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A machine-learning approach to human ex
vivo lung perfusion predicts transplantation
outcomes and promotes organ utilization

Andrew T. Sage 1,2,3,4, Laura L. Donahoe2,3, Alaa A. Shamandy5,6,
S. Hossein Mousavi 1,2, Bonnie T. Chao1,2, Xuanzi Zhou1,2, Jerome Valero1,2,
Sharaniyaa Balachandran2, Aadil Ali1,2, Tereza Martinu1,2,4, George Tomlinson7,
Lorenzo Del Sorbo1,8, Jonathan C. Yeung 1,2,3, Mingyao Liu1,2,3,4,
Marcelo Cypel 1,2,3,4, Bo Wang5,6,9,10,11 & Shaf Keshavjee 1,2,3,4,11

Ex vivo lung perfusion (EVLP) is a data-intensive platform used for the
assessment of isolated lungs outside the body for transplantation; however,
the integration of artificial intelligence to rapidly interpret the large con-
stellation of clinical data generated during ex vivo assessment remains an
unmet need. We developed a machine-learning model, termed InsighTx, to
predict post-transplant outcomes using n = 725 EVLP cases. InsighTx model
AUROC (area under the receiver operating characteristic curve) was 79 ± 3%,
75 ± 4%, and 85 ± 3% in training and independent test datasets, respectively.
Excellent performance was observed in predicting unsuitable lungs for trans-
plantation (AUROC: 90 ± 4%) and transplants with good outcomes (AUROC:
80 ± 4%). In a retrospective and blinded implementation study by EVLP spe-
cialists at our institution, InsighTx increased the likelihood of transplanting
suitable donor lungs [odds ratio=13; 95% CI:4-45] and decreased the likelihood
of transplanting unsuitable donor lungs [odds ratio=0.4; 95%CI:0.16–0.98].
Herein, we provide strong rationale for the adoption of machine-learning
algorithms to optimize EVLP assessments and show that InsighTx could
potentially lead to a safe increase in transplantation rates.

Precision medicine for isolated organs has been enabled by the
development of ex vivo perfusion systems for the lung1–5, liver6,7,
heart8,9, kidney10–12, and pancreas13. For surgeons, these platforms
represent a pragmatic approach to assess the suitability of marginal
(non standard) donor organs for transplantation14,15. Ex vivo lung per-
fusion (EVLP) is an established ex vivo assessment technology that aids

in the recovery of donor lungs that otherwise would have been
discarded1–5,16, providing a critical source of viable lungs for patients in
need of a transplant. While global lung transplant volumes have
increasedwith EVLP integration, they are still significantly outpaced by
the number of people added to the waitlist each year—a problem
compounded by the recent pandemic17. Although use of EVLP is a
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possible solution to the organ shortage problem18, it is limited by the
lack of standardized acceptance criteria regarding when to use an
organ for transplant19,20. Moreover, EVLP decision-making is largely
subjective and involvesmanymeasurements performedduring ex vivo
perfusionwhich canbedaunting for inexperienced EVLP programs19,20.

During EVLP, lungs are maintained in a normothermic (37 °C)
environment, perfused with an acellular perfusate solution, and ven-
tilated using an ICU-grade lung protective ventilator1–5. At present,
lung monitoring includes physiological (i.e., gas exchange, com-
pliance, airway pressure), biochemical (i.e., glucose and lactate levels,
pH, acid-base chemistry), imaging (i.e., radiographic images,
bronchoscopy), and biological measurements (i.e., cytokines and
chemokines)1–5. In a previous study, we developed the ‘Toronto Lung
Score’ based on interleukin-6 (IL-6) and IL-8 protein levels in EVLP
perfusate, and used it to profile lung inflammation21. Additional studies
have demonstrated the association between the severity of specific
evaluation parameters during EVLP and patient outcomes;22–25 how-
ever, these studies failed to holistically evaluate the breadth of
potential data derived from EVLP.

While artificial intelligence (AI) and machine learning (ML) have
had a significant impact on clinical decision-making in other areas of
medicine, they have not yet been thoroughly investigated for use
during ex vivo organ perfusion. EVLP is particularly well-suited for ML
approaches because the ex vivo data are: (i) restricted to an isolated
organ and free of confounding signals from other organ systems; (ii)
collected longitudinally for several hours, providing a potential tra-
jectory of improvement or deterioration in organ quality, and (iii)
derived from numerous different monitoring systems generating a
high volumeof data. However, evidence that anAI-guided approach to
EVLPdecision-making couldmeaningfully impact organ utilization and
post-transplant outcomes has not been demonstrated to date.

To develop a comprehensive approach to surgical decision-
making by leveraging organ assessment data generated during EVLP,
we evaluated eXtreme Gradient Boosting (XGBoost)26, a decision-tree
based ML technique, using clinical EVLP data collected in our center
over the past decade. Our ML model, termed InsighTx, uses donor
features and all possible assessments made during EVLP to predict
suitable lungs for transplantation and patient outcome—the duration
of post-transplant mechanical ventilation for the recipient. Important
recipient featureswere then added todonor lungpredictions using the
InsighTx model to demonstrate an approach that personalizes trans-
plant predictions.We further investigatedwhether the InsighTxmodel
would impact clinical decision-making during EVLP in a retrospective,
real-world evaluation study. This paper summarizes the development
of the InsighTx algorithm using the largest collection of clinical EVLP
data to date (Fig. 1), and provides evidence that an AI-guided approach
could potentially lead to a safe increase in the number of transplants
performed following ex vivo assessment.

Results
EVLP cohort characteristics
From 2008 to 2022, there were a total of n = 725 eligible clinical EVLP
cases that were included in InsighTx model development and valida-
tion. There were n = 504 EVLP cases performed from 2008 to
November 2019 that were used as a development dataset. Consecutive
EVLP cases conducted between December 2019 to December 2020
(n = 97) and December 2020 to August 2022 (n = 124) were used as
validation cohorts 1 and 2 respectively (Table 1). There were no sig-
nificant differences in donor age, sex, BMI or type (Table 1); however,
the proportion of donation after circulatory death (DCD) compared to
donation after brain death (DBD) donors increased in the validation
cohorts; median warm ischemic time was 65min [IQR: 50–80min].

Fig. 1 | The InsighTx Model. Schematic representation of the development of the
InsighTxmodel using features derived fromanex vivo lungperfusion (EVLP) circuit
(top left). Biological, physiological, and biochemical assessments (bottom left) are

used as inputs into the XGBoost machine learning algorithm to predict organ
suitability for transplant (bottom right). Image created with BioRender.com.
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Transplant rates and post-transplant outcomes significantly varied
(Table 1). The rate of transplantation following EVLP was the highest in
Test Dataset 1 (66%) and lowest in Test Dataset 2 (49%). While the
incidence of Primary Graph Dysfunction (PGD) Grade 3 at 72 h was
consistent in this study, we observed that the proportion of patients
extubated in less than 72 h was highest in Test Dataset 1 (49%) and
lowest in Test Dataset 2 (30%) (Table 1). Although extubation times
varied, themedian time spent in the ICUwas similar across thedatasets
(Table 1). Of all donor lungs evaluated on EVLP, 38% resulted in
transplantation and extubation in less than 72 h post-transplant, 22%
were transplanted but associated with prolonged ventilation, and 40%
were deemed unsuitable for transplant. These prevalence rates were
used as the reference baseline for the area under the precision-recall
curve (AUPRC) of EVLP and transplant outcomes.

InsighTx model development and performance
The AUROC for the overall InsighTx model was 79 ± 3%, 75 ± 4%,
85 ± 3% in the training and test sets, respectively (Table 2 and Sup-
plementary Fig. 1). Importantly, discriminationwas high for identifying
donor lungs on EVLP that resulted in a time to extubation less than 72 h
(AUROC: 80± 4% (training), 76 ± 6% (test dataset 1), 83 ± 4% (test
dataset 2)) and for identifying lungs that were unsuitable for trans-
plantation (AUROC: 90 ± 4% (training), 88 ± 4% (test dataset 1), 95 ± 2%
(test dataset 2)). Although the prediction of prolonged time to

extubation in transplant recipients was modest in test dataset 1 com-
pared to the training dataset (AUROC: 67 ± 6% (training) vs. 62 ± 9%
(test dataset 1)), the model performed well in test dataset 2 (AUROC:
76 ± 6%) (Table 2). Importantly, the precision (positive predictive
value) of themodel to identify any unsuitable donor lung (i.e., declined
for transplant or extubated ≥72 h) was 81% and model precision for
suitable donor lungs (i.e., extubated <72 h) was similar at 72%. Fur-
thermore, the AUPRC showed a marked improvement of the InsighTx
model to predict EVLP outcomes compared to baseline AUPRC values
(prevalence of the respective endpoints) (Supplementary Fig. 1). For
patients extubated <72 h (baseline AUPRC 38%), the InsighTx model
had an AUPRC of 67 ± 6% in the training dataset, 74 ± 8% in test dataset
1, and 64 ± 10% in test dataset 2. Similar AUPRC results were observed
in patients that required prolonged ventilation post-transplant:
40 ± 7% (training), 31 ± 11% (test dataset 1), and 42 ± 11% (test dataset 2)
for the InsighTx model vs. 22% for the baseline AUPRC. Notably, the
improvement inAUPRCwas the strongest for lungsdeemedunsuitable
for transplant (InsighTx: 86 ± 5% (training), 81 ± 7% (test dataset 1), and
96 ± 2% (test dataset 2) vs. 40% baseline AUPRC).

We further investigated the relationship between the InsighTx
model and PGDGrade 3 at 72 h. For donor lungs thatwerepredicted to
have a time to extubation <72 h using the InsighTxmodel, the negative
predictive value (NPV) for PGDGrade 3 at 72 h post-transplant was 88%
[95% CI: 84–91%, p <0.001, n = 430].

A central characteristic of the XGBoost algorithm is the ability to
determine the relative importance of the input variables. Only donor
type and PEEP (positive end-expiratory pressure) had SHAP (shapley
additive explanations) importance values of 0 and were therefore not
used by the model for outcome prediction; all other input features
were required by the model (SHAP >0). We observed unique combi-
nations of the donor and EVLP parameters that underlie the prediction
of each clinical endpoint (Table 3).

InsighTx model and recipient features
We investigated whether the inclusion of key recipient features
increased the performance of the InsighTx model and the prediction
of post-transplant time to extubation. To do this, we employed a
sequential modeling approach where the InsighTx results were com-
binedwith recipient age, sex, BMI, status, and indication for transplant
to generate a secondary, updated probability of post-transplant out-
come. As might be expected, the addition of recipient features
increased the AUROC for the InsighTx model to discriminate which
EVLP cases would result in short or prolonged time to extubation in
transplant patients (Supplementary Table 1). A significant increase of
10% in the AUROC was observed compared to a recipient-only model
and a similar trend of +6% in AUROCwas observed versus the InsighTx
model alone (Supplementary Table 1).

InsighTx implementation analysis
Our analysis showed that the InsighTx model demonstrated good net
benefit for transplant suitability and post-transplant extubation <72 h

Table 2 | AUROC performance of the InsighTx model to predict EVLP and Tx outcomes

InsighTx Model (Overall) Extubated <72h Extubated ≥72h Declined for Tx

AUROC (SD)

Training Dataset 79 (3) 80 (4) 67 (6) 90 (4)

Test Dataset 1 75 (4) 76 (6) 62 (9) 88 (4)

Test Dataset 2 85 (3) 83 (4) 76 (6) 95 (2)

p-valuea p = 0.50 p = 0.48 p = 0.49 p = 0.48

p-valueb p = 0.36 p = 0.33 p = 0.46 p = 0.32

Data reported from the training dataset are derived from the results of the internal test sets. A detailed description of the p-value calculations can be found in Methods.
AUROC area under receiver operating characteristic curve (%), SD standard deviation.
ap-value for Test Dataset 1 vs. Training Dataset.
bp-value for Test Dataset 2 vs. Training Dataset.

Table 1 | Clinical EVLP case characteristics for InsighTxmodel
development

Training
Dataset

Test Dataset 1 Test Dataset 2 p-value

Date range 2008–2019 2019–2020 2020–2022 –

Number of cases 504 97 124 –

Mean age (SD)
– Years

45 (17) 48 (16) 47 (16) 0.25

Male sex (%) 328 (65%) 62 (64%) 79 (64%) 0.84

Mean BMI (SD) 27.3 (6.5) 27.3 (6.0) 28.7 (7.1) 0.69

Donor type DBD (%) 259 (51%) 48 (49%) 49 (40%) 0.10

EVLP outcome

Transplanted (%) 313 (62%) 64 (66%) 61 (49%) 0.02

Declined (%) 191 (38%) 33 (34%) 63 (51%)

Transplant outcome

Extubated <72 h (%) 190 (38%) 48 (49%) 37 (30%) 0.04

PGD 3 at 72 h (%) 59 (12%) 4 (4%) 12 (10%) 0.08

Median ICU LOS
[IQR] - Days

4 [2–10] 4 [2–6] 5 [3–11] 0.17

Statistics: One-wayANOVA test for age andBMI; Kruskal–Wallis test for ICU LOS; Chi-square test
for sex, donor type, EVLP outcome, PGD3, and extubation <72 h.
SD standard deviation, BMI bodymass index, DBD donation after brain death, EVLP ex vivo lung
perfusion, PGD primary graft dysfunction, ICU intensive care unit, LOS length of stay, IQR
interquartile range.
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decisions over a wide range of threshold probabilities (Supplementary
Fig. 2). As expected, we noted that transplant ‘all’ or ‘none’ approaches
were beneficial at the lowest and highest threshold probabilities,
respectively (Supplementary Fig. 2), which likely reflects historical
transplant decisions based on recipient urgency.

Lastly, we sought to investigate whether the results of the
InsighTx model would have a meaningful impact on surgical decision-
making during EVLP. A summary of the donor and recipient char-
acteristics for this subset of EVLP cases are provided in Supplementary
Table 2.

Overall, we observed that InsighTx model use encouraged a the-
oretical increase of 7% in the decision to proceed to transplant for
lungs more likely to produce good outcomes and a 4% decrease in the
decision to proceed to transplant for lungs that were unsuitable
(Supplementary Table 3). Interestingly, we observed a net decrease of
13% for the utilization of lungs that resulted in the need for prolonged
ventilation, with no change in the lung assessment score (Supple-
mentary Table 3). Most notably, for lungs that were historically
declined but predicted to be suitable by InsighTx, there was a 13%
increase in decision to proceed to transplant when the ML based
decision-aid was available (Supplementary Table 3).

Using a mixed effects logistic regression model, we observed a
clinically meaningful impact of InsighTx on surgical decision-making.
For lungs that were actually transplanted and had extubation <72 h or
which were not transplanted but had a high probability of extubation
<72 h on InsighTx, having the InsighTx model available for decision-
making resulted in a 13-fold increase [95% CI: 4–45] in the odds of a
favorable transplant decision and an improvement of +0.95 [95% CI:
0.4–1.51] in lung suitability assessments (i.e., the impression of lung

suitability may have increased from 8 to 9 (out of 10) for a given
assessor) (Table 4). Moreover, the opposite was true for unsuitable
donor lungs (i.e., decreased odds of transplant and less favorable
impression of the organ) (Table 4). When respondents were grouped
by EVLP experience level (i.e., number of clinical EVLP cases per-
formed; experience threshold of 100 cases), we observed a consistent
effect of the model on decision making (Supplementary Table 4).
Notably, those with less EVLP experience tended to have a lower
baseline rate of transplantation (Supplementary Table 4).

Discussion
In the present study, we observed that a ML approach to organ
assessment predicts EVLP and post-transplant outcomes. The InsighTx
modelwas developedusing the largest collection of clinical EVLP cases
to date and has learned from decisions made by an experienced EVLP
program. The model performed extremely well in the prediction of
three possible outcomes following EVLP, with an AUROC of 79%, 75%,
and 85% in the training and two test datasets, respectively. Further-
more, we demonstrated that the addition of recipient features to
InsighTx predictions can be used to further fine-tune model perfor-
mance. Most importantly, we show that the model represents a sur-
gical decision-aid that could potentially lead to a safe increase in
transplant volume at our institution.

An important observation from this study was that InsighTx per-
formancewasmaintained in all three datasets, spanning over a decade
of clinical EVLP practice, even though the prevalence of key clinical
outcomes (such as post-transplant extubation <72 h) varied in the
cohorts. These results reflect the robust nature of InsighTx to accu-
rately assess the donor lung andpredict clinical outcomes, irrespective
of different donor populations and time periods. This finding is
especially important given that Test Dataset 1 and 2 occurred during
theCOVID-19 pandemicwhich impacted lung transplant programs and
organ donation rates. Thus, the results herein suggest that the
InsighTx model is generalizatable to the evolving landscape of lung
transplantation. As with all predictive assays for lung transplantation,
future studies that involve periodic validation of clinical accuracy are
warranted to continually evalutate the impact of clinical practice
evolution.

Studies by our group and others have shown the predictive value
of various biomarkers during EVLP21–25, 27–32. A study by DiNardo et al.
demonstrated that physiological and biochemical featuresmay help to
make a decision to transplant22. In addition, numerous other studies
have highlighted the predictive role of inflammatory cytokines,
including IL-6, IL-8, IL-10, and IL-1β, for the assessment of lung
injury21,23–25. As such, the approach taken in the present study attempts
to advance all of the available data and research conducted to date
towards the development of a comprehensive and unified ML-based
EVLP assessment model. It is important to note that traditional cyto-
kine testing approaches operate on timelines that are not practical for
clinical EVLP; however, rapid (i.e., <40min, TORdx LUNG) cytokine
testing platforms (Supplementary Table 5) enable the integration of
these features with the InsighTx model. In doing so, previous reports
on the importance of biological data can be included in the InsighTx
model for real-time decision making. At present, these platforms are
restricted to inflammatory cytokines but, as technical capabilities
expand, other previously reportedprotein biomarkers can be added to
future iterations of the InsighTx model.

Historically, most studies on EVLP biomarker studies have
focused on dichotomous endpoints and, therefore, fail to adequately
represent the spectrum of outcomes following EVLP. A unique feature
of the InsighTx model is the reporting of the likelihood of three pos-
sible clinical outcomes following EVLP. This provides surgeons with a
comprehensive view of the most probable recipient outcome post-
transplant. Notably, the model showed excellent performance in pre-
dicting donor lungs that were: (i) likely to result in a short time to

Table 3 | Ranked EVLP features for endpoint prediction

Rank Extubated <72 h
post-transplant

Extubated ≥72h
post-transplant

Declined for
transplant

1 Static Compliance Static Compliance ΔpO2

2 ΔpO2 Perfusate loss Static compliance

3 Ca2+ Dynamic compliance Airway pressure

4 Base excess Airway pressure Dynamic
compliance

5 Dynamic compliance IL-8 Perfusate loss

6 Perfusate loss K+ Base excess

7 Airway pressure ΔpCO2 pH

8 Na+ LA pressure Ca2+

9 pH Na+ HCO3
−

10 IL-8 Glucose ΔpCO2

11 K+ ΔpO2 Glucose

12 Donor BMI IL-6 LA pressure

13 ΔpCO2 Ca2+ Donor age

14 IL-6 Donor sex Vascular resistance

15 Cl− Base excess Cl−

16 Vascular resistance pH K+

17 HCO3
− Vascular resistance Donor BMI

18 LA pressure HCO3
− Lactate

19 Donor sex PA pressure IL-10

20 Lactate Donor age Na+

21 IL-10 Donor BMI –

22 Glucose IL-1β –

23 IL-1β Cl− –

24 PA pressure Lactate –

ΔpO2 change in oxygen partial pressure, ΔpCO2 change in carbon dioxide partial pressure, LA
left atrial, PA pulmonary artery, IL-8 interleukin-8, IL-6 interleukin-6, IL-10 interleukin-10, IL-1β
interleukin-1beta, BMI body mass index.
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extubation post-transplant, or (ii) unsuitable for transplantation.
Moreover, the prediction of post-transplant extubation <72 h by
InsighTx was strongly predictive of non-PGD Grade 3 at 72 h. The
ability of the InsighTx model to discriminate donor lungs that were
associatedwith prolonged ventilation post-transplant wasmodest, but
showed marked improvement over standard practice. An important
finding in our study was that InsighTx precision was 81% when pro-
longed ventilation and declined for transplantation EVLP cases were
considered together. These results strongly support the notion of an
injured donor lung phenotype identified by InsighTx which can be
used to guide clinical decision-making during EVLP.

The objective of this study was to derive a model for an isolated
donor lung to help predict outcome for any recipient, irrespective of
their pre-transplant condition or status. It is important to note that the
final decision to transplant resides with the surgeon, who takes rele-
vant recipient features into account. Using a donor-centric approach,
we observed that a MLmodel based on donor and EVLP features alone
actually demonstrated excellent performance. Although the addition
of recipient features to InsighTx improved model AUROC, it did not
reach statistical significance, which underscores the importance and
good performance of the donor-centric approach of the InsighTx
model. Nevertheless, we found that the addition of recipient char-
acteristics, asmight be expected, can strengthenmodel discrimination
for post-transplant time-to-extubation.

The sequential donor-recipient modeling approach underscores
the power of the InsighTx model: one can use it for donor lung
assessment as a generalizedmodel for any recipient or InsighTx results
can be combined with specific recipient details that will personalize
the prediction to a particular patient. Our results offer further support
of the role that the recipient contributes to their post-transplant out-
come. For example, recipient age, BMI, and pre-transplant status
(urgency) were found to be importantmodifiers of the InsighTxmodel
predicted outcome. Future studies should investigate additional,more
complex recipient features using the approach described herein.

As the field of ex vivo organ perfusion continues to expand,
targeted therapies and regenerative strategies will be applied dur-
ing ex vivo preservation to improve organ function18. Thus, the
InsighTx model is well-suited to meet this future state by focusing
on the outcome of the organ alone, and will be able to better gauge
the impact of any future intervention on a donor lung, thereby
ensuring that all donor lungs are well conditioned prior to trans-
plant into any recipient.

Detailed analysis of the InsighTxmodel revealed a differentmixof
assessment parameters underlying the various endpoint classifica-
tions. While this finding was not unexpected, it is interesting to note
the relative importance of various features in relation to lung suit-
ability and patient outcomes. Our findings support previous observa-
tions that donor type and PEEP (set to a constant for nearly all cases)
were unlikely to be associated with outcome and, thus, provide little
predictive value. Biological and biochemical biomarkers were highly
ranked for the prediction of post-transplant outcome. In particular, we
observed that acid-base chemistry was extremely important in deter-
mining patient outcomes. Features such as pH andbase excess arewell
known biomarkers of metabolic and respiratory acidosis in lung
physiology;33 however, the identification and weighting of these mar-
kers in EVLP by the InsighTx model is novel and further underscores

the value of an AI-based approach to evaluate and understand the
significance of ex vivo assessments.

One of the key findings in the present study was the real-world
evaluation of the use of the InsighTx model on surgical decision-
making. While there have been reports of predictive ML algorithms in
thoracic surgery34, this is the first such study to show that the use of an
AI-based decision-aid during EVLP could theoretically change and
improve lung transplant decisions. The results of this study suggest
that the impact of ML on transplantation rates could be dramatic and
that an overall increase in transplant activity at the program level is
plausible. Of note, the effects of theMLmodel were different based on
the predicted post-transplant outcome. For lungs that were associated
with poor outcomes, there was a large decrease in the tendency to
transplant. This decrease was offset by an even larger increase in the
decision to transplant lungs that were historically declined, but pre-
dicted by the InsighTx model to have good post-transplant outcomes.
These results also demonstrated that experienced EVLP personnel
would be more likely to transplant additional donor lungs on EVLP;
however, the net gain or decrease in transplantation rates were similar
regardlessof experience level. Thus, thesefindings suggest that overall
donor lung utilization rates could appropriately and safely increase
with InsighTxmodel implementation for all centers andwould likely be
of greater benefit to those with less EVLP experience. It is important to
note the limitation that this analysis was derived from retrospective
adjudication and reflects the views of the participants at our center.
Thus, external validation followed by a prospective, multicentre trial is
warranted to fully study and understand the broader impact of
InsighTx on surgical decision-making and validate our findings that
using the InsighTx AI model during EVLP can safely increase
transplantation rates.

Although machine learning models can be used to accurately
predict medical outcomes, careful consideration regarding the scope
and ease in which the data are available will directly impact clinical
translation35. To that end, the data features usedby the InsighTxmodel
are routinely collected and accessible during standard EVLP practice
(Summarized in Supplementary Table 5). In the future, the extraction
of these data can be automated and directly linked to the InsighTx
algorithm, thereby enabling streamlined integration of the model
during clinical EVLP in real-time. This approach offers the exciting
possibility of leveraging the performance associated with machine
learning algorithms while not causing undue burden on clinical
EVLP teams.

While the results of this study are promising, there are several
limitations to ourfindings.Themodelwasdeveloped andvalidated in a
cohort of lungs from a single, experienced institution. While this data
represents the largest collection of clinical EVLP cases to date, future
studies involving large external datasets are needed to confirm our
findings. In addition, improvements to expand the breadth of InsighTx
biomarkers and data, such as including additional features and/or real-
time monitoring and analysis of parameters instead of hourly, is likely
to enrich the data quality and strengthen the results of the model.
Current efforts are underway to realize this potential.

In conclusion, ex vivo organ perfusion techniques are poised to
revolutionize the approach to organ repair, regeneration, and trans-
plantation. While these techniques are being established, a compre-
hensive and standardized approach to organ assessment is necessary.

Table 4 | Summary of the impact of InsighTx on clinical decision-making

Transplant decision OR [95% CI] Clinical impression of donor lunga Δ [95% CI]

Suitable donor lungs (n = 12 lungs) 13 [95% CI: 4–45] +0.95 [95% CI: 0.4–1.51]

Unsuitable donor lungs (n = 8 lungs) 0.4 [95% CI: 0.16–0.98] −0.31 [95% CI: −0.75 to 0.14]

OR odds ratio, CI confidence interval.
aAssessors were asked to rank the overall impression of a donor lung from poor (0) to excellent (10). Shown are the changes in clinical impression for suitable and unsuitable donor lungs when the
InsighTx model was available.
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Using a clinically established ex vivo lung perfusion technique, EVLP,
we show that an AI-based ML model is accurate and can safely lead to
more transplants. As the number of patients waiting for a transplant
continues to grow and outpace the number of available donor organs,
the development of novel strategies that maximize the usage of these
scarce resources becomes critical. The development of InsighTx to
safely identify more viable donor lungs represents a significant step
forward for the field of organ perfusion and transplantation by pro-
moting a precision-medicine approach to surgical decision-making.

Methods
Study population
Informed consent was obtained from all participants. Institutional
approval for this study was obtained (UHN REB#12-5488-13). All con-
secutive clinical EVLP cases performed at Toronto General Hospital
(University Health Network, Toronto, ON, Canada) from 2008 to 2022
were considered for model development and validation. Model train-
ing was performed using consecutive clinical EVLP cases occurring
between 2008 and November 2019, whereas Test Datasets 1 and 2
represented consecutive cases conducted between December 2019
and December 2020 and December 2020 and August 2022, respec-
tively. Transplant recipient inclusion criteria included adults with end-
stage lung disease referred for first lung transplantation. Exclusion
criteriawere double lung EVLP assessments that resulted in single lung
transplantation.

Data collection and storage
All data were recorded and stored with institutional approval (UHN
REB#11-0170-AE). Our EVLP technique has been previously
described1–5. Briefly, lung assessments are made hourly and data are
derived froman ICU-grade ventilator, pressuremonitors and perfusate
samples collected from the EVLP circuit. Additional features were
extracted from the donor chart at the time of EVLP. Biochemical and
oxygenation data were generated using a blood gas analyzer (RAPID-
Point, SiemensHealthcare, Germany).ΔpO2 andΔpCO2measurements
were calculated as the venous-arterial difference in oxygenation and
carbon dioxide partial pressure in perfusate solution, respectively.
Protein measurements (i.e., IL-6, IL-8, IL-10, IL-1β) were completed by
ELISA (Ella by Protein Simple Inc., San Jose, CA, USA and TORdx LUNG
by SQI Diagnostics Inc., Toronto, ON, Canada). A summary of EVLP
parameters is provided in Supplementary Table 6 and Supplementary
Table 7. Primary Graft Dysfunction (PGD) grades were assigned in
accordance with the International Society for Heart and Lung Trans-
plantation working group 2016 definition36.

Data preprocessing
EVLP data were extracted from our Toronto Lung Transplant Program
Database and assessed for completeness. Missing data was obtained
using the original source documents and records, or accounted for by
the XGBoost algorithm during model training and testing. Supple-
mentary Table 5 summarizes parameter source and acquisiton time.
For each parameter that was assessed longitudinally during EVLP, the
following features were extracted from the data up to four hours:
minimum and maximum values, trend during EVLP, and the last
recorded value. For EVLP cases that lasted between four and six hours,
data was capped after four hours to standardize model predictions.
Compliance and protein measurements were normalized to donor
lung size using estimated total lung capacity.

InsighTx model development
A comprehensive list of all assessment features used in model devel-
opment can be found in Supplementary Table 6. The InsighTx model
was developed using a class-weighted XGBoost algorithm (v1.4.2)
trained to predict the following clinical endpoints: (i) donor lungs on
EVLP deemed unsuitable for transplantation and EVLP cases that

resulted in transplantation with recipients who were extubated in
(ii) <72 h or (iii) ≥72 h post-transplant. EVLP cases from 2008 to 2019
were used to train the model using donor and EVLP features. The
development cohortwas used to establish themodel hyperparameters
and randomly partitioned 80:20 for training and testing―five-fold
cross-validation was performed where one-fold was used as the inter-
nal test set at each of the five iterations (Note: data reported from the
development cohort are derived from the results of the internal test
sets). Data arising from EVLP cases conducted from 2019 to 2020 and
2020 to 2022 were used as two independent validation cohorts to test
the InsighTxmodel. Each EVLP casewas assigned a predicted outcome
based on the endpoint with the highest probability (most likely out-
come) derived from the InsighTx model. Predicted outcomes were
used formodel performance analyses and in the implementation study
analysis.

InsighTx and recipient model development
A random forest model was used to evaluate the addition of recipient
features (age, sex, body mass index (BMI), patient status37, and indi-
cation for transplant) to the outcome probabilities of the InsighTx
model. Recipient status was recorded at assessment, listing, and
transplant admission according to standard procedures at our
institution37. All EVLP cases that resulted in bilateral transplantation
(n = 368) were included, and five-fold cross validation was performed.
Supplementary Table 8 lists the summary statistics for recipient fea-
tures used in this analysis.

Implementation analysis
To evaluate the effect of InsighTx on clinical decision-making, we
conducted a blinded retrospective case review for a subset of n = 20
EVLP cases in this study, with a panel of n = 15 participants com-
prising surgeons (n = 7), surgical fellows (n = 3), organ perfusion
specialists (n = 3), and EVLP assistants (n = 2) at our institution
(Fig. 2). Each case was de-identified and presented alongside donor
and recipient information. For declined EVLP cases, the details of
the intended recipient were used. The study cases included: six
cases where the historical outcome matched the InsighTx model
prediction (i.e., extubated <72 h or declined for transplant), nine
cases that were historically declined for transplant but the InsighTx
model predicted that the lungs were likely to produce a good

Retrospective EVLP Case Review 

Standard EVLP Assessment Parameters

Addition of InsighTx results

EVLP cases performed between 2008-2020 (N=20)
• De-identified and randomized

Assessment Panel (N=15) 
• Transplant Surgeons 
• Organ Perfusion Specialists and assistants
• Surgical Fellows

N=300 Transplant Decisions

EVLP Case Presentation

Lung Assessment & 
Transplant Decision

Lung Assessment & 
Transplant Decision

Fig. 2 | Clinical Review Schematic. Schematic for the retrospective EVLP case
review with InsighTx.
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transplant outcome, and five lungs where the InsighTx model cor-
rectly predicted the need for prolonged ventilation. For statistical
analysis, cases were grouped as either suitable (predicted time to
extubation <72 h) or unsuitable (predicted time to extubation ≥72 h
or declined for transplant) for transplantation. Assessors were
asked to determine the suitability of the lung for transplant (yes or
no) based on standard EVLP evaluation parameters alone and their
assessment (impression) of the organ on a scale from 0 (poor) to 10
(excellent). The predicted transplant outcome from the InsighTx
model was then revealed and respondents were asked to re-answer
the transplant suitability and lung assessment questions. This study
analysis was reviewed and approved by our institution (UHN
REB#19-6251).

Statistical methods
Demographic and clinical data were summarized using descriptive
statistics for the development and testing cohorts and compared
using Chi-squared, ANOVA, and Kruskal–Wallis tests. The area
under the receiver operating characteristic (AUROC) and precision-
recall (AUPRC) curves were used to assess the predictive perfor-
mance of the overall InsighTx model as well as each clinical out-
come of interest. Training and Test Dataset p-values were
determined using bootstrapping. Briefly, using the Test Dataset
sample size, a subset of datapoints were randomly selected from the
Training Dataset and the AUROC of the subset was obtained from
the model predictions. This was repeated 10,000 times to generate
an underlying distribution of the AUROC values. The respective
AUROC value from the Test Dataset was then used to determine a
cutoff for the distribution, and the proportion of data in the dis-
tribution less or greater than the Test Dataset AUROC was used to
determine the p-value. Net benefit analysis was conducted using the
decision to transplant or time-to-extubation as a binary outcome on
all study cases. InsighTx model net benefit was compared to trans-
plant ‘all’ or ‘none’ approaches. To further estimate the effect of the
InsighTx model results on decision-making in the retrospective
review, a logistic regressionmodel was fitted, with the suitability for
transplant as the outcome, fixed effects for use of InsighTx, and
EVLP group, and random effects for study case and assessor. All
analyses were conducted using Stata (StataCorp, College Station,
TX, USA), GraphPad (GraphPad Software, San Diego, CA, USA), SPSS
Statistics (IBM Corp, Armonk, NY, USA), Python Programming
Language (Python Software (v3.9), Wilmington, DE, USA), or R sta-
tistics software (R Foundation for Statistical Computing, Vienna,
Austria).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article, Supplementary Information File, and from the
corresponding authors upon request. A Source Data file has also been
provided. Our study design did not include provisions to share the de-
identified individual participant data, given historical concerns from
our institution’s Research Ethics Board on the inherent risk of poten-
tially identifying a participant using a combination of de-identified
data fields. Thus, individual patient data from this study will not be
made available in publicly accessible databases. However, researchers
affiliated with accredited research institutions may request access by
contacting the corresponding authors (S.K. andB.W.)whowill respond
within one month of the request. Data transfer and usage restrictions
will be in accordance with the data sharing agreement policies and
procedures at University Health Network. Source data are provided
with this paper.

Code availability
The study design approved by our institution did not include provi-
sions to share source InsighTx code from this study and it is not
available in publicly accessible databases. However, researchers affili-
ated with accredited research institutions may request access by
contacting the corresponding authors (S.K. andB.W.)whowill respond
within one month of the request. Code transfer and usage restrictions
will be in accordance with the data and material sharing agreement
policies and procedures at University Health Network. A detailed
description of the InsighTx model using XGBoost can be found via
GitHub (https://github.com/bowang-lab).
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