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Characterizing cancermetabolism frombulk
and single-cell RNA-seq data usingMETAFlux

YuefanHuang1,2, VakulMohanty1,MerveDede 1, Kyle Tsai1, MayDaher 3, Li Li3,
Katayoun Rezvani 3 & Ken Chen 1

Cells often alter metabolic strategies under nutrient-deprived conditions to
support their survival and growth. Characterizing metabolic reprogramming
in the tumor microenvironment (TME) is of emerging importance in cancer
research and patient care. However, recent technologies only measure a sub-
set of metabolites and cannot provide in situ measurements. Computational
methods such as flux balance analysis (FBA) have been developed to estimate
metabolic flux from bulk RNA-seq data and can potentially be extended to
single-cell RNA-seq (scRNA-seq) data. However, it is unclear how reliable cur-
rent methods are, particularly in TME characterization. Here, we present a
computational framework METAFlux (METAbolic Flux balance analysis) to
infer metabolic fluxes from bulk or single-cell transcriptomic data. Large-scale
experiments using cell-lines, the cancer genome atlas (TCGA), and scRNA-seq
data obtained from diverse cancer and immunotherapeutic contexts, includ-
ing CAR-NK cell therapy, have validated METAFlux’s capability to characterize
metabolic heterogeneity and metabolic interaction amongst cell types.

Metabolism is essential for proper cellular function. Cancer cells har-
boring aberrant genetic alterations such as amino acid substitutions
and copy number alterations, often exhibit distinct metabolic pro-
grams from normal cells1,2, an established hallmark of cancer3. Clinical
studies have demonstrated that metabolism is associated with patient
outcomes and that specific metabolic phenotypes could present vul-
nerabilities to cancer treatment4. For example, upregulation of fatty
acid oxidation (FAO) has been shown to fuel acute myeloid leukemia
(AML) venetoclax with azacytidine (ven/aza) resistance and inhibition
of FAO may restore the efficacy of ven/aza treatment5. A recent study
shows that dysregulated propionate metabolism increases the meta-
static potential for breast and lung cancer6. Therefore, understanding
how metabolic dysregulation promotes cancer is key to treating it.

Over the past two decades, technological innovations have
allowed for detailed characterization of metabolic alterations. These
established techniques, such as metabolomics, stable isotope tracing,
and XF Extracellular Flux Analyzer, have facilitated discoveries in

metabolism from different perspectives. LC/MS (liquid chromato-
graphy/mass spectrometry) basedmetabolomics is a powerful tool for
measuring concentration ofmetabolites and is often the first choice of
metabolic profiling7. Recent advancement in MALDI-MS has also
enabled metabolomics profiling with around 100 molecules detected
at 5–10 um resolution8,9. However, the process of metabolite identifi-
cation formetabolomics is still low throughput, requiring considerable
time and effort to analyze the datasets10. Moreover, reproducing
results is challenging due to complexity of the experiments and a lack
of methodology standardization11. In addition, metabolomics only
provides static snapshots, missing dynamic profiles of metabolite
trafficking, velocities of metabolic reactions (a.k.a. fluxes), etc., which
are critical to understanding mechanisms of metabolic regulation.

Consequently, metabolic flux techniques, for instance, 13C meta-
bolic flux analysis (13C-MFA) and Seahorse Extracellular Flux (XF) ana-
lyzer, have becomewidely used inmetabolic research10. 13C-MFA is the
current gold standard in measuring intracellular fluxes of central
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carbonmetabolism,while the SeahorseExtracellular Flux (XF) analyzer
is the benchmark for assessing cells’ extracellular bioenergetic state.
Although 13C-MFA offers valuable insights, it has limited usage in
deriving large metabolic networks12. Seahorse Extracellular Flux (XF)
analyzer can measure OCR (Oxygen consumption rate: an indicator of
mitochondrial respiration) and ECAR (extracellular acidification rate:
an indicator of glycolysis) of living cells simultaneously in real-time13.
Even though the Seahorse platform provides valuable insight into the
functional status of cells,fluxes of othermetabolites arenotmeasured.
For in vivo metabolic assessment, approaches such as positron emis-
sion tomography (PET) are used. These include techniques like
18F-fluorodeoxyglucose (FDG) PET and 18F-Glutamine14. In addition,
in vivo stable isotope tracing has emerged as a novel approach, uti-
lizing stable isotope-labeled nutrients to investigate metabolic activity
within intact tumors15. Notably, these methods are limited to probing
specific subsets of metabolic reactions14.

Beyond limited scales, substantial experimental challenges exist
in studying cancer metabolism in culture. It is difficult to accurately
mimic a complex metabolic environment16, consisting of a dynamic
mixture of malignant and non-malignant cells. As a result, traditional
cell culture nutrient milieu does not accurately resemble human phy-
siological nutrient environment17,18.

The advent ofRNA-seq and scRNA-seqprovided anopportunity to
systemically interrogate the transcriptomicprofiles of biospecimens at
tissue and cellular resolution19,20. Given the challenges of metabolic
profiling, transcriptomic analyses have been utilized as a surrogate to
reveal metabolic reprogramming and vulnerabilities in tumors21–24.
Those studies often employ statistical methods that score mRNA
expression levels of genes in a predefined (e.g., KEGG) metabolic
pathway. Several scoring methods exist, for example, ssGSEA25, Seurat
AddModuleScore26, AUCell27, singscore28, Z-score, etc. However, these
methods cannot be applied at reaction level because they become
unstable for metabolic reactions involving a few (usually less than ten)
genes29.Moreover, they cannotbe applied to non-enzymatic reactions.
For example, previtamin D3 forms vitamin D3 via spontaneous
reaction30. More importantly, these methods examine each pathway
disjointly, ignoring the fact that metabolic networks are highly con-
nected and dynamic31.

To interrogate the entire metabolic circuits, genome-scale meta-
bolic models (GEMs), which encapsulate an organism’s stoichiome-
trically balanced metabolic reactions via gene-protein-reactions (GPR)
association32, have been utilized. One of the most common analytic
methods used in GEMs is flux balance analysis (FBA), a well-established
constrained optimization method that estimate flow of metabolites in
a complex bio-system33. It maximizes or minimizes the flux of a parti-
cular reaction or a linear combination of reactions, under steady-state
assumptions and flux bounds constraints. Versions of FBA have been
successfully applied in various settings34–37.

To apply FBA on gene expression data, gene expression levels
need to be systematically interpreted in the context of metabolic
networks. Previous studies have shown such exercises could lead to
rational estimation ofmetabolic fluxes38–49. A few varieties exist, one of
which is to define an objective function that includes gene expression
levels. For example, Lee et al. characterize the biological objective
function based on correlation between fluxes and gene expression
levels43. Similarly, iMAT uses gene expression levels to dichotomize
highly expressed and lowly expressed reactions and finds the flux
distribution that best explains gene expression patterns. It maximizes
the number of reactions classified as highly expressed and minimizes
the number of reactions classified as lowly expressed38. Promising
efforts have been made to predict COVID-19 metabolic targets and
changes using iMAT on scRNA-seq data50,51. Another way to incorpo-
rate gene expression data into FBA is to define flux bounds in FBA
using expression levels. For example, E-Flux uses transformed gene
expression levels as flux upper and lower bounds45. Also, Damiani et al.

estimate single-cell fluxomics using modified transformed expression
values as constraints52. Although studies have demonstrated the utility
of combining gene expression and FBA in assessing metabolic states,
many do not directly produce unique flux distributions, nor include
biologicallymeaningful constraints that account for nutrient exchange
or competition among cell types in the TME. Moreover, systematic
validation of in silico estimation is largely lacking.

In this work, we introduce METAFlux, a computational tool that
predicts cancer metabolic fluxes from bulk RNA-seq and scRNA-seq
data to address these analytic gaps. METAFlux is capable of char-
acterizing the entire metabolic circuits and output non-degenerative
fluxes using cancer gene expression data in a nutrient-aware manner.
For scRNA-seq data, METAFlux additionally examines metabolic het-
erogeneity and interactions amongst cell types in TME. We evaluate
METAFlux prediction accuracy using the matched flux data generated
on the NCI-60 cell lines and find a substantial improvement over
existing approaches. We further examine METAFlux on scRNA-seq
data obtained from an in vivo Raji-NK cell co-culturing model and
observe high consistency between the predicted and experimental
(i.e., Seahorse extracellular) flux measurements. METAFlux only
requires gene expression data as input and is customized to fit binary
experimental conditions (nutrient presence vs absence). METAFlux
can predict 13,082 reaction flux scores for each bulk sample, and for
each single cell data, it can predict (13,082 × number of cell-type/
cluster + 1648) reaction flux scores. Because of the wide availability of
RNA-seq and scRNA-seq data, METAFlux can dramatically improve our
understanding of metabolism in disease samples at both tissue and
cell-type levels. Results produced byMETAFlux can serve as a resource
to identify metabolic targets for precision medicine. The open-source
implementation is available at https://github.com/KChen-lab/
METAFlux.

Results
Modeling metabolism using transcriptomes
METAFlux utilizes Human1, a genome-scale metabolic model (GEM)
that encodes the mechanistic relationships between genes, metabo-
lites, and reactions in a human cell. Human1 integrates the Recon,
iHSA, and HMR models53. It contains 13,082 reactions and 8378
metabolites53. We choose Human1 because it shows a considerable
improvement over other GEMs in terms of stoichiometric consistency,
percentages of mass, and charge-balanced reactions53.

For each sample in a bulk dataset, we first compute a metabolic
reaction activity score (MRAS) for each reaction, which describes the
reaction activity as a function of the associated gene expression levels
(Fig. 1a, Methods). Subsequently, we define a nutrient environment
profile, which includes a binary list of metabolites available for uptake
(Methods). We hypothesize that tumors proliferate rapidly; thus, the
new human biomass pseudo-reaction, which constructs a generic
human cell’s nutrient demand and composition, should be
optimized53. We next apply convex quadratic programming (QP) that
simultaneously optimizes the biomass objective and minimizes the
sum of fluxes’ squares, similar to a previous approach54 (Methods). We
also propose a workflow for single-cell data, where the whole TME is
modeled as one community to account for metabolic interaction
between the groups with the whole community biomass optimized,
since we believe cell groups strongly influence one another in TMEs
(Fig. 1b, Methods)55.

Benchmarking the performance of METAFlux using experi-
mental data
We benchmarked METAFlux using the NCI-60 RNA-seq data and
matched metabolite flux data53,56. We selected 11 cell lines for evalua-
tion, as other cell lines had nutrient depletion that could affect relia-
bility of flux profiling53,56–58. Each cell line had 26 experimentally
measured metabolite fluxes and one biomass flux.
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Fig. 1 | The workflow ofMETAFlux. a The workflow of METAFlux in bulk RNA-seq
setting. In step A, metabolic reaction activity scores (MRAS) are estimated from
RNA-seq data. In step B, a nutrient profile is defined so only certain nutrients can be
uptaken. In step C, quadratic programming-based FBA (flux balance analysis) is
performed to estimate metabolic fluxes for each sample. The figure was created
with BioRender.com. b The workflow ofMETAFlux in single-cell RNA-seq setting. In
step A, metabolic reaction activity scores (MRAS) are estimated for each stratified

bootstrap sampled single-cell dataset. In step B, metabolic networks for different
clusters aremerged to formone community, and proportions of clusters should be
defined during this step. In step C, nutrient profile is defined so only specific
metabolites can be uptaken by TME. In step D, community-based quadratic pro-
gramming FBA is constructed to estimate per cell averagemetabolic fluxes for each
cluster and total average metabolic fluxes for overall TME. The figure was created
with BioRender.com.
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We ran METAFlux based on cell line culturemedium composition
(Supplemental Data File S1 and Methods). Meanwhile, we compared
METAFlux results with those generated by a state-of-art pipeline,
ecGEMs, which predicts flux based on a cell-type specific GEM with
reactions constrained by the gene expression levels, enzyme abun-
dance, and kinetics53,59,60. The results are comparable with those of
METAFlux because the programs optimize the same scoring objective,
i.e., biomass, under identical medium compositions.

Overall, METAFlux achieved markedly higher Spearman correla-
tion with the ground truth than did ecGEMs (Spearman coefficients ρ:

0.74 vs 0.45). In all the 11 cell lines, METAFlux performed better
(Fig. 2a). Across 26metabolites,METAFlux achieved higher correlation
in 16 of the cases (Fig. 2b). To evaluate directionality of the flux pre-
diction, we categorized metabolic fluxes as ‘no flux’ (flux equals to
zero), ‘uptake’ (flux smaller than zero), and ‘excrete’ (flux greater than
zero). Except for ‘choline,’ METAFlux achieved higher accuracy,
defined as the percentage of categorical match with the ground truth,
for seven metabolites and tied with ecGEMs for the other 18 (Fig. 2c).
Taken together, these results indicate that METAFlux outperforms
ecGEMs on predicting metabolic fluxes from cell line RNA-seq data.
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Fig. 2 | Benchmark results of METAFlux on NCI-60 cell lines. a A Spearman
correlation bar plot across each cell line for METAFlux and ecGEMs. The spearman
correlations between predicted fluxes and experimental fluxes were calculated for
11 cell lines. b A Spearman correlation heatmap across each metabolite for META-
Flux and ecGEMs. The spearman correlations between predicted fluxes and
experimental fluxes were calculated for 26 metabolites. For metabolites like

L-carnitine and pyruvate, ecGEMs predicted their fluxes to be zero. Therefore, the
correlations of thesemetabolites to ground truthwerenot calculated. cUptake and
secretion direction accuracies of 26 metabolites for METAFlux and ecGEMs. The
accuracies were defined by the ratio of the number of direction-aligned fluxes to
the total number of fluxes for each metabolite. The accuracies are shown by color
and dot size.
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In our study, we recognize the constraints of employing the
NCI-60 panel for examining glucose uptake, given that correlations
for othermetabolites appear more consistent. This discrepancymay
be because the experimental model may not fully capture the
complexity of glucose metabolism, and there is a difference in
nutrient and metabolic requirements between cell lines in con-
trolled environments and tumors in the tumor microenvironment.
To further validate the performance of METAFlux in a more phy-
siologically relevant context, we assessed its ability to predict glu-
cose uptake in a cohort of 84 triple-negative breast cancers (TNBCs)
using FDG-PET data61. These TNBC samples had matched gene
expression and Standardized Uptake Value (SUV) data, with the SUV
representing a measure of glucose uptake derived from the radio-
activity concentration in tissue and the injected dose of radioactivity
per kilogram of the patient’s weight. We analyzed these samples
under a human blood profile medium (Supplementary Data File S1)
and found a statistically significant Spearman correlation of 0.31 (P
value = 0.003) between the predicted glucose uptake and the mea-
sured SUV (Supplementary Data File S2 and Supplementary Fig. 1a).
These results underscore the potential of METAFlux to accurately
predict glucose uptake in larger cohorts and settings more repre-
sentative of the complex tumor microenvironment, highlighting its
utility for studying metabolic fluxes in actual tumors.

We also assessed METAFlux’s ability to predict glucose uptake in
low-perfusion, nutrient-poor tumors by analyzing a dataset of pan-
creatic cancers62 (N = 8) using a human blood profile (Supplemental
Data File S1 and Supplementary Fig. 1b). The dataset containsmatched
gene expression and Standardized Uptake Values (SUV) derived from
FDG-PET. We included all 64 metabolites from the list, because the
final predicted rates should reflect the limiting condition within the
tumor microenvironment, as fluxes are collectively constrained by
gene expression and steady-state assumption.

Biologically meaningful medium resulted in better prediction
To estimate the effect of medium constraints onmodeling the NCI-60
data, we performed control experiments that did not impose any
medium constraints in running METAFlux, allowing free uptake or
excretion of all metabolites. Under such a setting, METAFlux only
achieved an overall Spearman correlation of ρ =0.15. Spearman cor-
relations of individual metabolites or cell lines also dropped sig-
nificantly (Supplementary Fig. 1c, d).

We further estimated the statistical significance of the accuracies
calculated by METAFlux under real medium conditions against those
under random conditions (Methods). Zero P-values were obtained for
both the overall Spearman correlation and the directionality accuracy,
indicating that the results were unlikely to have been obtained by
chance (Supplementary Fig. 1e, f). Taken together, these results indi-
cate that METAFlux has achieved biologically meaningful modeling of
cancer cell-line metabolism in vitro.

METAFlux revealed ametabolic subtype of lung cancer in TCGA
To examineMETAFlux in real patient data,we applied it to TCGALUAD
(lung adenocarcinoma) and TCGA LUSC (lung squamous cell carci-
noma) data using human blood profile as medium constraints (Meth-
ods). We examined glucose uptake flux (GUF) predicted by METAFlux
from the LUSC and the LUAD RNA-seq data, respectively. The results
indicated that LUSC tumors had a higher GUF than did LUAD tumors,
which is consistent with the 18F-FDG PET-CT (18F-fluorodeoxyglucose
positron emission tomography) scan results (Fig. 3a and Supplemental
Note) performed in an independent study63. In addition, we found that
the predicted GUF is highly correlated (Spearman correlation ρ =0.65)
with proliferation signature scores obtained in an independent study64

(Supplementary Fig. 2a), consistent with another independent finding
that 18F-FDG PET is closely correlated with proliferation index65.

ClusteringMETAFluxmetabolic flux profiles revealed two clusters
of LUAD and LUSC samples (Fig. 3b and Supplementary Methods).
Cluster 1 consists primarily of LUAD samples, while cluster 0 is a
mixture of LUAD and LUSC samples (Supplementary Fig. 2b). The
LUAD samples in cluster 0 can be called ‘LUSC-like’ LUADs, due to
similarities in the metabolic phenotype. The LUAD samples in cluster 1
(LUAD1) had significantly lower glucose uptake than ‘LUSC-like LUAD”
(Wilcoxon Rank Sum P values < 0.0001), implying that LUSC-like LUAD
tumors are metabolically more active (Fig. 3c). Survival analysis
revealed that LUAD1 tumors had significantly better survival outcomes
(P value = 0.0084) than ‘LUSC-like’ LUADs (Fig. 3d and Supplementary
Fig. 2c, Supplementary Methods). LUAD1 remained significantly asso-
ciatedwith reducedmortality risk compared to reference group LUSC-
like LUAD even after adjusting for demographic and clinical variables
(Supplementary Table S1). We then sought to identify the “LUSC-like
LUAD” patient group using FDG-PET. We analyzed matched TCGA
LUAD FDG-PETmetadata containing Standardized Uptake Value (SUV)
max values obtained from a previous study63. The LUAD FDG-PET
patient cohorts included four LUAD1 and nine LUSC-like LUAD
patients. Our findings revealed a trend of higher glucose uptake in
LUSC-like LUAD patients (T test p =0.086) (Supplementary Fig. 2d).
Althoughnot strictly significant due to the small sample size, this trend
aligns with our METAFlux analysis. Gene set enrichment analysis sug-
gested that bile acid metabolism was upregulated in cluster 0 (NES =
1.59, BH adj. P value = 0.04), which is consistent with an earlier study,
indicating an association between bile acid metabolism upregulation
and worse prognosis in LUAD66.

Notably, such a result cannot be obtained from the metabolic
gene expression data, without applying METAFlux assessment
(Supplementary Fig. 2e–h and Supplementary Methods). This could
be attributed to integration of external knowledge about metabolic
pathway networks and dependence among genes. These results
demonstrated a distinct utility of METAFlux in discovering tumor
subtypes from large transcriptomically profiled cancer patient
cohorts.

METAFlux can capture hypoxia-associated metabolic
reprogramming
Next, we sought to address the significance of hypoxia, a condition
characterized by limited oxygen supply, in tumormicroenvironments.
We explored whether METAFlux could capture hypoxia-driven meta-
bolic changes through gene expression constraints. Using TCGA pan-
cancer data, we examined metabolic adaptations under hypoxic con-
ditions, which typically involve increased glucose uptake and lactate
production in oxygen-deprived cells67. We performed additional ana-
lysis on TCGA pan-cancer data and retrieved the hypoxia signature
score from a previous study68. mRNA-based hypoxia scores were
available for 676 tumors. The scores were calculated by assigning a +1
score to patients with mRNA abundance in the top 50% for each gene
in the winter hypoxia signature and a −1 score to those in the bottom
50%. This process was repeated for every gene in the signature, gen-
erating a hypoxia score for each patient68,69. Higher scores indicate
hypoxia, and lower scores indicate normoixa.

Subsequently, we regressed METAFlux features against the
hypoxia scores: lmðHypoxia scores∼Oxygen Uptake+Glucose
uptake+ Lactate secretionÞ (Supplementary Table S2). Our results
showed that oxygen uptake was negatively associated with hypoxia
score (Estimate = −0.19, CI = −0.27 to −0.12, p <0.001), while glucose
uptake was positively associated with hypoxia score (Estimate = 0.32,
CI = 0.25–0.40, p < 0.001). Lactate secretion was also positively asso-
ciated with hypoxia score (Estimate = 0.09, CI = 0.02–0.17, p =0.014).
These results align with hypoxia-mediated metabolic reprogramming
and demonstrate METAFlux’s capacity to accurately capture hypoxia-
associated metabolic adaptations.
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METAFlux identified different architypes of metabolism in lung
cancer bulk sorted data
Different cell-types in a TME can have distinct metabolic programs.
Such heterogeneity can be revealed by applying METAFlux on sorted
RNA-seq data. We applied METAFlux in a community-based setting
(Methods) on data acquired from primary lung cancer patients70, flow-
sorted into immune cells (CD45+ EPCAM−), endothelial cells (CD31+
CD45− EPCAM−), tumor cells (EPCAM+ CD45− CD31−), and fibroblasts

(CD10+EPCAM−CD45−CD31−). After data processing (Supplementary
Methods), we had 15 lung adenocarcinoma (LUAD) and nine lung
squamous cell carcinoma (LUSC) samples with complete RNA-seq
profiles for all four cell types. We used the cell type proportions cal-
culated usingCIBERSORT in the original study70 as input parameters to
run METAFlux.

Comparing the resulting predicted total glucose uptake between
the LUSCs and the LUADs, trends consistent with the bulk data were
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found: LUSCs had higher overall glucose uptake than the LUADs
(P-value = 0.058, 95% CI of effect size [−1.8149, −0.1191], two-sample
t-test) (Supplementary Fig. 3a). The LUSC tumor cells appeared to have
slightly higher predicted glucose uptake than the LUAD tumor cells on
average (P-value = 0.222, 95% CI of effect size [−1.3435, 0.2831], two-
sample t-test) (Fig. 4a), while those in the endothelial and fibroblast
cells were similar between the LUSCs and the LUADs (endothelial
P-value = 0.762, 95% CI of effect size [−0.9300, 0.6677], fibroblasts

P-value = 0.803,95% CI of effect size [−0.9037, 0.6934], two-sample
t-test). However, a significant difference emerged in immune cells
(P-value = 0.045, 95% CI of effect size [−1.8626, −0.1579], two-sample
t-test), indicating that immune cells may not be deprived of glucose in
the TMEs of the LUSCs compared with those in the LUADs. Alter-
natively, it can also suggest that a specific subtypeof immune cellsmay
drive glucose uptake in a population of immune cells. Moreover, the
metabolic profiles of immune cells, which typically elevate upon
activation, could be significantly influenced by variations in their
activation states.

To gain insights at cell type level, we multiplied the per cell
nutrient uptake flux by corresponding cell type abundance calculated
using CIBERSORT (Supplementary Fig. 3b and Supplementary Meth-
ods).We observed a variety of heterogeneous affinities formetabolites
and distinct metabolic phenotypes across the cell types. Cancer cells
have a strong preference for several amino acids (e.g., glutamine,
methionine, ornithine, and lysine) and oxygen. Those altered amino
acid metabolisms has been recognized as a hallmark of malignancy71.
While tumor cells appeared to dominate across the TMEs, immune
cells also contributed large fractions in citrate and 2-hydroxybutyrate,
especially in LUSC. Citrate metabolic pathways, connecting with lipid
and glucose metabolism, are known to play crucial roles in regulating
immune cell functions72.

We further revealed a variety of metabolic interaction architypes
in the TMEs of both LUAD and LUSC (Fig. 4b–d and Methods) impli-
cating competitions for metabolites, such as glucose, oxygen, gluta-
mine, and other amino acids (Fig. 4b and Supplementary Table S3), as
well as cooperation, by which one or more cell types utilize nutrients
(e.g., phenylalanine) released by other TME components (Fig. 4c and
Supplementary Table S3). Interestingly, we also found a Release
architype where all TME compartments released a certain nutrient
(e.g., lactate) (Fig. 4d). Taken together, our study highlights META-
Flux’s ability to discover metabolic crosstalk between various TME
cellular compartments, which can inform development of systems
medicine.

METAFlux uncovered metabolic heterogeneity from single-cell
lung cancer data
To further deconvolute the TME and assess METAFlux, we examined a
single-cell LUAD dataset containing seven patients with lymph node
metastasis samples (Fig. 5a)73. We excluded cell types with an average
proportion of less than 5%. A total of 25,536 cells, including B cells,
epithelial cells, myeloid cells, and T cells, were used to construct a
single-cell metabolism map using METAFlux community setting
(Fig. 5a, b). Except for one outlier (EBUS_12), we found that glucose
uptake of the TMEhas amoderate correlation withmyeloid infiltration
level in the lymph nodes (Fig. 5c). This finding agrees with previous
studies that have reported a correlation between myeloid infiltration
and FDGavidity74,75.We further examined glucoseuptake levels of each
cell type and uncovered a large variety of inter- and intra-patient het-
erogeneity (Fig. 5d). Overall, epithelial cells (CD45- cells, including
both normal and tumor epithelial) appeared to have lower glucose
uptake than do immune cells (CD45+ cells) (P value < 0.0001, two-
sample t-test) on average. Myeloid cells had the highest level of glu-
cose uptake, followed by B cells, T cells, and epithelial cells (Myeloid
cell >B cell >T cell >Epithelial cell, P value < 0.0001, Cuzick trend test).

Our study also revealed a complex metabolic interplay with
cooperation and competition relationships inmetastatic LUAD (Fig. 5e
and Supplementary Fig. 4a). Serine, a crucial precursor for protein
synthesis, nucleic acids, and lipids, was differentially taken up and
released by tumor and immune cells. The release of serine by B and T
cells could support tumor cell growth, while myeloid cells’ serine
uptake may compete with tumor cells, indirectly modulating serine
availability. Epithelial (tumor) cells exhibited the highest arginine
uptake, indicating increased demand for protein synthesis, polyamine
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biosynthesis, and nitric oxide production. All cell types took up orni-
thine, another polyamine precursor, with B cells showing elevated
uptake. Carnitine, essential for fatty acid metabolism, was taken up by
all cell types, with the highest uptake inmyeloid and epithelial (tumor)
cells, suggesting a reliance on fatty acid metabolism and potential
competition for resources. Further subpopulation analysis, provided
in the Supplementary Note, offers additional insights into these intri-
cate relationships.

We then sought out to compare METAFlux’s glucose uptake
results with ssGSEA and Seurat AddModuleScore (Supplementary
Fig. 4b, c). The ssGSEA results showed a trend of Epithelial cells >
Myeloid cells > T cells > B cells (P value < 0.0001, Cuzick trend test),

while Seurat AddModuleScore results revealed a trend ofMyeloid cells
> Epithelial cells > T cells > B cells (P value < 0.0001, Cuzick trend test).
Correlating glycolysis pathway scores with METAFlux predicted glu-
cose uptake level for seven patients, we found that only Seurat
AddModulescores had good consistency with METAFlux for epithelial
cells (Supplementary Fig. 4d and Supplementary Table S4). However,
they did not show significant positive correlations with predicted
glucose uptake levels in other cell types. In summary, METAFlux pre-
dicted a different trend in glucose uptake than the traditional pathway
scoring methods. This could be attributed to METAFlux’s ability to
treat different cell types in TME as one community and take interac-
tions among cell types into account.
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We further investigated if the predicted glucose uptake could be
substantiated by glucose transporter (GLUT) gene expression levels.
Weobserved thatGLUT1 (SLC2A1) is expressedmainly in epithelial cells
and GLUT3 (SLC2A3) expressed mostly in immune cells, particularly
myeloid cells (Fig. 5f). Thus, single-cell gene expression data suggests
that different cell types leverage different glucose transporters in the
TME. We then correlated METAFlux-predicted glucose uptake with
GLUT gene expression levels within seven patients. Not surprisingly,
we found that GLUT1 expression is highly correlated (Spearman cor-
relation ρ =0.5) with glucose uptake in epithelial cells, and GLUT3
expression correlated with (Spearman correlation ρ =0.39) glucose
uptake inmyeloid cells (Fig. 5g). Somewhat surprisingly, we found that
GLUT3 expression is also highly correlated (Spearman correlation
ρ = 0.46) with glucose uptake in epithelial cells, which implies that it
could potentially mediate glucose metabolism in epithelial cells.
Overall, METAFlux analysis revealed metabolic heterogeneity among
various cell types in LUAD patient cohorts and nominated metabolic
genes or reactions that could be further examined in functional
studies.

METAFlux characterizedmetabolic competition between tumor
and CAR-NK cells
To further examine METAFlux’s applicability in studying cancer
immunotherapy, we analyzed scRNA-seq data generated from an
in vivo experiment of engineered CAR-NK cells with Raji, a non-
curative CD19+ lymphoma cell-line in immunocompromised NSG
mice76,77. In theRaji/NKexperiment, NKcellswere purified, transduced,
and injected intomice for in vivo experiments, with survival and tumor
cell quantification conducted. More detailed protocols are available in
our previous work76. Assessed were three CAR-NK cell products:
CAR19/IL15 NK cells armedwith IL-15, CAR19 NK cells lacking IL-15, and
non-transducedNK (NT-NK) cells at four timepoints: day 7, day 14, day
21, and day 28.

We ran METAFlux in a community-based setting (Methods) using
cell type proportions estimated from the scRNA-seq data. The META-
Flux prediction at Day 7 indicated that the three NK cell products
interacted with tumor cells via competition, cooperation, or joint
release of a variety of metabolites (Fig. 6a). Among these, CAR19/IL15
NK cells had the highest oxygen consumption and proton efflux levels,
followed by CAR19 and NTNK cells (Fig. 6b). To validate this result, we
performed Seahorse assays using Agilent Seahorse XFe96 analyzer,
which measured OCR, a proxy of oxygen consumption flux and ECAR,
a proxy of proton efflux78 two hours after coculturing NK and Raji cells
(N = 3). More details regarding the Seahorse assay protocol can be
found in our previous study76. We found a highly consistent trend
between METAFlux prediction and Seahorse results (Fig. 6b, c). For
basal respiration, the Hedges’g between CAR19/IL15 and CAR19 is 1.63
with 95% CI [−0.47, 2.72]. For glycolysis, the Hedges’g between CAR19/
IL15 and CAR19 is 2.30 with 95% CI [−0.04, 4.62]. For both basal
respiration and glycolysis, theHedges’g estimates are considered large
sizes. This suggests that the trend is robust and statistical significance
was not achieved due to the limited sample size. We then investigated
metabolism of different products using per cell competition score
(PCCS), defined as the ratio of the per cell nutrient uptake flux in the
tumor cells over that in the NK cells. We found CAR19IL15 NK cells
experienced the least oxygen competition, while the NT NK cells
experienced the highest (Supplementary Fig. 5a). Interestingly, CAR19/
IL15 cells also had the highest glucose uptake level among the three
products at day 7, indicating that CAR19/IL15 NK cells were the most
metabolically active (Supplementary Fig. 5b).

We further examined the metabolic changes over time under the
CAR19/IL15 product. We found that the PCCS for oxygen and glucose
decreased fromday 7 to day 14 but ramped up after day 14 and peaked
onday 28 (Fig. 6d). Similar trendswereobserved in the PCCSof several
amino acids (Supplementary Fig. 5c–f). These results suggested that

tumor cells eventually outcompeted NK cells in terms of nutrient
uptake and that NK cells became lessmetabolically fit over time, which
is consistent with the observed phenotype76.

We also observed that tumor cells increased lactate production in
the TME over time, which peaked on day 21 and day 28 (Fig. 6e and
Supplementary Fig. 5g). Similarly, NK cells had elevated lactate release
over time (Supplementary Fig. 5h). As a result, the TME became
increasingly acidic, which might have suppressed the cellular function
and cytotoxic activity of NK cells, leading to tumor recurrence79.
Overall, our findings indicated that metabolic competition in TME
likely contributed to tumor resistance and relapse and that METAFlux
provided mechanistic insights on specific metabolites and cell-types
that cannot be readily measured via experimental means.

Discussion
Despite advances in new technologies, performing comprehensive
metabolic profiling is still limited by coverage, robustness, and cost.
Although computational methods have been developed to character-
ize metabolic traits from RNA expression data, the reliability of these
methods is unclear, particularly when applying to single-cell settings.
In this work, our method METAFlux appears as a viable solution that
enables a broad spectrum of metabolic flux characterization from
bulk, flow-sorted and single-cell RNA expression data, in amediumand
TME community-aware manner, which has led to deeper insights on
metabolic subtypes of cancer patients, metabolic heterogeneity in
TME, and mechanisms of tumor resistance in immunotherapeutic
settings. Of particular interest, METAFlux enables characterization of
metabolism architypes and heterogeneity at cell-type resolution in
various cancer datasets under a community-based model, which has
not been possible before using bulk data and existing modeling
methods.

We expect thatMETAFluxwill enhancehypothesis generation and
validation from perspective of metabolomics and facilitate translation
of new therapies into clinical trials. The recent pioneering discovery of
JHU083, a glutamine-antagonizing drug that can suppress tumor
growth and promote anti-tumor T cell function, showcases the great
importance of disentangling the metabolism of cancer cells from that
of immune cells16. However, anavenue towarddevelopingmetabolism-
baseddrugs is very challenging, partly becauseof the sharedmetabolic
pathways among cancer cells, immune cells, and normal cells. Tar-
geting specificmetabolic pathways can often inhibit tumor growth but
also derail immune cell function. In this regard, METAFlux holds great
promise in exploring clinically differential metabolic targets, because
it can account for interaction dynamics (architypes and PCCS, etc.)
among multiple cell types residing in TME, aiding the process of dis-
covering differential or coordinated metabolic responses.

Although the strengths of METAFlux have been successfully
demonstrated, some limitations remain. First, the predicted glucose
uptake does not correlate as consistently as other metabolites in NCI-
60 panel. This discrepancy potentially results from the limitations of
the cell-line models which do not accurately encapsulate the multi-
faceted nature of glucose metabolism. Alternatively, it suggests that
the methodology implemented by METAFlux need improvement to
fully capture the intricacies of metabolic processes under certain
scenarios. Second, METAFlux does not distinguish different levels of
nutrient concentrations and only utilized binary values (presence vs.
absence) in specifying medium constraints. Although this feature can
be advantageous when detailed experimental parameters are not
available, there can be situations where concentrations or fluxes of
certain nutrients vary in wide ranges and can significantly affect
accuracy of the results. Thus, improving the approach so that it can
further leverage the granular medium conditions may be required to
further improve the prediction accuracy.

Third, current objective function of METAFluxmaximizes the flux
of generic biomass reaction (biomass_human from Human1), which
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encompasses various cellular components for cellular proliferation
including, for example, proteins, lipids, small metabolites, etc. This
formulation has been proven to be a fairly accurate characterization of
generic human cell composition and demand53. However, it may be
more accurate to employ a cancer-specific biomass formulation,
assuming tumor cells are the ones driving biomass growth in a TME.

Fourth, despite the high resolution provided by single-cell data,
the current version of METAFlux calculates metabolic fluxes at cell
cluster level, due primarily to considerations on data sparseness and
noisiness of scRNA-seq data at individual cell level. Direct estimation of
cell-wiseMRAS from zero-inflated data can result inmany zeros, which
challenges downstream modeling. Averaging gene expression at
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cluster level can substantially alleviate such negative impacts, although
it is less effective for smaller clusters. For datasets with high dropout
rates, it may be beneficial to apply gene expression imputation on cell
clusters of a minimal size before applyingMETAFlux. For example, the
Compass metabolic model, recently developed by Wanger et al., used
KNN smoothing to mitigate sparsity and stochasticity80. Such model-
ing efforts will be further required to fully harness the power of single-
cell data. A more in-depth comparison between METAFlux and Com-
pass is presented in the Supplementary Note.

In summary, we have demonstrated that METAFlux can achieve
accurate, broad-spectrum characterization of metabolic fluxes from
bulk and single-cell transcriptomic data. The computational time of
METAFlux varies for bulk and single-cell settings. On a bulk dataset
with 500 samples, it typically takes 18minutes and a maximum of 4.4
GB memory to complete the whole pipeline on a desktop computer
with 3.3GHz Dual-Core Intel Core i7 processor. On a single-cell dataset
with a total of 10,000 cells (bootstrap number = 50 and number of cell
type = 2), the elapsed time was 17minutes, and the maximummemory
usage was 12 GB. If widely used, METAFlux can enable systemic,
accurate quantification of cancermetabolism in numerous studies and
generate insights on metabolic heterogeneity and mechanisms across
patients and cell types, potentially driving discoveries for cancer
therapy.

Methods
Underlying genome-scale metabolic model (GEM)
Human1, available publicly, contains 13,082 reactions and 8378
metabolites53. Reactions are across nine compartments (extracellular,
peroxisome,mitochondria, cytosol, lysosome, endoplasmic reticulum,
Golgi apparatus, nucleus, inner mitochondria).

Inference of metabolic reaction activity score (MRAS) from
transcriptomic data
We use GPR rules, which decode Boolean logic relationship between
genes in a reaction81, to map the relationship between gene products
and then summarize a total of 3625metabolic relatedgeneexpressions
into Metabolic Reaction Activity Scores (MRAS) given the predefined
relationships. We do not consider reaction kinetic constants and
binding affinity of proteins, since it is difficult to robustly estimate all
these parameters in genome-scale modeling45,82. Our approach is
adopted from what has been proposed earlier to infer activity of
metabolic reaction from gene expression data43,83.

In GPR, the AND operator joins the genes encoding for different
subunits of the same enzyme, and the OR operator joins the genes

encoding for isoenzymes84. For a reaction catalyzed by an enzyme
complex, all the subunits need to be expressed to catalyze a reaction,
and the lowest expressed unit will be the rate-limiting step for this
complex. Therefore, themetabolic activity of suchan enzymecomplex
will be the lowest expression value among all genes associated with
this enzyme complex. For a reaction catalyzed by isoenzymes, all the
isozymes contribute additively to this reaction83. Thus, metabolic
activity will be the sum of all expressions of isoenzyme genes. Some
genes are involved in multiple reactions (e.g., promiscuous enzyme),
and we hypothesize that there may be enzyme resource competition
may exist between reactions.We adjust for the enzyme promiscuity by
dividing the expression value of a gene by the number of reactions the
gene has participated in. A similar approach has been shown in85. The
steps of deriving MRASij , metabolic reaction activity for the jth reac-
tion for the ith sample are the following:

Let wk be the number of reactions enzyme k participates in
for the jth reaction and Enzymeik be the gene expressionofEnzymek in
sample i, then

OR logic : MRASij =
Xn
k=1

Enzymeik
wk

ð1Þ

AND logic : MRASij =Min
Enzymei1

w1
,
Enzymei2

w2
,
Enzymei3

w3
. . . :

� �
ð2Þ

Defining reaction flux constraints using gene expression
derived MRAS
To connect transcriptome and fluxes, a possible solution is to use the
MRAS calculated before to define the flux constraints. We use an
approach similar to E-flux45, where the expression levels of the genes
associated with a metabolic reaction serve as the maximum possible
flux that the reaction can carry. The rationale is that, although enzyme
activities do not have a high correlation with RNA levels, given a spe-
cific level of translational efficiency and assuming there is a limited
accumulation of enzymes over a certain time window45, RNA expres-
sion levels can be used as the maximum amount of protein products
available, which can then serve as the maximum reaction fluxes.

We set normalized MRAS as the flux upper bound to their corre-
sponding metabolic reactions. The lower bound of reaction flux is set
zero, if the reaction is non-reversible and ð�normalized MRASÞ, if the
reaction is reversible. The flux is loosely constrained when MRAS is
high, so there is more bandwidth of reaction flux. On the other hand,

Fig. 6 | CAR-NK single-cell RNA-seq METAFlux analysis. a Top five nutrients
profile of NK and tumor cells for each product under each metabolism architype.
The top five nutrients were selected by the most significant P-values from ANOVA
analysis of NK cell fluxes. Dot size represents the mean absolute cubic root
normalized flux scores, and color represents the direction of flux. b Violin plots of
predicted oxygen consumption flux and H+ release flux for the day 7 product of
CAR19/IL15, CAR19, NT-NK. Each group includes n = 100 bootstrap samples. The
box within represents the interquartile range (IQR), the line within shows the
median and the whiskers extend up to 1.5IQR. Min and max values correspond to
the smallest and largest mean predicted flux after removing data points that fall
more than three times the IQR beyond the quartiles (Q1 and Q3). Statistical test:
two-sided Games-Howell test. P-values are Holm corrected. P-values are denoted
as follows: ns (p > 0.05), *(p ≤0.05), **(p ≤0.01), ***(p ≤0.001), ****(p ≤0.0001).
Oxygen consumption: Adjusted P-value = 1:0× 10�13 for CAR19 vs CAR19/IL15.
Adjusted P-value = 1:0× 10�5 for CAR19 vs NT-NK. Adjusted P-value = 0 for CAR19/
IL15 vs NT-NK.H+ release: Adjusted P-value = 0 for CAR19 vs CAR19/IL15. Adjusted
P-value = 0.03 for CAR19 vs NT-NK. Adjusted P-value = 6:7 × 10�14 for CAR19/IL15
vs NT-NK. c Bar graphs of mean basal respiration and glycolysis obtained
respectively from the Seahorse assays. Error bar: mean ± sd. Pairwise test: two-
sidedGames-Howell test.d Per cell competition score (PCCS) between cancer and

NK cells in TME from day 7 to day 28 for oxygen and glucose uptake, respectively
for CAR19/IL15. Test: T-test. PCCS is defined as the ratio of the per cell nutrient
uptake flux in the tumor cells over that in the NK cells. Each group includes
n = 100 bootstrap samples. The box represents the interquartile range (IQR), the
line within shows the median, and the whiskers extend up to 1.5IQR. Min andmax
values correspond to the smallest and largest mean predicted flux after removing
data points that fall more than three times the IQR beyond the quartiles (Q1 and
Q3). The grey band represents the 95% confidence interval for the loess (locally
weighted scatterplot smoothing) curve. P-values were calculated using the two-
sided Wilcoxon Rank Sum test and corrected by FDR. P-values are denoted as
follows: ns (p > 0.05), *(p ≤0.05), **(p ≤0.01), ***(p ≤0.001), ****(p ≤0.0001).
Oxygen consumption competition: Adjusted P-value = 2:3 × 10�6 for time point 7
vs time point 14. Adjusted P-value = 0.06 for time point 14 vs time point 21.
Adjusted P-value = 1:6× 10�9 for time point 21 vs time point 28. Glucose uptake
competition: Adjusted P-value = 1:5 × 10�7 for time point 7 vs time point 14.
Adjusted P-value = 0.05 for time point 14 vs time point 21. Adjusted P-value =
6:3 × 10�10 for time point 21 vs time point 28. e A bar plot of tumor cells’ con-
tribution to total lactate release in TME over time. The Y-axis denotes the per-
centage of lactate released by the tumor cells. Test: T-Test. Error bar: mean ± sd.
Each time point includes n = 100 bootstrap samples.
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the flux is strictly constrained when MRAS is low, so the bandwidth of
flux is much narrower. Our model consists of 13,082 metabolic reac-
tions in total, and 8033 reactions are associatedwith enzymes (8033R1
reactions). The rest of the reactions are not associated with any
enzymes (5049 R2 reactions) and thus are not constrained by gene
expression, so we set their corresponding upper bounds to one.

The constraints of flux are as follows:

ðlbij ,ubijÞ =

lbij =0, ubij =
MRASij

maxðMRASiÞ if revj =0and j 2 R1 ð3Þ
lbij = � MRASij

maxðMRASiÞ , ubij =
MRASij

maxðMRASiÞ if revj = 1 and j 2 R1 ð4Þ
lbij =0, ubij = 1 if revj =0and j 2 R2 ð5Þ
lbij = � 1, ubij = 1 if revj = 1 and j 2 R2 ð6Þ

8>>>>><
>>>>>:

where lbij and ubij are the input flux bounds for the jth reaction in the
ith sample, and rev stands for the reversibility of a reaction. If rev=0,
the reaction is non-reversible; if rev= 1, the reaction is reversible.

Optimization framework
Stoichiometric representation of metabolic reactions. A chemical
reaction is a basic unit in metabolic pathways, and stoichiometry can
represent the quantitative relationship between products and reac-
tants in a reaction. The stoichiometric coefficients of the reactions
populate the stoichiometricmatrix S. Here, Stoichiometricmatrix is an
MbyN sparsematrix, whereM equals 8378, the number ofmetabolites
in different compartments, and N equals 13,082, the total number of
metabolic reactions. The negative coefficient in S matrix refers to the
moles of metabolites consumed in a particular reaction. The positive
coefficient means howmanymoles of themetabolites are produced in
a specific reaction. At the same time, zero implies that this metabolite
does not participate in a specific reaction.

Defining nutrient availability profile. We use the cell line culture
medium (Supplementary Data File S1), containing 44 metabolites as
the growthmedium in cell linemodels53. These 44metabolites include
major components from Hams F-12 medium (amino acids and vita-
mins) and other essential nutrients and ions from serum supplements
(SupplementaryMethods). At this point,weonlyoffered a binary list of
significant metabolites present in the environment. The reason we
need to define the metabolite availability is to guide the optimization
search in a biologically relevant sub-space. The uptake or secretion
rates of these 44 metabolites are not limited. For the remaining
metabolites in the model, we do not allow cells to uptake them from
the medium but instead, allow cells to secrete them into the medium.
For tissue samples from patients, it is necessary to define a more
physiologically relevant environment, as the traditional synthetic
medium does not mimic human blood. Cantor et al. developed a
human plasma-likemedium [HPLM] to better capture the composition
ofhumanblood, andwederived a list of 64metabolites inhumanblood
based on their profiling (Supplementary Data File S1)17. For more
general use purposes, users are not restricted to the pre-defined
metabolite list. We have provided the option to modify the input
metabolite list if users have knowledge of their backgroundmetabolite
profiles.

Solving flux balance analysis using quadratic programming. Tra-
ditional FBA by linear programming (LP) gives a unique optimal
objective value. However, the solution to FBA from LP is most likely
degenerate, meaning the solutions are not unique, and different sol-
vers will likely return different vectors. Usually, the flux variability
analysis (FVA) is used afterward to calculate the range of fluxes that
achieves the optimal objective86. Another approach, pFBA or Parsi-
monious enzyme usage FBA, was proposed earlier34. pFBA assumes
there is a selection for an organism to minimize the total amount of
necessary enzymes to achieve optimal growth. pFBA first computes

the optimal growth rate and thenminimizes the sum of reaction fluxes
under the optimal solution. Here, we reformulate this idea into convex
quadratic programming (QP) to overcome degeneracy.

We define single-sample unsolved metabolic fluxes by vector v
with a length of 13,082. The dot product of matrix S and a vector of
unknown fluxes v approximation to 0 represents the steady-state
assumption, where the metabolite concentrations are essentially held
constant dx

dt ≈0, and x stands for the concentration of all the
metabolites.

The framework is implemented using OSQP solver87 and for-
mulated as the following optimization problem:

min 1
2 vTv� aCTv

s:t: Sv≈0
ð7Þ

lbj ≤ vj ≤ ubj ð8Þ

lbj =0 if j 2 E but j=2GE ð9Þ

whereC is a vector of zeroswith a one at the position of our designated
biomass reaction, and constraint (9) are the growth medium con-
straints. a is set to 10,000, the same order of magnitude with respect
to fluxes used in Fitmethods54. j stands for the jth reaction.Wedefine a
growth medium G and all exchange reactions E and GE as exchange
reactions relevant toG. Usually,fluxes v are in units likemmol/gDW/hr,
but our predicted fluxes are inferred from gene expression. Thus, the
results are relative flux scores. To retrieve the uptake or release flux of
a specificmetabolite, wequery the exchangeflux using the reaction ID.
A positive flux indicates secretion, whereas a negative flux represents
the uptake of the metabolite.

Single-cell pipeline: community-based flux estimation in single-
cell data
Given a scRNA-seqdataset, we assign a group (cluster or cell type) label
to each cell.We first performstratified bootstrapping, whichmeanswe
sample with replacement with respect to each group.

Step 1: Bootstrap sample generation. Let group be g = 1, . . . :n, and
big the ith bootstrap sample for the gth group. For each bootstrap
iteration i, we combine bi1,bi2… for all the groups to form resampled
data Bi. Each generated bootstrap data will be the same size and have
the same group proportion as the original data.

Step 2: MRAS calculation on bootstrap samples. For each boot-
strap sampleBi, we calculate themeangene expression vector for each
group. Next, we calculate the MRAS for each mean gene expression
vector. This step is same with bulk pipeline. MRAS will be later used to
derive lbij and ubij , where ij stands for the jth reaction in cell group i.

Step 3: Define group fraction parameter P. P is a fraction matrix
defined as:

P =

p1 0 0 � � � 0

0 p2 0 � � � 0

0 0 p3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

2
66666664

3
77777775
=diagðp1,p2������,1Þ ð10Þ

where pi stands for the percentage of cell group i, and that
Pn

i= 1 pi = 1.
We require group fractions as our input. Group fractions indicate

the proportions of groups of interestwith respect to thewhole sample.
Ideally, these proportions should be retrieved from experiments or
calculated from matched bulk data using CIBERSORTx88. However,
most datasets do not have such information. As a result, directly
observed cluster (group) fractions in single-cell data could be used,
but further studies are warranted to evaluate the findings since those

Article https://doi.org/10.1038/s41467-023-40457-w

Nature Communications |         (2023) 14:4883 12



proportions may deviate from the truth due to bias introduced during
tissue dissociation89,90.

Step 4: Merging metabolic networks. Let mE
ij be the metabolites

associated with exchange reactions in group i. To merge multiple
metabolic networks, we need to create a “TME metabolite reservoir”
for different cell groups to interact. We define rmij as the reservoir
metabolite j in group i

Ci : m
E
ij $ rmij ð11Þ

which allows different partitions of TME to share the same resources,
and

EðSRÞ : rmij $ + ð12Þ

which ensures the model is an open system that allows reservoir
metabolites to be exchanged with the external environment. Each
Si represents the cell group specific stoichiometric matrix. The
final size of the merged stoichiometric matrix is
(N × 8378 + 1648) × (13,082 × N + 1648), where N is the number for
groups we defined. A specific construct of the merged stoichio-
metric matrix for three groups is shown below:

Group 1
reactions

Group 2
reactions

Group 3
reactions

Shared metabolic
reactions

Shared
metabolites

C1 C2 C3 EðSRÞ

Group 1
Metabolites

S1 0 0 0

Group 2
Metabolites

0 S2 0 0

Group 3
Metabolites

0 0 S3 0

Our model aims to maximize the entire community’s biomass
while minimizing the sum square of overall fluxes.

Step 5: Flux calculation. This step is implemented using OSQP
solver87. For each bootstrap sample mean expression vector, it is for-
mulated as follows:

min 1
2 v

TPv� aCTPv

s:t: SPv ≈0
ð13Þ

lbij ≤ vij ≤ubij , if j =2 EðSRÞ ð14Þ

lbe ≤ vej ≤ub
e, if j 2 EðSRÞ then ube = 1 ð15Þ

lbe =0 if j 2 E SRð Þbut j=2GE SRð Þ, otherwise lbe = � 1 ð16Þ

C is a vector of zeros with ones at each cell group’s designated
biomass reaction position.a is set to 10,000. j stands for jth reaction in
EðSRÞ or shared exchange reactions. ij stands for the jth reaction in cell
group i. Constraint (15) and (16) are the constraints imposed specifi-
cally on shared exchange reactions or EðSRÞ:Constraint (16) represents
the growthmediumconstraint, andwedefine a growthmediumG, and
GEðSRÞ as shared exchange reactions relevant to G. For bulk-sorted
data,wedonotperformanybootstrap.Wewill directly calculateMRAS
and proceed to step 3 and follow the rest of the pipeline.

Identification of metabolic interaction modes in single cell
pipeline
TME is a highly complex mixture, and TME components either form
metabolic antagonism or symbiosis when uptaking nutrients91. When
one ormore cell types benefit from themetabolites produced by other
cell types, we define the interaction as a metabolic Cooperation pro-
gram. When all cell types compete for limited resources in TME, we
define it as a competition metabolic program. When all cell types
secrete certain nutrients, we define it as a Release program.

Simulation of metabolic fluxes using random medium profiles
To estimate the medium effect on model performance, we compare
the results obtained from our biologically meaningful medium with
same-sized random mediums. The assumed medium contains 44
metabolites, so we randomly select 44metabolites from the total 1648
exchange metabolites. We then allow our model to uptake or secrete
those 44metaboliteswithout rate restriction,while allowing the rest of
1604 metabolites to only secrete with no rate restriction. We repeat
this processN = 500 times. For each simulation i, we obtain the overall
Spearman correlation ρi and directionality accuracy acci. To calculate
the p-value, we count the number of measurements greater than our
original biological meaningful statistics ρo and acco and divide this
number by 500.

pvalueρ =
Pi =N

i = 1 Iðρi ≥ ρoÞ
N

ð17Þ

pvalueacc =
Pi=N

i= 1 Iðacci ≥accoÞ
N

ð18Þ

Where I :ð Þ Is an indicator function, which equals to one if the condition
in parenthesis is true, and zero, otherwise.

Statistics and reproducibility
The sample size for our study was not predetermined through a sta-
tistical method. The sample sizes were primarily decided based on the
availability of public data. The number of bootstraps performed was
mainly driven by the computational time frame and resources.
Detailed protocols for analyzingfluxdata andgene expressiondata are
described in the Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in our study are publicly available. Human-GEM
model was accessed from (https://github.com/SysBioChalmers/
Human-GEM). We retrieved the medium composition and experi-
mental flux profiling data for 11 NCI-60 cell lines under the original
manuscript53. ecGEM flux prediction for 11 NCI-60 cell lines was be
obtained at https://zenodo.org/record/3583004#.YhQJdZPMJqs. NCI-
60 cell lines TPM RNA-seq data was obtained from https://depmap.
org/portal/download/. TNBC FDG-PET data and matched expression
data can be found at NCBI Gene ExpressionOmnibus (GSE135565), and
pancreatic cancer FDG-PET data and matched expression can be
downloaded at NCBI Gene Expression Omnibus (GSE107754). The
TCGA pan-cancer RNA-seq TPM data was downloaded from UCSC
Xena data hubs (https://xenabrowser.net/). The proliferation score
data can be found in the original publication64. Patient Lung cancer
bulk-sorted RNA-seq data can be downloaded from the NCBI Gene
Expression Omnibus (GSE111907). Single-cell Metastatic LUAD data
was retrieved fromNCBI Gene Expression Omnibus (GSE131907). CAR-
NK single-cell RNA-seq data is available throughNCBI Gene Expression
Omnibus (GSE190976).
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Code availability
Source code is publicly available at https://github.com/KChen-lab/
METAFlux or https://zenodo.org/badge/latestdoi/515741372.
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