate, based on the expectation that a substrate
which participates in many reactions is more likely to deviate from
Michaelis-Menten kinetics under in-vivo conditions. For example, the
Michaelis-Menten mechanism does not consider scenarios where mul-
tiple enzymes compete for the same substrate, a situation which may
occur for cofactors such as ATP. Major metabolites, such as sugars or
amino acids all appear less than 50 times each in the dataset and are
shown in red. The comparison between their raw Km and ½S� values
(Fig. 7a), aswell as thehistogramof their relative values (Fig. 7b) indicate
that the distribution is centered around Km = ½S�. Namely, theKm and ½S�
are consistent towithin 1 order ofmagnitude for 53%of this dataset (524
out of 980entries), and theGaussiandistributionfitted to thehistogram
is centered at log10Km=½S� = −0.18 with a standard deviation of 1.3.

The large standard deviation is due to a variety of factors, such as
inhibitors or BEP coefficients which can change the optimum Km by
roughly an order of magnitude (Fig. 6), or growth conditions and
measurement errors which may influence ½S� also by an order of

magnitude43. Furthermore, someenzymes are outside the applicability
domain of our model. For example, some enzymes do not follow the
BEP relationship at all25, and in some cases, the Michaelis-Menten
equation may be an inadequate expression of enzymes under in-vivo
conditions. Namely, the Michaelis-Menten equation is derived tradi-
tionally based on the assumption that the concentration of the
enzyme-substrate complex is in the steady state, but this assumption
can be broken if the amount or activity of the enzyme is so high such
that the substrate is quickly depleted30. Superoxide dismutase from
bovine blood is one example, as its high activity (kcat = 1:9× 109 M−1 s−1)
renders it to be diffusion-limited44 under physiological conditions.
Accordingly, it deviates from our proposed law: Km = S½ � with a Km (>
0.5mM)44 several orders of magnitude larger than the substrate con-
centration (25 <½H2O2� < 60 µM in aqueous humor)45. Not all super-
oxide dismutases are exceptions, as those with lower activity
(kcat < 3× 10

8 M−1 s−1) from Thermus thermophilus (Km = 30.8 µM)46 and
Escherichia coli (Km = 75 µM)47 have Km values closer to the substrate
concentration. Previous studies48 have shown that diffusion limited
enzymes are not the majority, suggesting that our proposed law may
apply to the majority of enzymes. Within our dataset, only 1% (10
entries) show Km=½S�> 103.

The next subset shown in blue contains 410 entries and consists of
5 substrates which each appear more than 50 times: NAD+, NADH,
NADP+, NADPH, and acetyl-CoA. TheGaussianfitted to the histogram is
slightly shifted to smaller Km (centered at log10Km=½S� = −0.43), but
57% of this dataset (232 out of 410 entries) still satisfies Km = ½S� to
within an order of magnitude. On the other hand, ATP, which is the
most frequently occurring substrate with 313 entries, shows a sig-
nificant deviation from Km = ½S�. The fitted Gaussian is centered at
log10Km=½S� = −1.64, and Km is smaller than ½S� for 98% of the entries.
The deviation from Km = ½S� may be because the Michaelis-Menten
mechanism, which is the basis of our mathematical analysis, does not
consider scenarios where multiple enzymes compete for the same
substrate. Under such conditions, the effective substrate concentra-
tion available to each enzymewoulddecrease. Thus,Km≪½ATP�maybe
a result of Km being adjusted to the effective substrate concentration.
Although activity is not the only enzymatic property that must be
optimized in nature, the consistency between the Km of wild-type
enzymes and in-vivo substrate concentrations suggests that natural
selection does indeed favor enzymes which satisfy Km = ½S�, the theo-
retical guideline for achieving high enzymatic activity.

Discussion
So far, various criteria13,41,49 such as large k2 (kcat), small Km, or large
k2=Km have been proposed to characterize enzymeswith high activity,

Fig. 7 | Relationship between Km and ½S� from the dataset reported by Park
et al.42. The raw values of Km and ½S� are shown in a, and their relative values are
plotted inb. Each entryofKm and ½S�wascategorizedbasedon thenumberof times
the substrate appeared in the entire dataset. Red: <50 (major metabolites), blue: >

50 (NAD+, NADH, NADP+, NADPH, and acetyl-CoA), black: > 300 (ATP). The number
of entries was used as a proxy for the validity of the Michaelis-Menten mechanism
of the specific substrate. The dashed line in a corresponds to Km = ½S�, and the
shaded area shows a deviation of 1 order of magnitude.
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making it difficult to rationally evaluate or improve the activity of an
enzyme. The lack of a universal consensus is largely due to the mutual
dependence between k2 and Km: As our theoretical model addresses
this challenge directly and maximizes the activity within the thermo-
dynamic constraints imposedby k2 andKm, webelieve thatKm = ½S� is a
criterion for high activity which provides the optimum balance
between k2 and Km in a wider range of scenarios.

As to the limitations of our theory, we note that the mathematical
equations derived in this study are based on the empirical BEP rela-
tionship, and therefore, Km = ½S� may not yield maximum enzymatic
activity in scenarios where the BEP relationship is broken. Possible
strategies include tuning the local binding environment using 3
dimensional active sites50–52, or by using the Marcus inverted region in
redox reactions53,54. Furthermore, the starting point of our analysis is
the Michaelis-Menten equation. Traditionally, this equation has been
derived based on the steady state approximation of the enzyme-
substrate complex30. Therefore, if this assumption is broken such as in
the case of diffusion-limited enzymes44, Km and ½S� may diverge by
several orders of magnitude. Recently, several studies have explicitly
addressed the differential equations of Michaelis-Menten and similar
enzyme mechanisms to determine the exact applicability domain of
the Michaelis-Menten equation30,55,56. For example, Schnell30 has pro-
posed that instead of the steady-state approximation of [ES], the
reactant stationary assumption is the true condition for the Michaelis-
Menten equation tobe applicable. In this case, the applicability domain
of our theory would also adhere to that of the Michaelis-Menten
equation. Other deviations in the mechanism (Fig. 6a–c) or parameter
values (Fig. 6d) do not significantly influence the activity landscape30.

Our main conclusion that the Michaelis-Menten constant should
be increased at higher substrate concentrations tomaximize activity is
consistent with the experimental work by Kari et al.39, who measured
the activity of cellulases with different Km. When the substrate con-
centration was increased 6 times, the Km value of the most active
enzyme increased approximately 2.4 times. Considering that their Km

had a range of roughly 3 orders of magnitude, the experimental trend
supports our hypothesis Km = ½S�, especially when their experimental
BEP coefficient of 0.74 is also considered. The idea of the optimum
binding affinity being dependent on the reaction condition anddriving
force is also consistent with recent theoretical models of hetero-
geneous catalysis22,57–59.

As a corollary, our model which quantifies the relationship
between Km and k2 immediately provides a thermodynamic rationale
to the recently reported scaling relationship between them in
cellulases26. Namely, for general values of α1 and α2, the relationship
between Km and k2 can be written as:

Km = 1 +Kð ÞgT
k2

k0
2

 !1=α2

∴ log k2 =α2 logKm � α2 log 1 +Kð ÞgT + logk
0
2 :

ð17Þ

This equation shows that log k2 and log Km are linearly correlated
by a factor of α2, and provides a physical basis not only to the high
linearity (R2 = 0.95) observed for cellulases26, but also to the reason
behindwhy it is generally difficult to realize enzymeswith high k2 (kcat)
and small Km. Even highly active enzymes operating near the diffusion
limit seem to have difficulty in breaking such scaling relationships,
because although their k2 is extremely large (kcat > 10

6 s−1), their Km is
also generally large (Km > 1 mM), and as a result, kcat=Km cannot
exceed 109s−1M−1 50. The consistency between our theoretical model
and previously accumulated experimental insight suggests that it may
bepossible to quantitatively rationalize enzymatic properties basedon
fundamental principles of physical chemistry.

Methods
The mathematical formulas were derived by hand, and the step-by-
step derivations for the standard Michaelis-Menten mechanism are
explained in the main text. The derivations in the presence of inhibi-
tion and allostericity are provided in the Supplementary Information.
Numerical simulations and bioinformatic analysis were performed
using Python 3.8.3.

Data availability
The bioinformatics data obtained from the supporting information of
ref. 42. is available as Supplementary Data 1. It can also be accessed at
https:github.com/HideshiOoka/SI_for_Publications and has been
deposited to Zenodo60.

Code availability
The main code used for the numerical simulations can be obtained as
Supplementary Data 2. All code used in this study, such as for per-
forming the bioinformatic analysis or generating the figures can be
found at https:github.com/HideshiOoka/SI_for_Publications and has
been deposited to Zenodo60.
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